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Abstract: Wildfires affect the structure, functioning, and composition of ecosystems. Long-term
monitoring of the occurrence, abundance, and growth of plant species is key to assessing the responses
of the dynamics of plant populations with regard to environmental disturbances, such as wildfires.
In this work, we evaluated the changes in the number of individuals and the canopy cover extent
of a population of Juniperus communis L. during a four-decade period following a wildfire in a
Mediterranean high-mountain ecosystem (Sierra Nevada, Spain). To do this, we used object-based
image analysis (OBIA) applied to very high-resolution aerial images. Our study also provides a new
approach to optimize the shrub identification process and to semi-automatically evaluate the accuracy
of the number of shrubs and their canopy cover. From the 752 individuals present in 1977, only
433 remained immediately after a fire (1984), a few more disappeared one decade later (420 shrubs in
1997), while by 2008, the population had partially recovered to 578 shrubs. The wildfire decreased
juniper canopy cover from 55,000 m2 to 40,000 m2, but two decades later it had already recovered
to 57,000 m2. The largest shrubs were more resistant to fire than the smallest ones and recovered
in a shorter time period. The protection measures introduced with the park declaration seemed to
have contributed to the post-fire recovery. The potential of this methodology in the management and
conservation of biodiversity in the future is also discussed.

Keywords: object-based image analysis; OBIA; shrub; Juniperus communis; monitoring; persistence;
segmentation; Sierra Nevada

1. Introduction

The high longevity of some plants in high-stress environments (e.g., nutrient-deficient
environments, high competition, or extreme climates) means that they can survive under
adverse conditions long enough to delay or even avoid extinction by preserving their
populations throughout long hostile periods until windows of opportunity allow for their

Fire 2023, 6, 4. https://doi.org/10.3390/fire6010004 https://www.mdpi.com/journal/fire

https://doi.org/10.3390/fire6010004
https://doi.org/10.3390/fire6010004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fire
https://www.mdpi.com
https://orcid.org/0000-0001-5348-7391
https://orcid.org/0000-0001-7270-366X
https://orcid.org/0000-0002-5123-964X
https://orcid.org/0000-0001-8988-4540
https://doi.org/10.3390/fire6010004
https://www.mdpi.com/journal/fire
https://www.mdpi.com/article/10.3390/fire6010004?type=check_update&version=1


Fire 2023, 6, 4 2 of 18

establishment [1]. Such a strategy of the long-term maintenance of individuals in high-stress
environments is known as persistence [2]. Monitoring persistent populations is complex
since they grow slowly and the environmental conditions when they were established in
the past may have now changed [3], but they can inform on the long-term environmental
changes they have witnessed and the disturbances they have gone through [4–6]. The
extreme environmental conditions that persistent plants suffer determine the usually slow
dynamics of these populations [7–9]. For instance, persistent shrub populations in the
Mediterranean high mountains are under intense abiotic stress and are dominated by older
adults, with meager proportions of juveniles [10], something that could also be favored
by anthropogenic disturbances (e.g., deforestation and fires). This evolution as a function
of environmental conditions and anthropogenic disturbances complicates their study and
monitoring over long periods of time [4,5]. Furthermore, there is a lack of information
on how the persistence of these individuals contributes to expanding the demographic
strategies of the species [7]. For these reasons, low-cost automatic monitoring of the
distribution and growth of persistent shrubs with very high-resolution aerial and satellite
imagery would facilitate an assessment and understanding of the effects of environmental
changes and disturbances on the dynamics of long-lived plant populations.

Wildfire is the primary disturbance in the Mediterranean ecosystems of southern
Europe [11]. Fires are natural agents that have played a fundamental role in the evolution
of ecosystem patterns and processes since prehistorical times [12]. Fire action can create
new ecological niches [13,14], be responsible for modifications in vegetation structure and
distribution [15], cause changes in erosion regimes [16], and affect the carbon cycle and
even the global climate [17]. Fires are sometimes associated with the loss or degradation of
natural areas and their associated ecosystem services (forest, livestock, and agricultural
resources) [18]. Nevertheless, there are fire-adapted ecosystems and species for which its
loss is detrimental [13]. Responses and degrees of adaptation to fire vary among plant
species and some species can recover after disturbances, as is the case with resprouting [19].
In other species, the capacity to recover after fire disturbances is minimal, and if individuals
die, the only option to recover their populations is by new colonization [10,20]. For many
years, fire regimes have been influenced by humans (e.g., [21]). However, the cumulative
effects of human actions are leading to changes in the size, intensity, and recurrence of fires,
resulting in more severe impacts on biodiversity and ecosystems [13,18].

