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Abstract: Sewage sludge (SS) is widely used as a soil conditioner in agricultural soil due to its high
content of organic matter and nutrients. In addition, inoculants based on soil microorganisms, such as
cyanobacteria, are being applied successfully in soil restoration to improve soil stability and fertility
in agriculture. However, the combination of SS and cyanobacteria inoculation is an unexplored
application that may be highly beneficial to soil. In this outdoor experiment, we studied the ability
of cyanobacteria inoculum to grow on degraded soil amended with different concentrations of
composted SS, and examined the effects of both SS concentration and cyanobacteria application on
carbon gain and soil stability. We also explored the feasibility of using cyanobacteria for immobilizing
salts in SS-amended soil. Our results showed that cyanobacteria growth increased in the soil amended
with the lowest SS concentration tested (5 t ha−1, on soil 2 cm deep), as shown by its higher chlorophyll
a content and associated deeper spectral absorption peak at 680 nm. At higher SS concentrations,
inoculum growth decreased, which was attributed to competition of the inoculated cyanobacteria
with the native SS bacterial community. However, SS significantly enhanced soil organic carbon gain
and tightly-bound exopolysaccharide content. Cyanobacteria inoculation significantly improved
soil stability and reduced soil’s wind erodibility. Moreover, it led to a decrease in the lixiviate
electrical conductivity of salt-contaminated soils, indicating its potential for salt immobilization
and soil bioremediation. Therefore, cyanobacteria inoculation, along with adequately dosed SS
surface application, is an efficient strategy for improving carbon gain and surface stability in dryland
agricultural soil.

Keywords: organic waste; biocrust cyanobacteria inoculation; organic carbon content; aggregate
stability; wind erosion susceptibility; agricultural soil

1. Introduction

Expansion and intensification of usage of agricultural lands to meet the increasing
global food demand poses a serious risk to sustainability and food security [1]. Inad-
equate agricultural practices such as intensive tilling, overgrazing, removal of vegeta-
tion, and excessive use of chemical fertilizers and pesticides have resulted in increased
soil erosion rates, rapid mineralization of organic matter, higher CO2 emissions, less
soil fertility, and loss of biodiversity [2–5]. Agricultural soil erosion is one of the main
threats to soil sustainability [6]. Soil erosion rates in agricultural lands are estimated at
400 m My−1, which greatly exceeds natural soil formation rates, estimated at 50–200 m My−1 [2].
Problems are aggravated in drylands, where climate conditions (low rainfall and high
temperatures) and edaphic characteristics (poor soil structure and low organic matter
content) reduce the availability of a substrate suitable for crop development [7]. In addition,
drylands are extremely vulnerable to the increased aridity predicted for the end of this
century [8,9]. Growing human pressure on drylands will exacerbate soil degradation [10,11]
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and compromise their suitability for cropping [12]. New approaches are necessary to main-
tain and/or increase crop yield while ensuring environmental protection in drylands.

Various solutions for improving or restoring agricultural soil quality are being ex-
plored, with a special focus on increasing soil stability and organic carbon content, as these
are considered very efficient strategies for overcoming soil degradation and the most reli-
able indicators for monitoring it. There have been attempts at reforestation using shrub-like
plants typical of dryland regions [13] or the return of agricultural wastes to soil, such as
local crop straw [14]. The two techniques achieved good results, with a significant amelio-
ration in both soil aggregate stability and total organic carbon content. Another practice
employed is the use of organic waste, which has become an important waste recycling
measure in the European circular economy strategy [15]. One of the most important organic
wastes used as a soil amendment is sewage sludge (SS), a by-product of municipal and
industrial wastewater treatment. Due to its high content in organic matter and macro- and
micronutrients, SS is applied as a soil conditioner to improve and maintain soil quality and
stimulate plant growth [16]. Sewage sludge applications have also gained in importance
due to the growing population and urban and industrial development, which make efficient
recycling and management necessary to reduce environmental impacts [17,18]. Around
50% of SS generated is used in agriculture in Europe [19], and up to 65% in Spain [20].
Spreading SS over the ground benefits crops by improving soil chemical, physical, and bio-
logical properties and providing nutrients to plants [21–23], reducing the need for inorganic
fertilizers [24]. Nitrogen contained in SS is rapidly mineralized and made available for
plant uptake, stimulating plant growth [16,25]. Sewage sludge also increases total organic
and microbial biomass carbon [26], improving soil aggregation [27] and water retention
capacity [28].

