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Abstract—High Concentrator PhotoVoltaic (HCPV) is a recent PV 

technology generating electricity from solar radiation. Unlike 

conventional PV systems, it uses lenses and curved mirrors to 

focus solar rays onto small, but highly efficient Multi-junction 

(MJ) solar cells. Solar tracker and cooling systems are part of a 

standard CPV facility. Due to the complex design of an HCPV 

system, the output power estimation becomes a very hard task. In 

contrast, Machine Learning (ML) methods, and more specifically 

Artificial Neural Networks (ANNs), provide very suitable 

solutions for modelling complicated systems. The aim of this work 

is to develop a Radial Basis Function Neural Network (RBFNN) 

model to predict the output power of an HCPV facility. RBFNNs 

have a simple topological structure and their ability to reveal how 

learning proceeds in an explicit manner. Our results showed that 

the RBFNN model provides more accurate estimation of output 

power compared to the ASTM-E2527 based on the same dataset.  

Keywords- Power Estimation, High Concentrator PhotoVoltaic, 

Machine Learning, Radial Basis Function, Neural Network. 

I.  INTRODUCTION  

  In recent years, the fact to introduce a clean energy as 

alternative sources, such as solar energy, is expected to reduce 

the CO2 emissions. 

  Photovoltaics represent the most popular solar energy system 

and more specifically, Concentrator PhotoVoltaic (CPV) is one 

of the most promising renewable energy technology able to 

reduce the fossil fuel dependence [1]. CPV uses cheap optical 

devices like lenses and curved mirrors to focus sunstrokes onto 

small, but highly efficient Multi-junction (MJ) solar cells. Solar 

tracker and cooling systems are part of a standard CPV facility 

[2]. 

In both, development and the market integration of every 

energy production system, energy prediction represents a key 

factor. Unfortunately, due to the design complexity of a CPV 

system, the output power estimation is very difficult and complex task. 
Some methods for output power estimation of a CPV module had been 

elaborated by earlier CPV researchers. However, the implementation 

of most of these methods are laborious because of several reasons such 

as: 1) the need of some intrinsic parameters of the MJ solar cell used 

in the CPV assembly and 2) the requirement of complex, accurate and 

sometimes highly expensive devices for specific tests [2].  

In contrast, Machine Learning (ML) methods, and more specifically 

Artificial Neural Networks (ANNs), are used to identify the system 

dynamics without explicitly knowing the interactions between its 

components [3]. ANNs are currently used for the modeling of 

solar power and energy systems in a wide range applications 

both in the demand side [4] and the production ones [5, 6]. 

Some researchers [7] had developed a feed-forward neural 

network to estimate the maximum power of an HCPV module 

located in the south of Spain, using Direct Normal Irradiance 

(DNI), Air Mass (AM), Precipitable Water (PW), Air 

Temperature (Tair)  and Wind Speed (Ws) as inputs. This 

network was trained based on Levenberg-Marquart back-propagation 

algorithm, which finds only local minimum. It should be noted that 
ANNs have a lot of different uses outside the interest of this 

work. 

Choosing ANNs in this work is justified by the configuration of 

the plant. Among other sources of uncertainty and no linearity, 

three strings on the same plant imply that the value of the DNI 

impinging on the multi-junction solar cells is not the same. This 

makes, together to the rest unknown variables and processes, a 

complex task to predict the output power of the system. In this 

work, an RBFNN model has been developed for the prediction 

of the maximum power of a CPV system located on the campus 

of International University of Rabat (UIR), in the middle-West 

of Morocco. In addition, the model of the Standard ASTM E-

2527, which is one of the simplest mathematical models used 

in the power rating of CPV systems, has also been 

implemented. The ASTM E-2527 model takes into account 

atmospheric parameters such as (DNI), air temperature, and 

wind speed. Its results were compared to RBFNN results. 
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II. HPCV SYSTEM 