Aerial and satellite image classification for vegetation monitoring is one of the most
widely used remote sensing tools in conservation [22–25]. Object-based image analysis
(OBIA) has proved to be a successful tool for monitoring the effect of fires in the past
(e.g., [26–29]), providing more accurate results with high-resolution images and without
spectral information than pixel-based analysis, which presents difficulties in images of very
heterogeneous environments [30]. Pixel-based classification analyzes each pixel’s properties
independently without considering spatial information or the context surrounding the pixel
of interest. In addition, the small pixel size in images of very high spatial resolution means
that the objects of interest are often larger and important information in the context of the
image is lost through pixel-based image analysis [31]. In contrast, OBIA considers both
the spectral information of the object and its context, including its relationship with the
environment [32]. OBIA consists of two steps: segmentation, which is the division of the
image into homogeneous objects (also called segments) of similar characteristics and the
classification of these objects, which is their categorization into classes of interest, based on
similarities in their shape, context, and spectral information [33]. During the segmentation
phase of OBIA, it is necessary to establish an appropriate scale for the division of objects
according to their size in the analyzed image [34]. Therefore, the success of the classification
greatly depends on the accuracy of the segmentation [35]. In environments where vegetation
appears differentiated from the surrounding landscape, such as in high mountains, OBIA
allows accurate and realistic identification by using the spectral information of the vegetation
and its spatial relationship to its context. The availability of high-resolution historical
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photographs and their analysis with OBIA makes it possible to reconstruct the dynamics of
plant populations and evaluate their changes over time.

In this study, the historical mapping of a persistent shrub (Juniperus communis) in the
Sierra Nevada National Park (Spain) is constructed as a basis for evaluating its population
dynamics over 40 years and its evolution after a fire that occurred in 1983. For this purpose,
(i) the remote sensing identification of Juniperus communis was optimized by developing
a semi-automatic work protocol that allows identifying which segmentation (separation
between bush and ground) is best adapted to the characteristics of each moment in the
historical images, allowing better identification of the bushes; (ii) a reconstruction of
historical changes in the distribution, canopy cover, and population structure of Juniperus
communis was carried out to evaluate the possible factors that have determined its post-
fire recovery; and (iii) changes in the size structure of the population were compared to
bibliographic references and discussed in the context of the different measures adopted to
protect the area as a Natural Park in 1989 and as a National Park in 1999.

2. Materials and Methods
2.1. Study Area

We focused on a 0.53 km2 plot at the Barranco de San Juan (37◦06′04.6′′ N 3◦22′07.9′′W),
located on the western face of the high mountain massif of Sierra Nevada, Spain (Figure 1),
in the oromediterranean subhumid belt [36]. Average annual precipitation is irregular
depending on altitude, with values varying between 350 and 1200 mm per year. The
average winter temperature is 0 ◦C, with a persistent snow cover in many places for eight
to ten months per year [37]. In the area, there is a community led by the ecosystem engineer
Juniperus communis L. (common juniper) associated with Genista versicolor Boiss. ex Steud.
and Hormathophylla spinosa (L.) P. Küpfer, among others, holds very diverse plant and ani-
mal communities, including passerines, such as Turdus torquatus Linnaeus, 1758 and Turdus
viscivorus Linnaeus, 1758, or rodents, such as Apodemus sylvaticus (Linnaeus, 1758) [38,39].
In this area, there are several abandoned irrigation channels [40] and summer grazing was
common in the past [41]. Furthermore, there was a fire that affected this community of J.
communis in 1983 [42,43].
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Figure 1. (a) Location of the study area in the Barranco de San Juan in the National Park of Sierra 
Nevada (Andalusia, Spain). (b) Traditional livestock grazing in the study area. (c) Ground truthing 
with a differential GPS of a Juniperus communis L. individual in the Sierra Nevada. 

2.2. Datasets and Ground Truth 
Very high spatial resolution orthoimages obtained during the 1977–2008 period us-

ing photogrammetric flights carried out within the National Aerial Orthophotography 
Plan, a project co-financed and cooperated between the General State Administration and 
the different autonomous communities of Spain, were used in this work. The orthoimages 
are available at https://www.juntadeandalucia.es/institutodeestadisticaycarto-
grafia/prodCartografia/ortofotografias/index.htm (accessed on 10 July 2022). All images 
were projected to the ETRS89 UTM 30N coordinate system. The specifications of the suit-
able images that were used in this study can be found in Table 1. 

Table 1. Images used in the work. (PAN: panchromatic image; RGB: red-green-blue image). 