However, in spite of the indisputable benefits resulting from the use of SS in agriculture,
its long-term or mismanaged soil application leads to a variety of undesirable qualities
that can cause adverse effects on the environment [29,30]. For example, even when SS
has been subjected to secondary treatments and dehydration, a wide range of pollutants,
such as heavy metals, organic contaminants, or human bacteria and potentially pathogenic
organisms [31] that could be transferred to the food chain may still persist. Another
common detrimental effect of SS in drylands is the risk of soil salinization [32,33] which
may limit its fertility. Furthermore, irrigation in dryland agriculture may also cause
salts to accumulate in the soil profile, and this in turn can promote the displacement of
undesirable substances, including heavy metals [34,35]. Both salts and heavy metals can
affect groundwater quality. Moreover, water and wind erosion could potentially transport
pollutants from surface-applied SS offsite [36], as well as part of C, N, and other nutrients
added with the SS amendment. The loss of these nutrients from runoff and water erosion
is especially important when crops are located on relatively steep slopes or when the
hydrophobic effects commonly associated with dry sludge persist after application [37].
To reduce such nutrient losses and the environmental and health risks of the agricultural
use of SS, new strategies able to counteract these potential risks and at the same time
support the circular economy and sustainable agriculture have been implemented. Many of
them focus on stabilizing the contaminants through adsorption, surface complexation, and
precipitation processes using natural or synthetic materials (for example fly ash, carbonates,
zeolites, biochar, clay minerals, marble waste, etc.), alone or with organisms, particularly in
combination with microorganism inoculation [38,39].

It has been suggested that native soil microbial communities can degrade or reduce
the bioavailability of contaminants, as well as offset the losses of carbon and nutrients from
erosion or gaseous emission and even increase bioavailability of P compounds. Thus, the
combined application of SS with these microorganisms represents an important opportunity
for recycling nutrients for agriculture while limiting the environmental risks. Of the
potential native microorganisms that could be combined with SS in soil, cyanobacteria are
ideal candidates for use in drylands.
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The capacity of soil cyanobacteria to survive and grow at high temperatures [40] and
under long exposure to UV radiation [41] and drought [42] makes them suitable for use
in drylands. In addition, several other characteristics make them excellent candidates
for reducing the negative effects of SS. For example, soil cyanobacteria, through their ca-
pacity for photosynthesis, are able to reduce GHGs by fixing atmospheric CO2 and N2 [43].
Soil cyanobacteria also secrete exopolysaccharides (EPS), which, in addition to increasing
soil fertility [44] and soil water retention [45], have several features crucial to ameliorating
the impact of sludge. EPS bind soil particles, increasing soil stability [46] and reducing soil
water and wind erosion [47], and, as a result, reduce the loss of SS nutrients and dissemi-
nation of pollutants by wind and water. Cyanobacteria have also been demonstrated to
be effective for the remediation of salt-affected soils, as the secreted EPS can bind sodium
ions and form biofilms, protecting plants from salt stress [48,49], and their trichomes can
remove soluble sodium from the soil by biosorption [50].

Finally, cyanobacterial strains of interest can be isolated from soil, and cultured ex-
situ in liquid media for large-scale inoculation. The production cost of this biomass has
been reduced by optimizing growing temperatures, making use of natural sunlight [51],
employing wastewater instead of a freshwater enrichment medium, or utilizing media
made with agricultural fertilizers [52,53].

Thus, the application of SS combined with soil cyanobacteria inoculation is hypoth-
esized to be appropriate for agricultural management, as it increases soil stability and
reduces erosion, increases potential carbon sequestration in soils, and contributes to the
circular economy and GHG mitigation. In this study, we examined the effect of combining
SS application and soil cyanobacteria inoculation on soil properties in degraded agricultural
soil under outdoor conditions. The specific objectives were: (i) to analyze the ability of
cyanobacterial inoculum to grow on soils amended with SS at different concentrations;
(ii) to examine the effect of SS application and cyanobacteria inoculation on physico-
chemical soil properties; and (iii) to explore the capability of cyanobacteria for salt immobi-
lization in SS-amended soils.

2. Materials and Methods
2.1. Sewage Sludge Collection

The composted SS was collected from the “Montes Orientales” composting plant in the
province of Granada, Spain. The sludge, coming from a municipal wastewater treatment
plant in Almeria, was centrifuged, air-dried and composted by mesophilic aerobic digestion.
To do this, the material is compiled in small piles and turned every ten days, maintaining
the temperature range between 55 and 65 ◦C, with the process lasting for three months.
The main characteristics of the compost are shown in Table 1.

Table 1. Heavy metal content and physicochemical characteristics of the composted sewage sludge.
The number in brackets indicates limit values (ppm) of heavy metals for application in agricultural
soils with pH > 7, according to the RD 1390/1990 Spanish regulation.

