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Abstract: One of the most useful indicators of relative dispersion is the coefficient of variation. The
characteristics of the coefficient of variation have contributed to its widespread use in most scientific
and academic disciplines, with real life applications. The traditional estimators of the coefficient of
variation are based on conventional moments; therefore, these are highly affected by the presence
of extreme values. In this article, we develop some novel calibration-based coefficient of variation
estimators for the study variable under double stratified random sampling (DSRS) using the robust
features of linear (L and TL) moments, which offer appropriate coefficient of variation estimates. To
evaluate the usefulness of the proposed estimators, a simulation study is performed by using three
populations out of which one is based on the COVID-19 pandemic data set and the other two are
based on apple fruit data sets. The relative efficiency of the proposed estimators with respect to the
existing estimators has been calculated. The superiority of the suggested estimators over the existing
estimators are clearly validated by using the real data sets.

Keywords: coefficient of variation; linear moments; calibration approach; double stratified random
sampling

MSC: 62D05; 26A33

1. Introduction

In the statistical literature, auxiliary (or supplementary) information is a term used to
describe the additional statistical data associated with the study variable. Auxiliary data
includes data gathered from the recording of real evidence, reports derived from records
kept at service delivery centers and surveys. Regardless of the type of data provided, it
is applied to distinguish better sampling strategies from those that are not. The use of
auxiliary data in sampling techniques is a well-established practice. It has been primarily
used [1,2] in the development of an efficient class of estimators. Recently, a number of
important works involving the use of auxiliary data in a variety of applications have been
published (see [3,4]).

The implementation of point estimators for different interesting parameters is of great
concern in all sample surveys. However, assessing the accuracy of these estimators is
equally relevant. The indicators of absolute variation, such as standard deviation and
variance, are typically used by default in scientific variability investigations. Ref. [5]
proposed the estimation of the variance of the generalized regression estimator in the
presence of missing data. Although these measurements/indicators are generally useful
to some extent, there is no justification for adopting them without taking into account
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other alternatives. While these measurements are generally fairly informative, it may be
more important in some cases to consider variability relative to the mean, i.e., to consider
a measure of relative variance. The coefficient of variation (CV), which can be defined as
the ratio of standard deviation (SD) to the mean, is one of the most common measures of
relative variation. Although, this coefficient is not the default variability metric, its specific
characteristics have led to its widespread use in most scientific and academic disciplines.
The CV has been used in a wide range of applications from chemistry to sociology (see [6,7]).
Furthermore, the CV was considered by [8] to measure the variation in the mean synaptic
response of central nervous system nerves, by [9] to study data on psychiatric diseases and
by [10] to look at variation in rainfall data in Thailand. Some other important studies based
on the CV include [11–13].

In a set of data, the CV measures the variation regardless of the unit of measurement
used. Therefore, it can be used to compare the distributions attained with different units,
such as the variability of newborn weight, measured in grams, to the adult size, measured
in centimeters. Only data calculated on a ratio scale and measurements which can take
only non-negative values should be computed for the CV. The population CV can be
calculated using the ratio of the sample standard deviations to the sample mean—or its
absolute value—if only a sample of data from a population is available. The CV can often
be expressed in terms of percentage as follows:

CV =
SD

Mean
∗ 100

One of the most crucial issues in determining the sample size and the method required
to estimate the variation is the sampling design that supports a sample survey. The number
of sampling stages, for example, is one of the many factors of the sampling design that
are associated with the calculation of variation. The process is straightforward in one-
stage (single) sample design, and the closed formula can be easily derived. The process
becomes complex in multiple stage design since there are many sources of variation. A
sampling of units (primary, secondary, etc.) results from an additional element or factor
of variation at each stage (from the beginning to the end). By measuring the variation at
each point, a closed formula can be obtained in cases where certain aspects of sampling
and estimation are very straightforward. However, since the variation between the initial
sampling units is the most significant factor of the overall variation, it is standard practice
to measure the variation by estimating the variation between those units (for more details,
see [14]). In this article, double stratified sampling is considered. In stratified sampling, the
population is divided into non-overlapping subpopulations known as strata, which usually
describe homogeneous subpopulations and minimize overall variation. From each stratum,
a random sample is chosen independently. The sampling design of each stratum can be
the same or different from the others. Each estimator and its corresponding estimator of
variation within each stratum are the amount of the corresponding estimators within that
stratum, which is referred to as “independence of different strata”.