This study has been conducted on a whole HCPV system 

consist of 108 CPV modules mounted in three strings of 36 

modules and connected in series. The CPV facility is located on 

the campus of International University of Rabat (UIR) in the 

middle-West of Morocco (geographical coordinates: latitude 

33.982° N, longitude 6.7248° W). Each CPV assembly is made 

of a lattice-matched GaInP/GaInAs/Ge MJ solar cell, a PMMA 

Fresnel lens as a primary optic, and a refractive truncated 

pyramid as the secondary optic. The modules have a geometric 

concentration ratio of 961 and they are built by six cells 

connected in series. Fig. 1 shows the HCPV plant.  Tables I & 

II show the technical details of the modules provided by the 

manufacturer namely Magpower Company. An SHP1 Kipp & 

Zonen pyrheliometer has been settled on the solar tracker for 

the measurement of the DNI. 

 

A weather station nearby located was used to record other 

environmental parameters, such as wind speed, air temperature, 

relative humidity and wind direction. 

Solar elevation (h) is deduced using a dedicated software 

installed on the tracker. 

 

TABLE I: CHARACTERISTICS OF THE HIGH CONCENTRATOR 

PHOTOVOLTAIC MODULES. 

Electrical characteristics 

Type of solar cells Lattice-matched 

GaInP/GaInAs/Ge 

Cell dimension 1cm x 1cm 

Concentration X 800  

Geometrical 

concentration 

X 961 

Number of solar cells Six cells in series 

Cooling system Passive 

Primary Optics PMMA Fresnel lens 

Dimension of Primary 

Optics 

31cm x 31cm 

Secondary optics Refractive truncated pyramid 

Type of cell protection Bypass diode 

 

TABLE II: THE ELECTRICAL CHARACTERISTICS OF HIGH CONCENTRATOR 

PHOTOVOLTAICS MODULE UNDER STANDARD CONDITIONS CSTC AS 

PROVIDED BY THE MANUFACTURER 

 

Electrical characteristics 

Maximum power 110 W 

Open-circuit voltage (Voc) 17,70 V 

Short-circuit current (Isc) 8,65 A 

Maximum voltage 15,27 V 

Maximum current  7,7 A 

Temperature coefficients 

voltage  -0.3V/°C 

Current +8µA/°C 

Power -0.16%/°C 

 
 

 

Figure 1. HCPV facility 

III.  BACKGROUND 

A. The CPV Power model of the ASTM-E2527 

 
The model of the standard of the American Society for Testing 
and Materials exploits a simple and single equation to estimate 
the maximum power of a CPV module using the DNI, the Tair 

𝑊𝑠 [8, 9].  
 

𝑃𝑀𝑃𝑃 = 𝐷𝑁𝐼. (𝜆1 + 𝜆2. 𝐷𝑁𝐼 +  𝜆3. 𝑇𝑎𝑖𝑟 +  𝜆4. 𝑊𝑠       (1) 
 

In the equation above, the coefficients 𝝀1, 𝝀2, 𝝀3 and 𝝀4 are 
obtained by regression analysis of the HCPV output data. It is 
noticed that this model does not take into account the spectral 
effect on multi- junction cells [8, 9, 10]. 

Apart from the above-mentioned mathematical model, other 
existing methods can be found namely: the Lineal model of E.F. 
Fernández et al [11]; the Sandia National Laboratories Model 
[12]; the model of Peharz G. et al. [13]; Model of A.J. Rivera et 
al [14] and YieldOpt [15]. Unfortunately, their implementation 
is more difficult, compared to the use of the ASTM E-2527 
model. 

B. Artificial Neural Networks (ANNs) 

Though the above-mentioned methods can approximately 

model the output power of a CPV system by using linear 

relations, they do not consider dynamical effects such as 

changes in irradiance or spectrum, to mention but a few. 

ANNs mimic the human brain's biological neural network in the 

problem-solving process. An ANN can be seen as a black-box 

that connects the input to the output, with fully connected 

neurons (nodes), these nodes being connected by weights. They 

are used for the non-linear mapping between the input data, X, 

and the output vector, Y, in order to model relations or to detect 

patterns among them. Less knowable of the system is required 

in this case. Hence, ANNs could be very useful in complicated 

systems and models. By using supervised training methods, the 

parameters (weights and biases) and structure can be 

determined from data. 