Heavy Metals Physicochemical Characteristics

Chromium (ppm) 25.1 (1500) Total organic carbon (%) 19.19
Nickel (ppm) 16.8 (400) Labile organic carbon (%) 0.23
Copper (ppm) 106.36 (1750) Total carbon (%) 19.28

Zinc (ppm) 264.84 (4000) Total nitrogen (%) 2.88
Lead (ppm) 31.28 (1200) pH 6.17

Cadmium (ppb) 754.74 (40,000) Electrical conductivity (ms cm−1) 7.52
Mercury (ppb) 32.5 (25,000)

2.2. Soil Collection

Soil samples were collected from an abandoned agricultural site (36◦52′21′′N, 02◦12′07′′W)
located in the province of Almeria (Spain) adjacent to the municipal wastewater treatment
plant from which the SS was collected. Soil texture was sandy loam (68.6% sand, 16.8% silt,
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and 14.6% clay), pH was 9.06 and electrical conductivity was 0.53 mS cm−1. The soil
was scarcely developed and had a poor structure, with a low field capacity (<13%) and
hydraulic conductivity of 1.27 cm h−1. Total organic carbon and nitrogen contents were
low, with average values of 1.15% and 0.22%, respectively.

2.3. Culture of Cyanobacterial Inoculants

Four native cyanobacterial strains common in semiarid soils [54] and previously iso-
lated and identified from different soils in the province of Almeria [55] were selected as
inoculants: two non-heterocystous cyanobacteria, Trichocoleus desertorum (CAU7 UAM 832)
and Leptolyngbya frigida (CAU10 UAM 837), and two filamentous heterocystous,
Nostoc commune (CANT2 UAM 817) and Tolypothrix distorta (CANT7 UAM 825). N-fixing
and non-fixing cyanobacteria were used together as a consortium to combine the benefits
of the two groups. The non-heterocystous species are those that dominate in the early
stages of biocrust succession, since their morphologic and physiologic features let them
colonize unfavorable environments while facilitating later-successional organisms’ colo-
nization by improving soil properties. On the other hand, heterocystous cyanobacteria are
commonly found in the later stages of biocrust development; they increase soil fertility
by fixing atmospheric nitrogen [54]. Single trichomes were transferred separately to ster-
ilized Erlenmeyer flasks (0.25 L) containing BG11 media (for the non-heterocystous) and
BG110 (for the heterocystous). The flasks were continuously aerated with sterilized air by
filtering (0.22 µm, Millex EMD Millipore™), and the cultures were incubated in a room
at 25 ± 1 ◦C under a constant irradiance of 200 µmol photons m−2 s−1. Cyanobacterial
biomass was harvested at the exponential phase (2.5 g L−1) and scaled up to larger con-
tainers (5 L) to maximize biomass growth. Once enough biomass for soil inoculation
experiments was grown, the inoculum was harvested by filtration.

2.4. Experimental Design

The experiment was conducted in June 2020. Small aluminum trays (19.1 cm × 13.6 cm)
were filled with 350 g of soil amended with different SS concentrations. Five SS doses,
applied on soil 2 cm deep, were tested: (1) no SS application to the soil (hereafter “D0”);
(2) SS application at a dose of 5 t ha−1 (D5); (3) SS at a dose of 10 t ha−1 (D10); (4) SS at a dose
of 30 t ha−1 (D30); and (5) SS at a dose of 40 t ha−1 (D40). Although the standard application
of SS in agriculture often involves the first 30 cm of the soil profile, this experiment was
designed to analyze the combined effect of SS amendment and cyanobacteria inoculation
on soil properties. Thus, SS was applied on a thin soil layer (2 cm) where the induced
cyanobacterial biocrust is expected to have a major impact. To prepare the amended
substrate at the different SS doses, a large tray was filled with the collected soil and the SS
was added at the desired dose and mixed to ensure proper mixing. Samples were irrigated
with 200 mL of distilled water to allow the substrate to stabilize prior to soil inoculation.

For each SS dose, two treatments were applied: control or no cyanobacteria inocula-
tion, and cyanobacteria inoculation. Four replicates of each treatment (control/inoculated
for each SS dose) were prepared, with a total of 40 trays. Cyanobacterial biomass was
inoculated on an equal mixture of the four selected species (1:1:1:1 weight) on the amended
substrates, at a concentration of 6 g m−2. This concentration has been successfully em-
ployed in previous studies involving the same species [56–58]. To achieve that concentration,
150 mg of the cyanobacterial mixture was resuspended in 200 mL of distilled water (0.75 g L−1)
and applied uniformly onto the substrate with a sprayer three consecutive times
(~65 mL each time). An equivalent amount of distilled water was applied to the uninocu-
lated samples. Samples were placed outdoors for four months. The study period included
the whole summer and the daily mean air temperature during the study period was 23.4 ◦C.
Samples were irrigated with a quantity of water equivalent to the mean annual rainfall in a
wet year (380 mm) according to local rainfall records and calculated for the duration of the
experiment. Thus, the resulting irrigation was 60 mL of water twice a week.