Year Spatial Resolution (m) Spectral Resolution 
1977 0.5 PAN 
1984 1 PAN 
1997 1 PAN 
2008 0.5 RGB 

Figure 1. (a) Location of the study area in the Barranco de San Juan in the National Park of Sierra
Nevada (Andalusia, Spain). (b) Traditional livestock grazing in the study area. (c) Ground truthing
with a differential GPS of a Juniperus communis L. individual in the Sierra Nevada.

2.2. Datasets and Ground Truth

Very high spatial resolution orthoimages obtained during the 1977–2008 period us-
ing photogrammetric flights carried out within the National Aerial Orthophotography
Plan, a project co-financed and cooperated between the General State Administration and
the different autonomous communities of Spain, were used in this work. The orthoim-
ages are available at https://www.juntadeandalucia.es/institutodeestadisticaycartografia/
prodCartografia/ortofotografias/index.htm (accessed on 10 July 2022). All images were
projected to the ETRS89 UTM 30N coordinate system. The specifications of the suitable
images that were used in this study can be found in Table 1.

Table 1. Images used in the work. (PAN: panchromatic image; RGB: red-green-blue image).

Year Spatial Resolution (m) Spectral Resolution

1977 0.5 PAN
1984 1 PAN
1997 1 PAN
2008 0.5 RGB

https://www.juntadeandalucia.es/institutodeestadisticaycartografia/prodCartografia/ortofotografias/index.htm
https://www.juntadeandalucia.es/institutodeestadisticaycartografia/prodCartografia/ortofotografias/index.htm
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For ground-truthing, the perimeter of individuals detected in the field was digitized
with a Leica GD15 (Leica Geosystems, St. Gallen, Switzerland) GPS for each class (e.g.,
Juniperus communis and soil) by creating polygons in QGIS software v. 2.18.12 (QGIS
Development Team, Open Source Geospatial Foundation Project). From a field sampling of
the individuals appearing in all the images used, 100 individuals of juniper were digitized.
For this digital sampling, transects were systematically carried out parallel to the stream in
Barranco de San Juan.

2.3. Object-Based Image Analysis (OBIA)

OBIA consists of two phases (Figure 2). (i) Image segmentation: the image is divided
into discrete regions or objects that are homogeneous with respect to spatial and/or spectral
characteristics, depending on the parameters entered by the user [44]. (ii) Classification
of the generated segments: a process dependent on the segmentation and influenced by
its result which consists of interpreting the meaning of the previously created segments
according to parameters selected by the user, assigning specific classes to the created objects
and corresponding to the reality observed in the image [45].
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Figure 2. The two main steps of object-based image analysis (OBIA). (1) The segmentation consists of
dividing groups of pixels with similar spectral properties and relationships to their context. (2) The
classification of these objects into classes of interest is performed based on similarities in shape,
spectral, and contextual information.

2.3.1. Image Segmentation

The multiresolution segmentation algorithm from eCognition Developer 8 software
(Trimble Geospatial, Munich, Germany) was used. This algorithm allows the formation of
larger and larger objects starting from the pixel level, depending on the homogeneity of
their groupings. The generation of objects is carried out according to parameters of color,
shape, compactness, and average size of the progressively formed objects, ending when
certain values, called segmentation parameters, are exceeded. Within them, we find scale,
which allows the formation of larger objects as their value increases and, related to each
other, shape and compactness, which restrict the formation of objects according to their
homogeneity and consistency, respectively.

To find the combination of scale, compactness, and shape parameters that produced
the best segmentation, we compared 8100 segmentations carried out in eCognition software
by systematically increasing the scale (5 points each, starting at 5 and ending at 125),
and also by systematically varying the shape and compactness values (0.1 points each).
Segmentations with all possible combinations of scale, shape, and compactness (8100) were
performed. The scale value has no minimum or maximum value beyond the size of the
pixel itself and the image, respectively, while the values that the shape and compactness
parameters adopted ranges from 0.1 to 0.9, both included at steps of 0.1. This process was
performed with a computer with an i7-4790K CPU and 32 GB of RAM.
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2.3.2. Validation of Segments

To validate the segmentation, that is, to know if the segmentation fits the reality of
the objects to be mapped, it is necessary to know the geometric relationships between
the reference polygons (ground truth) and their corresponding segments generated in
the segmentation process. Three possible options may occur: overlap, over- or under-
segmentation, and over- or under-estimation [46]. Overlapping occurs when a polygon, or
several polygons, share with a segment, or several segments, a common area; this is the
overlapping area. Over-segmentation occurs when a reference polygon is divided into at
least two parts. Parts of the reference polygon appear inside the area of the corresponding
segment (overlapping area) and other parts outside. The areas left out are called over-
segments and are omitted by the segmentation of the reference polygon (overestimation).
Sub-segmentation occurs when a reference polygon divides a corresponding segment
into at least two parts. Parts of the corresponding segment appear inside the reference
polygon area (overlapping area) and others outside. The areas that are left out are called
sub-segments and are areas related to the corresponding segment. A correct segmentation
should generate low values of over- and under-segmentation [47]. The former does not
necessarily lead to errors in downstream processes, while the latter does [48].