 

An RBFNN is a three layers feed-forward ANN, an input layer 

made up of m nodes, a hidden layer with n neurons or RBFs, 

and an output layer with one node. A radially-symmetric basis 

function, which can be defined in several ways, is used to 

activate the n neurons of the hidden layer. The Gaussian 

function is the most widely used as activation function: 

  

𝑓𝑖(𝑥) = 𝑒
(− 

  ⃦𝐶𝑖−𝑥   ⃦ 2 

2𝜎𝑖
2 )

                    (2)  

                                              

In this expression,  𝐶𝑖  is the centre of basis function, ‖ ‖ is 

the typically Euclidian norm and  is the width (radius). 

 

The output of an RBFNN can be expressed as: 

    
𝑦 = ∑ 𝑊𝑖𝑓𝑖(𝑥)                      (3)𝑛

𝑖=1   

 

Where 𝑊𝑖  is the weight corresponding to the connection 

between the ith RBF unit to the output.  

While training the network, there are three steps before 

obtaining the parameters of the RBF units: 

i. The unit centers are obtained by K-mean clustering 

algorithm. 

ii. The nearest-neighbor method is used to determine the 

widths; 

iii. By using least square techniques, weights connecting 

the RBF units and the output units are calculated. 

 

RBFNNs are able to solve nonlinear problems, since 

unsupervised learning in the hidden layer is combined with 

supervised learning in the following layer. This makes them 

suitable for photovoltaic power forecasting. 

 

In this research, the inputs correspond to environmental 

parameters namely: weather (Tair (Air Temparture), Ws (Wind 

speed), Wd (Wind direction)), AM (Air mass) based on Solar 

Elevation (measured or calculated), Azimuth angle of the 

tracker, DNI and the output power of the HCPV system delayed 

one time (q-1) and two times (q-2). While in the hidden layer, a 

wide number of nodes have been tested (from 10 to 20 nodes 

with one output node which is the output power of the HCPV 

system). 

In general, RBFNN training is performed using a gradient-

based algorithm, which minimizes the training error. The 

training process will be terminated when the minimum of the 

generalization error is obtained, the error obtained in an unseen 

data, as training evolves, a spread dataset used for this process 

called generalization dataset. This scheme is a way to solve the 

problem known as overtraining. To compare different trained 

models, with possible different model structure, a third dataset, 

denoted as a testing dataset, is needed. Hence, three different 

sets of data are used: i) training, ii) generalization and, iii) 

testing datasets [16, 17]. Fig. 2 shows the structure of the ANN 

proposed in this paper. 

  
Figure 2. Structure of the ANN proposed in this paper 
 

IV. EXPERIMENTAL SET-UP 

 

This work takes into account a dataset with data that have been 

collected during 3 years. More specifically, 92 days have been 

selected from this dataset. The inputs extracted from different 

sources have different sampling times (6 s, 15 s, 30 s, and 1 

min). However, all the data have been resampled to have a 

sampling time of 1 min in order to be used in the RBFNN to 

produce the desired model with a time step of 1 min and predict 

up to 15 steps ahead. Fig. 3 shows the scheme of the 

experimental set-up used in this work. 
 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Figure 3. The experimental set-up used to carry out the study at International 
University of Rabat 

 

The solar elevation can help to calculate approximatively the 

relative optical Air Mass (AM). AM expresses the ratio of the 

optical path length of the solar beam through the atmosphere to 

the optical path through a standard atmosphere at sea level with 

Weather station    
WMR300A 

CPV Facility 



the Sun at apex. It can be expressed as a function of the solar 

altitude h by [2, 7]:  
 

A𝑀(ℎ) =
𝑒𝑥𝑝 (− 𝑍

𝑍ℎ
⁄ )

𝑠𝑖𝑛ℎ +  0.50572(ℎ +  6.07995)−1.6364             (4) 

 

Where, 𝑍 is the place elevation (Z=146m) for the International 

University of Rabat) and 𝑍ℎ  is the scale height of the Rayleigh 

atmosphere near the Earth surface, equal to 8434.5 m. 