Consider Y and X as the study and auxiliary random variables taken from a size N
finite population, U = {u1, u2, . . . , un}, such that U is stratified into M strata with the mth

stratum, m = 1, 2, ..., M, including Nm units and ∑M
m=1 Nm = N. In the first stage, a simple

random sample without replacement (SRSWOR) is selected from the stratum m with size
n∗m such as ∑M

m=1 n∗m = n∗, then the subsample nm(nm < n∗m) for the second stage is chosen.
Furthermore, consider (ymi, xmi), which represent the actual/observed values of Y and
X for i = 1, 2, ..., Nm, (c∗ym, cym) represent the coefficient of variation of Y for the first and
second sample stage, (s∗2xm, s2

xm) represent the variances of X for the first and second stages
of sampling and Wm represents the stratum weight.

The traditional estimator of the CV based on DSRS design is given by

Ho =
M

∑
m=1

Wmcym (1)
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It should be remembered that cym is based on conventional moments and thus is
highly influenced by the existence of outliers or extreme values. The utilization of linear
moments instead of conventional moments is the solution of this problem. Ref. [15]
calculated the Linear moments by combining the predicted values of the order statistics
in linear combinations. In addition, ref. [16] created a common statistical technique called
calibration estimation that relies on the use of auxiliary data to change the initial weight of
the design and increase the accuracy of the estimator. For more details about the calibration
estimation, see [17].

By employing robust methods, many studies have been conducted to address the
problem of extreme values, including mean and variance estimations (see [18,19]). Never-
theless, no CV estimation study has been conducted in the presence of this problem. As a
result, we propose some new calibration-based CV estimators for the study variable under
double stratified random sampling using Linear (L and TL) moment properties since they
are robust and, thus, have the potential to afford an appropriate CV estimate. The rest of
this article is structured as follows: Section 2 presents the linear moments along with the
suggested families in detail; Section 3 offers numerical illustrations to assess the superiority
of the novel estimators using three populations; finally, Section 4 presents the conclusion.

2. Linear Moments and Proposed Families of CV Estimators
2.1. Linear Moments

L-moments are a quantity-based alternative strategy studied by [15] that are similar to
conventional moments but can be calculated by linear combinations (L-statistics) of order
statistics. As compared to conventional moments, L-moments have statistical advantages
in that they exist whenever the mean exists, being able to characterize a wide range of
variables. They are less sensitive to the effects of sampling fluctuation and more resistant to
the existence of outliers in the data. Probability-weighted moments were proposed by [20]
and utilized to estimate the parameters of certain well-known distributions. L-moments
have a variety of applications, including summary statistics of data samples, determining
the best distribution to fit a data collection and fitting distributions to data (see [21]). An
alternative method known as a trimmed L-moment (TL) that gives zero weight to outliers
was presented by [22]. They demonstrate the distinctive nature of L-moments as compared
to TL-moments. It can be observed that TL-moments are more robust and resistant in the
presence of outliers than the conventional and L-moments and exist whether or not the
mean does. Trimming refers to the elimination of outlier observations in a sample. For
instance, to generate a sample size that is symmetrically trimmed, one must eliminate the
smallest and largest k values for a given k < n/2.

The general formulae of the first four population L-moments (L1xm − L4xm) and
trimmed L-moments (TL1xm − TL4xm) with a trimming rate = 1, for X in relation to the m
stratum, along with their corresponding sample L-moments

(
L∗1xm − L∗4xm

)
and trimmed L-

moments (TL∗1xm − TL∗4xm) are provided in Appendix A for ready reference. Furthermore,
by using the same structure of the population and sample linear moments connected to X,
we may create the expressions of linear moments for Y. For more details about L-moments,
see [18,19].

2.2. First Proposed Family of CV Estimators

To improve the estimation of the population mean, the authors of [3] used robust
regression methodology. The utilization of robust methodologies by the authors of [3]
allows us to take advantage of linear moments rather than traditional moments. Hence,
motivated by [17], we propose the following family of calibration CV estimators based on
linear moments under double stratified random sampling:

Hai =
M

∑
m=1

γmcytm (2)
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where γm is the calibrated weight, which is chosen to minimize the following chi-squared
distance measure

M

∑
m=1

(γm −Wm)
2

Wmλm
(3)

and subject to the two calibration constraints mentioned below:

M

∑
m=1

γm =
M

∑
m=1

Wm (4)

M

∑
m=1

γmFxtm =
M

∑
m=1

WmF ∗xtm (5)

where cytm =
l2yl
l1yl

is the second-stage L-CV of Y;F ∗xtm andFxtm represent the linear-(location,
variance and CV) associated, respectively, with the first-stage and the second-stage of X.