The selection of parameters for optimal segmentation is usually a trial-and-error pro-
cess [49,50]. Nevertheless, in this study, all possible segmentations were generated and objec-
tively chosen [50]. To evaluate the accuracy of all segmentations, we developed an R script to
calculate the potential segmentation error (PSE; Equation (1)), number-of-segments ratio (NSR;
Equation (2)), and Euclidean distance v2 (ED2; Equation (3)) [46]. This method allowed us to
analyze the relationships between the generated segments and the reference polygons.

The PSE index is a geometric measure, being the ratio of the difference between the
total number of underestimated segments and the total area of the reference polygons:

PSE =
∑|si − rk|
|rk|

(1)

where rk is the area of the reference polygon and si is the overestimated area of the segment
obtained during the segmentation. A PSE value equal to zero indicates that there are no
underestimated segments, while a high value indicates a high degree of segmentation
underestimation.

The NSR index is an arithmetic measure, which is the absolute difference between the
number of reference polygons and the number of corresponding segments divided by the
number of reference polygons:

NRS =
abs (m− v)

m
(2)

where abs is the absolute value of the difference between the number of reference polygons,
m, and the number of segments obtained, v.

An NSR value of zero indicates a one-to-one relationship between the reference poly-
gons and the corresponding segments. A high value indicates a dominant one-to-many
relationship. Although not a measure of error, a significant degree of over-segmentation is
undesirable. This index is an arithmetic measure of the over-segmentation situation [46].

The ED2 index is a measure of Euclidean distance. This composite index considers both
geometric (PSE) and arithmetic (NSR) discrepancies. A point in a two-dimensional PSE–NSR
space corresponds to the paired value of PSE and NSR obtained from Equations (1) and (2),
respectively:

ED2 =

√
(PSE)2 + (NRS)2 (3)

where PSE is the potential segmentation error index and NSR is the number-of-segments
ratio index. An ED2 value of zero indicates a combination of a good geometric (PSE) and
arithmetic (NSR) fit.
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2.3.3. Image Classification

There are multiple possibilities for defining the most representative characteristics
that will define a given class of objects [51]. Image classification is performed based on the
training examples of each class and user-selected features, from which the software analyzes
their characteristics and performs an automatic classification. These examples represent
only a small set of the total number of objects in the image and should be indicative of the
classes they represent [51]. The results depend on these elements and, with hundreds of
features that can affect classification, knowing which ones provide optimal classification
based on the given examples is a crucial step [52].

The separability and thresholds (SEaTH) algorithm [51] was used to determine which
features provide the best classification for each image. The use of this algorithm has been
successful in the development of classification in OBIA [52,53], being a robust alternative
for feature extraction that provides optimal classification. This semi-automatic extraction
algorithm analyzes which are the characteristics that produce a higher separability between
the selected classes based on the examples of each one (i.e., how to better differentiate the
classes from each other). Value thresholds are calculated for the selected characteristics
within which the classes are reliably delimited and differentiated from each other. These
thresholds will be used in the subsequent steps of the classification. Thus, two values are
provided: separability (J) and threshold (T).

The separability between different classes is indicated by the Jeffries–Matusita distance,
J, on a scale of 0–2 in terms of the Bhattacharya distance, B (Equation (4)), which can be
used as a measure of separability. Thus, for two classes (1 and 2) and for an analyzed
characteristic we find that:

B =
1
8
(m1 −m2)

2 2
σ2

1 + σ2
2
+

1
2

ln

[
σ2

1 + σ2
2

2σ1σ2

]
(4)

where m and σ are the mean and variance, respectively, of the feature distributions of
the two classes. If the means coincide, the first term disappears, while the second term
disappears if the distributions have the same variance. Therefore, a complete separability
(Equation (5)), between two classes with respect to a particular feature is indicated by J = 2,
implying that there would be no classification failure applying that feature. The lower the
value of J, the lower the separability between classes and the worse the final classification.