The result of the network using AM will be the same if the solar 

elevation is used because they are two dependent parameters. 

Hence, the solar elevation is considered as input in our model 

instead of AM. 

 

V. RESULTS AND DISCUSSIONS 

 

In this work, a Radial Basis Function Neural Network had been 

designed using MATLAB and the same software has been used 

to extract the coefficients of the ASTM E-2527 model.  

The data consists of 92 days from 2016 to 2018. The data was 

divided into two part of 46 days each (sunny days and cloudy 

days). Partly cloudy days have been considering as cloudy days, 

after filtering the data from noise and errors (measurement 

errors). Three types of data have been created for each dataset; 

training, generalization and testing. Fig. 4 shows the trend of 

the output maximum power for sunny days. 
 

 
Figure 4. Output Maximum Power and the Corresponding DNI and Tair 
 
The results are presented in two parts: 

 
A. Model of ASTM E-2527 

Table 4 represents the coefficients obtained for the HCPV 

system according to the ASTM E2527 Model. In table 5, the 

values of the Root Mean Square Error,   between actual and 

predicted output power for the HCPV system are reported. 

TABLE IV: COEFFICIENTS OBTAINED FOR THE MODULE 

UNDERSTUDY FOR THE ASTM E2527 MODEL 

𝜆1 𝜆2 𝜆3 𝜆4 

5.1864 4.2623 10-3 2.501810-3 -1.325410-3  

 

TABLE V: RMSE,  𝑹𝟐
 BETWEEN ACTUAL AND PREDICTED 

OUTPUT POWER FOR THE HCPV SYSTEM 

RMSE 𝑅2 

               4.07103 0.334 

 

B. RBFNN Model 

For the same data set using DNI from satellite, air temperature, 

Wind speed, Solar elevation, Wind direction, and P(q-1), P(q-

2) as input, the RMSE to RMS of the power is 9.2% which 

represent 1.3103 watts of the total power. We can easily notice 

that the RBFNN estimate better the output power than the 

ASTM model. 

 

The higher RMSE of RFBNN model that is presented in this 

work is due to some constraints faced in this work, namely: 

- The loss in the wires connecting the modules to each 

other while forming the strings;   

- The measured DNI was sometimes not available for all 

the 92days considered. Since then, we have used DNI 

from the satellite. The satellite based DNI is less 

accurate than the one obtained from the pyrheliometer; 

- The weather station transmission is sometimes 

interrupted, making useless the other inputs 

corresponding to those times. 

- The number of days (data samples) are not enough to 

train efficiently the RBFNN model.  

 
Figure 5. The output power of the system vs the output power of RBFNN 

model for sunny days 

 



Figure. 5 shows the power of the HCPV system and the 

prediction of the RBFNN Model (1 minute and 15 minutes 

ahead for sunny days). Fig. 6 shows the prediction results for 

cloudy days. 

 
Figure 6. The output power of the system vs the output power of RBFNN 

model for cloudy days 
 

The weak value of the R2 in the ASTME-2527 is surely due to 

the same constraints. Moreover, this model has been designed 

based on measurements on a single module.  

 

I. CONCLUSION AND FUTURE WORK 

 

   In this work, a Radial Basis Function Neural Network has 

been designed to estimate the output power of an HCPV 

facility. The results were compared to those obtained by the 

ASTM E-2527 model using the same dataset. The accuracy of 

the models has been evaluated based on the root mean square 

error (RMSE). The RMSE of the ASTM model is 4.07kw for 

the sunny days while RMSE of the RBFNN is 1.3kw, showing 

that the RBFNN is more accurate than the ASTM model. 
   In future work, more data will be collected and put into the 

RBFNN Model to have a better prediction of the system in order 

to reduce the error values. In addition, other inputs could be 

added to improve the quality of prediction. Moreover, the use 

of Deep Neural Networks DNNs (with more hidden layers) in 

the output power estimation of HCPV will be investigated. 

Also, more experiments will be carried out with various 

sampling times and various steps to assess the impact of these 

modifications on the prediction quality. 
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