Agriculture 2022, 12, 1993 5 of 19

Additionally, an experiment was set up to evaluate cyanobacterial growth on soil with
the lowest and the highest SS doses (5, 30 and 40 t ha−1), sterilized to remove the native
biological community by autoclaving it. SS was mixed with soil to obtain sterilized and
unsterilized SS treatments; then, four control and four inoculated samples of both were
prepared. Experiment preparation, duration, and physical conditions were maintained as
in the previous experiment.

2.5. Assessing Inoculum Growth
2.5.1. Chlorophyll a Content

Chlorophyll a content, which is considered one of the best indicators to evaluate
cyanobacteria growth [59], was determined at the end of the experiment by following the
procedure developed by Castle et al. [60]. A composite sample per tray, obtained from three
individual soil samples (0–3 mm depth), was used for the chlorophyll a determination.
Thus, one gram of fine powder was mixed with 5 mL ethanol, heat ed at 80 ◦C in a
water bath for 5 min, vortexed at maximum speed, and then cooled at 4 ◦C for 30 min.
The sample was centrifuged at 4000× g for 20 min and the supernatant recovered. This
procedure was conducted twice for each soil sample. Afterwards, chlorophyll a content was
determined immediately after extraction by measuring the absorbance at 665 and 750 nm
with a spectrophotometer (Helios Zeta UVVIS, Thermo, UK) and applying the equation
developed by Ritchie [61]:

Chlorophyll a
(

µg g−1 soil
)
=

11.9035× A(665− 750)×V
soil weight(g)× L

(1)

where A is the absorbance value at the specific wavelength, V is the volume of the extract (L),
and L is the optical path length of the spectrophotometer cuvette (cm).

2.5.2. Soil Spectral Response Measurements

To assess cyanobacterial development over the whole soil surface, the spectral response
of the surface was also analyzed with an Analytical Spectral Device (ASD) hand-held
portable spectroradiometer (ASD Inc., Boulder, CO, USA). The instrument was equipped
with an optic fiber capable of sample intervals of 3.5 nm from 325 nm to 1075 nm. The fiber
was placed 16 cm above the soil sample to cover half of the tray on each acquisition, so
two measurements per tray were required to cover its entire surface. All measurements
were conducted under constant light conditions by using two ASD lamps that uniformly
illuminated samples during spectral acquisitions. The signal was pre-calibrated using
a white reference Spectralon® panel. Three measurements were taken per sample, each
one being the average of three individual spectra, and then averaged to produce a single
surface spectrum per tray. Data were pre-processed by removing noisy bands in the range
between 325 and 400 nm and between 950 and 1075 nm, later applying a cubic polynomial
smoothing filter with a 17 bands-window size [62]. The smoothed spectra were used
to extract the continuum removal (CR), a technique that normalizes soil reflectance by
dividing the original spectrum by a continuum curve resulting from applying a convex
hull fit over the top of the spectrum that connects local maxima with straight line segments,
which have a value of 1.0 [63]. Then, values equal to 1.0 indicate no absorption, while lower
values indicate the presence of absorption features. This was employed to estimate the
maximum absorption at ~680 nm (CR680), close to the natural absorption peak produced
by the presence of chlorophyll a, which has been found to be strongly correlated with
chlorophyll a content in cyanobacterial biocrusts [64].

2.6. Influence on Soil Properties
2.6.1. Soil Stability Measurements

To test the effectiveness of the treatments on soil stability, we measured soil suscepti-
bility to wind erosion using a wind tunnel experiment and conducted a test to evaluate
aggregate stability at the end of the experiment. Trays were placed at the center of the
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wind tunnel (0.35 m long with a cross-section of 0.15 × 0.15 m), and a turbine attached to
one side of the tunnel was employed to produce a laminar and non-turbulent flow with a
speed of 18 m s−1 for one minute. Wind speed was measured with a thermic anemometer
PCE-423 with 0.01 m s−1 resolution. The wind speed was selected according to the range
of threshold friction velocities found by Liu et al. [65]. A bag was attached to the other
side of the tunnel to recover all the particles detached from soil surfaces. At the end of
the experiment, these particles were air-dried and weighted to produce a single value of
wind erosion (g) per sample.