J = 2(1− e−B) (5)

Assuming a normal distribution of the characteristics of the classes used, the threshold
T is defined as (Equation (6)):

T =
m2σ2

1 −m1σ2
2 ± σ1σ2

√(
m1 −m2)2 + 2A(σ2

1 − σ2
2
)(

σ2
1 − σ2

2
) (6)

where A is the logarithm in base ten of the division between the standard deviation of the
distribution of each class and the multiplication of the division by the number of examples
given in each class. For the first classification of each image, the features with a J-value
closer to 2 were selected. The t-values for each characteristic were used to optimize the
classification at a later stage. Once the features indicated by the SEaTH tool were selected,
the Random forest automatic classification algorithm was applied, which produces an
automatic classification from the given examples and the indicated features. For both
spatial and spectral resolution, we worked with three classes (Table 2), depending on the
characteristics of the objects. For each class used, 100 examples were provided, following
a stratified random sampling that ensured that all the study area was represented in
this sampling.
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Table 2. Classes used in the image classifications. Juniperus: individuals of Juniperus communis. Light
soil: patches of soil with high brightness. Dark soil: patches of soil with low brightness. Vegetation
soil: patches of soil with small vegetation.

Year Classes

1977 Juniperus, Light Soil, Dark Soil
1984 Juniperus, Light Soil, Dark Soil
1997 Juniperus, Light Soil, Dark Soil
2008 Juniperus, Soil, Soil Vegetation

In this case, the classes have a large variability of shapes and sizes; therefore, the
classification is complicated and must be optimized after the first classification, since it is
not as close as possible to the reality of the image. Fuzzy logic was used for this purpose,
consisting of applying ranges of values for the most representative characteristics of each
class. This classification system made it possible to consider the attributes of the objects
and their relationships [54]. The parameter ranges were bounded by the threshold T, given
by the SEaTH algorithm in the previous step.

2.3.4. Classification Validation

To analyze the accuracy of the classifications, the total accuracy of each classification
was extracted from the corresponding error matrix, which consists of matrices of columns
and rows corresponding to the objects assigned to a given field-verified class [55,56]. The
error matrix is the most widely used tool in the evaluation of the accuracy of thematic
classification [57]. These matrices compare the reference data and compare it with the
classification generated by the software.

2.3.5. Analysis of Changes in the Structure and Dynamics of J. Communis Populations

To analyze the possible determinants of changes in population structure and dynamics,
we first extracted the polygons corresponding to the shrubs in the classifications obtained
for each year (Table 1). In this work, we will use the term “individual”, although due
to the type of growth of these shrubs, it is not possible to certainly know the number of
individuals that form each shrub patch recognized in the segmentation. Then, we evaluated
the changes along the four decades studied in the number of individuals and total canopy
cover. To explore changes in the population structure of shrub canopy cover over the
period, changes in kurtosis and skewness were evaluated. The complete range of shrub
canopy sizes was also divided into four classes using the interannual mean of the area
quartiles for each year, and the changes throughout the years in the number of individuals
in each size class were shown. Finally, information about land cover and land use in the
study area were collected.

3. Results
3.1. Segmentation and Validation of Image Segmentations

The segmentation time of the highest resolution images (0.5 m/pixel) was longer
than the lowest resolution ones (1 m/pixel; Table 3). A total of 81,000 segmentations were
validated, with longer validation times for the highest resolution images.

Table 3. Working times of the segmentation and validation of the images.

Year Resolution (m) Segmentations Segmentation Time

1977 0.5 2025 9 h 30′

1984 1 2025 3 h 17′

1997 1 2025 2 h 56′

2008 0.5 2025 12 h 20′
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In all segmentations, similar behaviors were observed between the parameters of
scale, shape, and compactness with respect to the ED2 index. Thus, specific ranges of
scale in each image gave the lowest ED2 values, while moving away from these values
increased ED2. Higher values of shape elevated ED2. Compactness did not affect ED2
with a given pattern. For each year, the image segmentation used was the one with the
lowest ED2 index in the validation of the segmentations (Table 4). The most accurate
segmentations were those in 1977, 1984, and 1997. With spatial resolutions of 1 m, the
scale parameter was lower, being higher with spatial resolutions of 0.5 m. The form and
compactness parameters had no significant differences according to the spatial resolution
of the image since they are characteristics of the objects that remain constant in the images.
The PSE index indicated that in all segmentations processed there was a low degree of
under-segmentation. The NSR index showed that in all the segmentations there was a
good object-segment relationship and that almost all objects in the image corresponded to
a segment. The ED2 index indicated a good segmentation fit, both geometrically (PSE) and
arithmetically (NSR), in all images (Table 4).

Table 4. Parameters of the final segmentations used in each. The segmentation accuracy indices are
shown. PSE: potential segmentation error; NSR: number-of-segments ratio; ED2: Euclidean distance 2.

Year Resolution (m) Scale Form Compactness PSE NSR ED2

1977 0.5 25 0.7 0.8 0.10 0.01 0.10
1984 1 15 0.8 0.8 0.11 0.01 0.11
1997 1 15 0.7 0.9 0.10 0.03 0.11
2008 0.5 15 0.8 0.5 0.14 0.07 0.16

3.2. Classification and Optimization of Image Classification

The separability value J indicated which characteristics of the classes provided a better
classification of the objects generated in the segmentation. For the classification of the
segments, the characteristics with J values closer to 2 were selected for each class (Table 5).

Table 5. Features used in the classification and the separability value J in each image. The separability
value J indicates the characteristics of the classes that give the highest separability between them.
A value of J close to 2 indicates a maximum separability of the classes, giving the best possible
classification of the objects. PAN: panchromatic image; RGB: red-green-blue image. GLCM: grey-level
co-occurrence matrix.

Year Resolution (m) Type Characteristics J

1977 0.5 PAN
Brightness 1.99

GLCM Mean (all directions) 1.98
Perimeter (polygon) 1.04

1984 1 PAN
Brightness 1.80

GLCM Mean (all directions) 1.77
Perimeter (polygon) 1.33

1997 1 PAN
Brightness 1.79

GLCM Mean (all directions) 1.78
GLCM StdDev (all directions) 1.20

2008 0.5 RGB

Mean Layer 1 1.72
Mean Layer 3 1.69

GLCM Mean (all directions) 1.68
Brightness 1.68

The characteristics derived from the texture (GLCM) and brightness were the most
present in all classifications. The optimization of the first classification was performed
using fuzzy logic, applying the T thresholds calculated by the SEaTH algorithm (Table 6).



Fire 2023, 6, 4 10 of 18

Table 6. Features and T-thresholds used by fuzzy logic in the images. The T-thresholds indicate
the threshold values for each feature that produce the greatest differentiation between the classes.
PAN: panchromatic image; RGB: red-green-blue image. GLCM: grey-level co-occurrence matrix.

Year Resolution (m) Type Characteristics T

1977 0.5 PAN
Brightness <130

GLCM Mean (all directions) <130
Perimeter (polygon) >108

1984 1 PAN
Brightness <100

GLCM Mean (all directions) <102
Perimeter (polygon) >55

1997 1 PAN
Brightness <151

GLCM Mean (all directions) <149
GLCM StdDev (all directions) <149

2008 0.5 RGB

Mean Layer 1 <74
Mean Layer 3 <67

GLCM Mean (all directions) <72
Brightness <72

In terms of overall classification accuracy, all the image classifications had high ac-
curacy, with the lowest being the 1997 classification with an overall accuracy of 0.85. In
addition, there was variation in the number of individuals classified in all years (Table 7).
Based on these classifications, maps of J. communis were produced for each year (Figure 3).
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Figure 3. Detail of the mapping of Juniperus communis L. shrubs in Barranco de San Juan (Sierra
Nevada, Spain) for the dates studied. The change in the size of the individuals over time can be seen,
as well as the appearance or disappearance of some of the others. The area affected by the 1983 fire is
seen mostly free of shrubs in the center (dotted-line polygon) of the 1984, 1997, and 2008 images.
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Table 7. Accuracy of image classifications.

Year Total Accuracy Classified Individuals

1977 0.96 752
1984 0.91 433
1997 0.85 420
2008 0.97 578

3.3. Changes in Population Structure and Dynamics

The maps obtained were used to estimate the number of individuals and their surface
canopy area for the four dates studied (Table 8). The number of individuals also decreased
after the fire (1983) from 752 individuals in 1977 to 433 in 1984 (Figure 4a), then it decreased
a little more in 1977, reaching a minimum of 420 individuals. Since 1997, there has been a
slight recovery in the number of individuals, reaching 578 in 2008. Although the number of
individuals decreased, the extent of total canopy cover first decreased after the fire (1983)
by 12,505 m2 from 1977 to 1984, but then strongly recovered, being 1248 m2 greater in 2008
than 1977. Since 1984, there has been an increase of 7846 m2 in the surface canopy area of
junipers at the study site (Figure 4b).

Table 8. Characteristics of the population for each evaluated date.

Year Individuals Maximum Surface
Area (m2)

Minimum Surface
Area (m2)

Average Surface
Area (m2)

Surface Area
Mode (m2)

1977 750 791 4 69.92 11
1984 433 910 6 92.23 46
1997 420 493 12 109.15 75
2008 578 723 9 92.89 44
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tions of the four dates studied appear skewed toward smaller population sizes. None of 
the populations studied appear uniformly distributed in size (Figure 5). 