To measure aggregate stability, the soil stability kit described by Herrick et al. [66]
was used. Briefly, six surface aggregates (~6–8 mm diameter × 2–3 mm depth) per tray
were collected and placed in a 1.5 mm mesh wire basket, immersed in distilled water for
5 min, then followed by five dipping cycles at the rate of one cycle every 2 s. Each aggregate
was assigned to a class on a scale of 1 to 6, with greater values indicating higher aggregate
stability. Finally, the average percentage of each stability class for each treatment was
determined.

2.6.2. Exopolysaccharide and Soil Organic Carbon Content

After conducting the wind tunnel and soil stability measurements, three surface
samples (3 mm depth) were collected from each tray and mixed together to obtain a
composite sample. The soil was air-dried at room temperature, and ground with a mortar
and pestle for EPS and soil organic carbon content determination.

Both loosely- (LB) and tightly-bound (TB) EPS fractions were determined. For this,
0.1 g of soil was weighed and three consecutive extractions with 3 mL of distilled water
were conducted to recover the LB-EPS. The three extractions were combined into one single
solution. After this, three consecutive extractions with 3 mL of 0.1 M Na2EDTA were used
and mixed to recover the TB-EPS [67]. The exopolysaccharide content of each solution was
determined by using the phenol–sulfuric acid assay, measuring the absorbance at 488 nm
with a UV–VIS spectrophotometer [68] and using glucose as the standard.

Soil organic carbon (SOC) was determined via wet oxidation using the Walkley and
Black method modified by Mingorance et al. [69].

2.7. Inoculation of Saline Soils with Native Cyanobacteria

Additionally, a second experiment was conducted to test the ability of cyanobacteria
to immobilize salts in the soil. The soil amended with the optimum SS dose for the
cyanobacterial colonization (i.e., 5 t ha−1) was selected. Three doses of NaCl salt were
simulated: (1) no salt added to the soil; (2) 0.3% NaCl w w−1; and (3) 0.6% NaCl w w−1.
The soil and the SS were sterilized prior to soil inoculation to account solely for the
response of cyanobacteria for salt immobilization without the interference of the native soil
community. To facilitate a more homogeneous incorporation of the salt into the substrate,
the SS-amended soil and the salt were previously ground using a mortar and pestle and
then mixed together following the same procedure as in Chen et al. [70]. This experiment
was conducted in Petri dishes filled with 80 g of the amended substrate. Finally, a mixture
of the four cyanobacterial strains was inoculated on the substrate following the same
methodology described above (Section 2.4), and the same irrigation pattern was applied.
Samples were placed into a growth chamber under constant light and a light–dark cycle of
16:8 h for three months.

The ability of cyanobacteria to survive under increasing salt concentration was evalu-
ated by analyzing the spectral absorption by chlorophyll a at the end of the experiment.
The maximum absorption at ~680 nm (CR680), obtained with the spectroradiometer as
explained in Section 2.5.1, was used to estimate the development of the inoculum over the
soil surface.

To assess if cyanobacteria were able to immobilize NaCl from the soil, electrical
conductivity was measured in the lixiviates of the salt-contaminated samples at the
end of the experiment. For that, soil samples were irrigated with distilled water
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until saturation and the lixiviate was recovered by vacuum filtration. The electrical
conductivity (mS cm−1) was directly measured in the lixiviate using a Crison Conductivity
meter 522 (Crison Instruments SA, Barcelona, Spain).

2.8. Statistical Analyses

To test the effect of the treatments (SS dose and inoculation) on both cyanobacteria
growth and soil properties, a two-way analysis of the variance (ANOVA) test was con-
ducted. The same test was used to test the effect of salt concentration and inoculation on the
electrical conductivity of the lixiviates. Variables were tested for normality and homogene-
ity of variance using the Shapiro–Wilk and Levene’s test. Data were log-transformed before
performing parametric analysis if assumptions of normality were not met. The Tukey
post-hoc test was applied to test differences between means. Significance was established
at p < 0.05. All the analyses were performed using RStudio version 4.1.3.

3. Results
3.1. Cyanobacterial Inoculum Viability Assessment

Four months after cyanobacteria application, the soil amended with the lowest SS dose
(5 t ha−1, on soil 2 cm deep) showed the deepest absorption peak at 680 nm (CR680 = 0.986).
This absorption peak decreased (lower CR680 value) with increasing SS in the inoculated
samples (Figure 1). On the contrary, all the uninoculated samples, regardless of SS dose,
had CR680 values close to 1, indicating the absence of photosynthetic pigments (Figure 1).
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Figure 1. Continuum removal curves between 650 and 700 nm obtained for the control and inoculated
samples for the different sewage sludge doses tested in the experiment, after 4 months.