Figure 4. (a) Decrease in the number of individuals and (b) changes in the shrub canopy area occupied
by Juniperus communis L. in Barranco San Juan (Sierra Nevada, Spain) in the period of 1977–2008
following a wildfire that occurred in 1983. The years of the declaration of the Sierra Nevada as a
Natural Park in 1989 and as a National Park in 1999 are indicated. The symbols used indicate the
spatial and spectral resolution of the images used to estimate the individuals: Square: 0.5 m/pixel.
Star: 1 m/pixel. White: panchromatic image. Red: RGB (red-green-blue) image. The number of
individuals strongly decreased after the wildfire, continued with a slight decrease from 1984 to 1997,
and then recovered by 2008. Canopy cover strongly decreased after the wildfire but recovered at a
greater speed.
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The predominant individuals in all the dates studied are those of smaller sizes
(4 m2–66.5 m2). Larger individuals (122 m2–791 m2) are not abundant at any time. The
distributions of the four dates studied appear skewed toward smaller population sizes.
None of the populations studied appear uniformly distributed in size (Figure 5).

Fire 2023, 6, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 5. Distribution of population sizes of Juniperus communis L. individuals according to their 
canopy area during the four years studied. Skewness values greater than one show distributions 
skewed toward the smallest sizes. Kurtosis values greater than one show the non-uniformity of the 
distributions. The distributions of the four dates studied appear skewed toward smaller population 
sizes. None of the populations studied appear uniformly distributed in size. 

The division of the total number of individuals of J. communis according to the mean 
quartiles of the size their canopy covers in each year was as follows: small (G1), from 4 m2 
to 39 m2; small-medium (G2), with individuals from 39 m2 to 66.5 m2; medium (G3), with 
individuals from 66.5 m2 to 122 m2; and large (G4), with individuals from 122 m2 to 791 
m2. These classes showed different behaviors during the period studied (Figure 6), with 
the largest classes, G3 and G4, varying the least in number. Almost none of the largest 
shrubs (G4) were lost during the wildfire. The smallest class of shrubs, G1, experienced 
the greatest loss of individuals and did not recover to pre-fire levels, reducing its number 
by 156. All shrub size classes lost individuals in the 1977–1984 period. 

Figure 5. Distribution of population sizes of Juniperus communis L. individuals according to their
canopy area during the four years studied. Skewness values greater than one show distributions
skewed toward the smallest sizes. Kurtosis values greater than one show the non-uniformity of the
distributions. The distributions of the four dates studied appear skewed toward smaller population
sizes. None of the populations studied appear uniformly distributed in size.

The division of the total number of individuals of J. communis according to the mean
quartiles of the size their canopy covers in each year was as follows: small (G1), from 4 m2

to 39 m2; small-medium (G2), with individuals from 39 m2 to 66.5 m2; medium (G3), with
individuals from 66.5 m2 to 122 m2; and large (G4), with individuals from 122 m2 to 791 m2.
These classes showed different behaviors during the period studied (Figure 6), with the
largest classes, G3 and G4, varying the least in number. Almost none of the largest shrubs
(G4) were lost during the wildfire. The smallest class of shrubs, G1, experienced the greatest
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loss of individuals and did not recover to pre-fire levels, reducing its number by 156. All
shrub size classes lost individuals in the 1977–1984 period.
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Figure 6. Changes in the number of individuals per shrub size class Juniperus communis L. from
1977 to 2008 in Barranco de San Juan (Sierra Nevada, Spain). The largest shrub size classes (G4, G3,
and G2) suffered the lowest declines after the fire, while the smallest size class (G1) lost the greatest
number of individuals. The fire occurred in 1983, the Natural Park was declared in 1989, and the
National Park was declared in 1999.

4. Discussion

In this work, we developed a protocol for automatically monitoring persistent shrub
populations (i.e., Juniperus communis L.) over several decades by a semi-automatic opti-
mization of OBIA on very high-resolution aerial or satellite images. The semi-automatic
extraction of the combination of parameters that provides the best segmentation of the im-
ages by OBIA is the main contribution to this article, being normally a very time-consuming
process [48]. According to [46], determining the best segmentation parameters is a laborious
process. Nevertheless, this work shows a method to determine the effect of the variation of
the segmentation parameters (scale, shape, and compactness) highlighting the scale in this
technique [44,58], as well as the effect of the variation of the other parameters on the result.
The increasing use of OBIA in different fields of biodiversity conservation highlights its
success in vegetation monitoring, having been used for multiple purposes, such as forest
inventories [59,60], changes in vegetation cover [61], or studies of vegetation structure [22].
OBIA has been used for monitoring long-lived animal species [62] but not persistent plants
after a fire, as we have performed in this work.

The positive effect on the population of J. communis of the designation of Sierra Nevada
as a Natural Park in 1989 and as a National Park in 1999 can be observed. After Sierra
Nevada acquired both protection statuses, the area occupied by J. communis increased,
perhaps due to the increased protection of the individuals that were recovering and coloniz-
ing after the 1983 wildfire. Nevertheless, an increase in the number of individuals is only
observed after the creation of the National Park in 1999, which may be due to this increased
protection or to the slow growth of junipers, which may delay the moment of detection
by aerial images due to the small size of the juveniles [10]. In the period of 1977–1984,
there was a great decrease in the number of individuals due to the fire that occurred in
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1983. J. communis is a species whose seeds largely die after fires and has no ability to
resprout [10,20]. The largest junipers were less affected by fire but smaller individuals were
greatly affected (Figure 6), as occurs in other species [63]. Such homeostasis of the largest
individuals may be due to the typical strategy observed in persistent species. This, together
with the low success in the recruitment of the species in the study area and, therefore, the
loss of colonization capacity of the burned areas [10,20,36], has led to a lack of juniper
regeneration, so only the largest individuals remained, not reaching levels of canopy cover
similar to those detected in 1977. In this area, there has also been strong pressure from
livestock and irrigation channels, which have now been largely abandoned [40,41]. In
this context, a decrease in human populations in the Sierra Nevada has been observed
in recent decades, which may imply an improvement in Juniperus communis populations
due to a decrease in human land use [41,64]. Nevertheless, the almost null recovery of
J. communis after anthropic disturbances is remarkable [10,20]. The improvement of this
population does not seem to be affected by the decrease in habitat quality [65], despite
the fact that an increase in temperatures and a decrease in the protective snow cover has
been observed in recent decades, with an increase in dryness in the area and an extreme
drought in 2005 [66]. Although the populations of J. communis of Sierra Nevada have been
reported to be highly resistant to snowfall, summer drought, browsing, and trampling
by livestock [42,66], it is necessary to avoid further losses in these populations given the
complexity of their restoration [42].

Although the method described in this work can provide high accuracy, the results
should be analyzed with caution. Shadows from tall specimens can influence segmentation,
delimiting areas of uncertainty [67,68]. In addition, the spatial resolution and contrast of
the images are slightly variable, which can lead to an overestimation of individuals in
some cases, especially in panchromatic or low-resolution images [46,69]. To minimize the
effect of errors in image acquisition, which can affect the identification and classification
of individuals [70], it is necessary to take into account the time of year, day, and time of
image captures. Likewise, the large size observed in some shrubs may be due to the union
of several individuals in the same patch of dense vegetation. This makes it practically
impossible to differentiate them by OBIA due to their similar characteristics, or even
to identify them in the field, which can lead to an underestimation of the number of
individuals in some cases [61]. For better identification of individuals in future studies,
it may be useful to use hyperspectral or multispectral images [71] together with deep
learning [72] to facilitate the identification of individuals with similar characteristics.

The selection of an appropriate range of canopy sizes and shapes when applying
examples for both segmentation and classification validation can affect image analysis [56].
The detection of small individuals may be conditioned by the spatial resolution of the im-
ages, which will generate more or less accurate segments with respect to reality depending
on this resolution. Likewise, a classification may appear to be conditioned either by an
excessive heterogeneity of the images, which may mean that, in some cases, an individual
has been wrongly classified, or by an excessive homogeneity of the images, with insufficient
differentiation between objects [73]. The use of a larger number of images, with shorter
time intervals between them can lead to more accurate monitoring of populations [61].

5. Conclusions

Our findings highlight the high benefit and reduced cost of using OBIA on very high-
resolution aerial or satellite images for monitoring persistent shrub plant communities
after a fire. This implies a significant reduction in resources, both logistical and economic,
in biodiversity management. The methodology developed in this work allows, quickly
and economically, to know the size structure of long-lived shrub populations and their
dynamics over time. In this way, it is possible to evaluate the regeneration process in
which they are found and their conservation status. In addition, the behavior of these
long-lived species with respect to the environment and disturbances, such as forest fires,
can be determined [74–76]. This information not only allows us to know the past but
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also enables more effective management in the future [77], knowing how the populations
studied react to certain environmental conditions and management. The possibility of
annual monitoring of populations thanks to the availability of high-resolution images,
from those taken by drones to satellite images [78–80], would make it possible to acquire
information in short time frames. This would allow one to know not only the behavior of
populations over long periods of time, but also their responses to disturbances, such as fires,
over large areas of land. This work provides an additional example of how remote-sensing
technologies can contribute to conservation in a biodiversity super-hotspot such as Sierra
Nevada (Spain) [81].
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