The same pattern was observed in the chlorophyll a concentration, with even stronger
differences than those observed in the continuum removal values (Figure 2). Chlorophyll
a content was significantly higher in the inoculated soil amended with the lowest SS
dose (2.74 ± 0.24 µg g−1) than in the uninoculated soil amended with the same SS dose
(0.58 ± 0.1 µg g−1). On the contrary, there were no statistically significant differences
between the control and inoculated samples without SS or with increasing SS concentrations,
which showed chlorophyll a content from 0.5 to 1 µg g−1 (Figure 2).
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Figure 2. Chlorophyll a concentration (µg g−1 soil) in the control and inoculated samples for the
different sewage sludge doses, after 4 months. Lowercase letters indicate significant differences
among control treatments at the different SS doses, while capital letters indicate significant differences
among inoculated treatments at the different SS doses. * indicates statistically significant differences
between the control and the inoculated treatment for each sewage sludge dose.

3.2. Effects on Soil Physico-Chemical Properties
3.2.1. Soil Stability

At the end of the experiment, aggregates in all the control treatments were in the lowest
stability class, regardless of the sewage sludge concentration in the amendment (Figure 3).
On the contrary, four months after the application of the cyanobacterial inoculum, the
aggregate stability of the inoculated samples had increased significantly, with a large
percentage in aggregate stability classes 4 and 5. The best results were with the lowest
doses of the organic amendment, particularly with 5 t ha−1, with more than 10% of the
aggregates in the highest stability class (Figure 3).

Regarding wind erodibility, the amount of sediment displaced by the wind force
applied increased with SS dose because of the higher coarse particle content in the amended
samples (Figure 4). Cyanobacteria inoculation strongly decreased particle displacement,
and significant differences were found between inoculated and control soils for almost all
the SS concentrations tested (Figure 4).
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Figure 4. Sediment displaced (g) following wind simulation at a constant speed of 18 m s−1 for
one minute. Lowercase letters indicate significant differences among control treatments at the
different SS doses, while capital letters indicate significant differences among inoculated treatments
at the different SS doses. * indicates statistically significant differences between the control and the
inoculated treatment inside the sewage dose considered.
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3.2.2. Total Organic Carbon and EPS Content

Total organic carbon concentration rose with SS dose, ranging from about 1% in soil
without any SS amendment to over 3.5% with the highest dose (40 t ha−1) (Figure 5).
However, there were no significant differences between the control and the inoculated
treatments at any dose tested.
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Figure 5. Organic carbon content (%) in the control and inoculated soils amended with the different
SS doses, after 4 months. Lowercase letters indicate significant differences among control treatments
at different SS doses, while capital letters indicate significant differences among inoculated treatments
at different SS doses.

No significant differences in total EPS content were found between the control and
the inoculated samples. Like the trend observed in organic carbon content, total EPS
concentration rose with SS dose, from around 1 mg g−1 with no or very low SS amendment
to 2.5 mg g−1 in the soil with the highest SS (Figure 6). EPS was from 6% to 10% of the total
organic carbon. The LB-EPS fraction of the total EPS was smaller (around 30%) than the
TB-EPS. It should also be mentioned that LB-EPS concentrations remained similar at all SS
doses except 40 t ha−1, where they were significantly higher. On the other hand, TB-EPS
increased with SS dose, and was significantly higher in the soil with the highest SS doses
(30 and 40 t ha−1).
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Figure 6. Exopolysaccharide content (mg EPS g−1 soil) in the control (C) and inoculated (I) soils
for the different SS doses (t ha−1), after 4 months. Lowercase letters indicate significant differences
in LB-EPS content at the different SS doses, while capital letters indicate significant differences in
TB-EPS content at the different SS doses.

3.3. Cyanobacterial Effects in Saline Soils

The soil used to evaluate the response of cyanobacteria in the presence of high salt
concentrations was amended with the lowest SS dose (5 t ha−1), as it showed the best
cyanobacterial growth in the previous experiment (see Section 3.1). It was observed
that cyanobacteria considerably reduced lixiviate electrical conductivity in soils contam-
inated with 0.3 and 0.6% NaCl, the two salt concentrations tested, reaching values of
about 4.5 mS cm−1, while in the control soils, the values were 12.5 and 12.2 mS cm−1,
respectively (Figure 7). EC value in the two saline treatments inoculated with cyanobacte-
ria were also similar to the non-saline samples, indicating that the inoculum was able to
remove almost all the NaCl ions added (Figure 7).

The cyanobacteria’s ability to grow in two salt-contaminated soils was assessed by the
chlorophyll a spectral absorption peak. As expected, cyanobacteria survival three months
after soil inoculation was better in the soil without added salt (Figure 8). However, the
soils at the two NaCl concentrations inoculated with cyanobacteria also showed absorption
peaks at 680 nm, revealing the ability of the inoculum to survive in these saline soils. The
CR680 value was lower (higher absorption by chlorophyll a) in the soil with lower NaCl
concentration, indicating more growth than in soil with a higher NaCl content (Figure 8).
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Figure 7. Electric conductivity, EC, (mS cm−1) measured three months after the beginning of the
experiment in the lixiviate of the soil spiked with NaCl salt at two different concentrations. Low-
ercase and capital letters indicate significant differences among control and inoculated trea tments,
respectively, at each NaCl soil concentration. * indicates statistically significant differences between
the control and the inoculated treatment for each NaCl concentration.
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4. Discussion
4.1. Inoculum Viability in Soils Amended with different SS Doses

The application of organic wastes such as SS has been shown to increase organic matter,
nutrient concentration, and microbial growth in soils, and is therefore a suitable strategy
for mitigating soil degradation and improving the quality of agricultural soils [71,72].
Technologies based on the use of microbial cultures and inoculants in agricultural soils
have also increased in use enormously, because they improve soil fertility, decompose
organic waste, prevent plant diseases, and enhance crop productivity [73,74]. Use of SS
amendments and microbial inoculants together is an underexplored technique that can
potentially maximize the beneficial effects of both techniques in croplands.

In this study, the application of SS as a soil amendment at different doses increased
the organic carbon content (Figure 5), and its combination with cyanobacteria inocula-
tion resulted in significant improvements in soil stability (Figures 3 and 4). However,
cyanobacterial inoculum growth on the amended soil depended heavily on the SS dose
applied (Figures 1 and 2).

Our results showed that the lowest SS concentration (5 t ha−1, on soil 2 cm deep)
was the best to promote inoculum growth, reporting better results than the unamended
soil (Figures 1 and 2). Maestre et al. [75] also found that cyanobacteria from biocrust
were able to colonize the surface of soils amended with SS and that the addition of the
composted SS significantly increased chlorophyll a content. However, the addition of SS
favored the survival and growth of the cyanobacterial inoculum only when SS concentra-
tions applied were low, contrary to what usually occurs with plants, which would increase
their productivity at the highest dose tested [76,77]. This could be due to the excessive
presence of nutrients or harmful compounds [78], or the presence of other microorgan-
isms in the SS that compete with cyanobacteria [79], substantially lowering their survival
rates [80]. Considering that the concentration of the hazardous heavy metals analyzed
remained well below legal limits (Table 1), a more plausible explanation seems to be the
presence of competing microorganisms. To corroborate this, an additional experiment with
sterilized SS was set up, as explained in Section 2.4. The findings of this experiment demon-
strated that inoculum growth increased in the soils with the sterilized SS at higher doses
(assessed by the CR680 value), confirming our hypothesis. (Figure 9). Previous studies have
also found that high SS concentrations could be detrimental to crop yield, enzyme activity, and
carbon microbial biomass [26]. Furthermore, the increase in coarse particle content added with
increasing SS dose could also have hindered establishment of the inoculum on the surface.
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4.2. Effects of the Inoculum and the SS Dose on Soil Properties

Due to its high content of organic matter and valuable nutrients, application of SS can
be highly profitable, as it reduces the cost of fertilizers [81]. As in this study, previous stud-
ies have highlighted the essential nutrients for plant growth such as nitrogen, phosphorous,
and carbon that SS can provide [72,82–85], and shown linear enhancement of soil organic
carbon content with increasing SS application rate (Figure 5). From 6 to 10% of the soil
organic carbon in our treatments was made up of extracellular polymeric substances (EPS),
which are produced by the microorganisms naturally present in SS (Figure 6) [86]. The EPS
matrix provides an improved environment for bacterial survival and growth and consti-
tutes a protective layer against any hazardous compounds [87]. In this study, cyanobacterial
EPS seemed to be negligible compared to the EPS already present in the SS, so EPS content
in the inoculated soils was similar to the uninoculated soil, and increases in EPS were
mainly associated with higher SS dose (Figure 6). Interestingly, the largest fraction of
these EPS compounds was made up of TB-EPS, which are more recalcitrant and in the
mid to long term could have a major role in soil particles adherence and soil structure
improvement [67,88]. Thus, the use of SS may contribute to enhancing soil stability and
protecting soil from wind and water erosion by improving its EPS content. Nonetheless,
our results showed that the presence of cyanobacteria was crucial in increasing aggregate
stability (Figure 3), which is essential to reducing soil water and wind erodibility. The soil
inoculated with the lowest SS concentration, which was also the one in which cyanobac-
terial growth was higher as shown by its high chlorophyll a content, had the highest soil
stability (Figure 2). The cyanobacterial inoculum also reduced wind erosion susceptibility
from 40 to 99% by stabilizing the soil surface (Figure 4). These results are supported by pre-
vious studies, which reported a soil loss reduction of 77–89% and 82%, respectively, in soils
with cyanobacterial inoculation compared to uninoculated soil [89,90]. Due to their signifi-
cant effect on soil stabilization, cyanobacterial inoculum is being used extensively to restore
degraded soil in arid ecosystems with outstanding mitigation of soil loss [47,89,91,92].

4.3. Effect of Cyanobacteria Inoculum on Salt Immobilization in SS-Amended Soils

Some studies have suggested that adding SS to soil could also lead to a significant
increase in salt concentration [93,94]. Since high soil salinity is a major abiotic stress in
agriculture, the ionic imbalance in plants due to excessive accumulation of Na+ and Cl−,
which limits absorption of essential mineral nutrients, must be mitigated [95,96]. In this
study, cyanobacteria were able to reduce the electrical conductivity of the leaching solution,
showing their ability to immobilize salts and reduce their solubility and leaching in the
soil solution. This effect was noticeable at both NaCl concentrations tested (Figure 7).
Cyanobacteria EPS have a complex chemical composition including high molecular weight
organic molecules [97] rich in negative-charged aminic and carboxylic groups [98]. As
reported by Nishanth et al. [99], these functional groups are able to sequester both heavy
metal and salt ions due to the simple electrostatic attraction between the protonated ions
and the negatively charged active sites in the EPS extracellular matrix.

The EPS absorption capacity of heavy metal and other ions by EPS rises with increas-
ing metal ion concentration until a certain limit, after which it starts to go down again due
to active site saturation [100]. In our case, cyanobacteria were able to immobilize soil salt
at both NaCl concentrations, as shown by the electrical conductivity in the lixiviates from
the saline samples with cyanobacterial inoculation, which was similar to the non-saline
samples (Figure 7). Thus, with the species used, the biomass concentration applied, and
the pH of the soil measured, the salt concentration of 0.6% was not enough to saturate
the active groups on the cyanobacterial wall. The continuum removal values at 680 nm
demonstrated that cyanobacteria were able to survive in these saline soils, even if the
biomass was lower than in the control soil. Indeed, many cyanobacteria have developed
diverse response mechanisms to high soil salt concentration [101,102]. However, this may
depend on the cyanobacterial species and salt concentration. Singh et al. [103] reported
that Nostoc calcicola showed more inhibited growth and metabolism in hypersaline soils
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than at low NaCl concentrations, and the same was found by Kumar et al. [104] with
Nostoc muscorum. Lan et al. [105] found that the growth of Microcoleus vaginatus was inhib-
ited by salt treatments, and this effect was more noticeable at higher NaCl concentrations
and longer times.

Despite the good results obtained, it is necessary to address some limitations in order to
transfer the small-scale experiments to field conditions. For example, the studied treatment
needs two successive steps to be completed, given that SS must be applied and mixed
with the soil prior to the inoculation with cyanobacteria, which makes its application more
time-consuming. The feasibility of applying the inoculum with irrigation or spreading dry
cyanobacterial biomass with a fertilizer spreader might be assessed to optimize the strategy. It
would also be interesting to carry out subsequent studies to test strategies focused on reducing
the competition of microorganisms with the cyanobacteria inoculum to increase its growth and
colonization on soils amended with higher doses of SS, which usually work in agriculture.

5. Conclusions

The application of soil cyanobacteria to SS-amended soils has been proven a successful
strategy for improving soil qualities. In this study, application of the nutrient-rich SS
amendment led to a considerable increase in soil fertility by significantly enhancing organic
carbon and exopolysaccharides content. In addition, the cyanobacterial inoculum had a
major role in stabilizing the soil against both wind and water erosion, although its growth
on the amended soil depended on SS dose and the greatest growth was observed at low
SS. Cyanobacteria can also grow on salt-contaminated soils and immobilize salts in the
soil, reducing their solubility and providing a promising solution as a soil bioremediation
technique. Therefore, application of SS amendments and cyanobacterial inoculants together
can combine the beneficial effects of the two strategies alone, leading to synergistic effects
benefiting the recovery of soil fertility and improving soil stability, while minimizing
contamination such as soil salinization. Although not tested in this study, the efficiency of
cyanobacteria for immobilization of heavy metals should also be evaluated. To summarize,
in view of dryland vulnerability to global change and constraints on crop productivity
in these regions, the strategy based on SS application as a soil conditioner coupled with
cyanobacteria inoculation appears to be a powerful technique for the recovery and/or
improvement of degraded soils, and would potentially enhance crop productivity.
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