The Lagrange function is given as

G =
M

∑
m=1

(γm −Wm)
2

Wmλm
− 2δ11

(
M

∑
m=1

γm −
M

∑
m=1

Wm

)
− 2δ12

(
M

∑
m=1

γmFxtm −
M

∑
m=1

WmF ∗xtm

)
(6)

where δ11 and δ12 represent the Lagrange multiples. The optimal value of calibration weight
can be obtained by differentiating the above function G w.r.t. γm and equating it to zero.
Consequently, the calibration weight can be calculated as

γm = Wm + Wmλm(δ11 + δ12Fxtm) (7)

Now, δ11 and δ12 can be obtained by replacing γm in Equations (4) and (5) with its
value from Equation (7), and, therefore, we obtain a calibration weight as

γm = Wm + Wmλm

[
−(∑M

m=1 Wm(F ∗xtm−Fxtm)(∑M
m=1 WmλmFxtm))

(∑M
m=1 WmλmF2

xtm)(∑M
m=1 Wmλm)−(∑M

m=1 WmλmFxtm)
2

]
+WmλmFxtm

[
(∑M

m=1 Wm(F ∗xtm−Fxtm)(∑M
m=1 Wmλm))

(∑M
m=1 WmλmF2

xtm)(∑M
m=1 Wmλm)−(∑M

m=1 WmλmFxtm)
2

] (8)

By substituting the value of γm in Equation (2), we get the suggested calibration
estimator as

Hai =
M

∑
m=1

Wmcytm + θ̂cv

M

∑
m=1

Wm(F ∗xtm −Fxtm) (9)

where

θ̂cv =


(

∑M
m=1 Wmλm

)(
∑M

m=1 WmλmFxtmcytm

)
−
(

∑M
m=1 WmλmFxtm

)(
∑M

m=1 Wmλmcytm

)
(

∑M
m=1 WmλmF 2

xtm

)(
∑M

m=1 Wmλm

)
−
(

∑M
m=1 WmλmFxtm

)2

 (10)

Table 1 provides the members of the first proposed family; where

−
x
∗
m = l∗1xl , s∗2xtm = l∗22xl , C∗xtm =

l∗2xl
l∗1xl

,
−
xm = l1xl , s2

xtm = l2
2xl and Cxtm =

l2xl
l1xl

2.3. Second Proposed Family of CV Estimators

As shown below, we propose a second family of CV estimators based on double
stratified sampling by extending the idea of Vai.

Hbi =
M

∑
m=1

γmcytm (11)
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Table 1. First proposed family of estimators.

Hai λm F xtm F *
xtm

Ha1 1 −
xm

−
x
∗
m

Ha2 1/
−
xm

−
xm

−
x
∗
m

Ha3 1/sxtm
−
xm

−
x
∗
m

Ha4 1/s2
xtm

−
xm

−
x
∗
m

Ha5 1/Cxtm
−
xm

−
x
∗
m

Ha6 1 Cxtm C∗xtm
Ha7 1/

−
xm Cxtm C∗xtm

Ha8 1/sxtm Cxtm C∗xtm
Ha9 1/s2

xtm Cxtm C∗xtm
Ha10 1/Cxtm Cxtm C∗xtm
Ha11 1 s2

xtm s∗2xtm
Ha12 1/

−
xm s2

xtm s∗2xtm
Ha13 1/sxtm s2

xtm s∗2xtm
Ha14 1/s2

xtm s2
xtm s∗2xtm

Ha15 1/Cxtm s2
xtm s∗2xtm

Using the chi-squared distance of

M

∑
m=1

(γm −Wm)
2

λmWm
(12)

subject to the following three calibration constraints

M

∑
m=1

γmFxtm =
M

∑
m=1

WmF ∗xtm (13)

M

∑
m=1

γms2
xtm =

M

∑
m=1

Wms∗2xtm (14)

M

∑
m=1

γm =
M

∑
m=1

Wm (15)

The Lagrange function is given as

G =
M
∑

m=1

(γm−Wm)2

λmWm
− 2δ21

(
M
∑

m=1
γmFxtm −

M
∑

m=1
WmF ∗xtm

)
− 2δ22

(
M
∑

m=1
γms2

xtm −
M
∑

m=1
Wms∗2xtm

)
− 2δ23

(
M
∑

m=1
γm −

M
∑

m=1
Wm

)

Differentiating G w.r.t γm and putting it to zero, we obtain

γm = Wm + λmWm

(
δ21Fxtm + δ22s2

xtm + δ23

)
. (16)

By substituting the value of γm from Equation (16) to Equations (13)–(15), the follow-
ing equation system can be obtained.

[Ta]3×3[Tb]3×1 = [Tc]3×1

with

Tb =

δ21
δ22
δ23

, Tc =

∑M
m=1 WmF ∗xtm −∑M

m=1 WmFxtm

∑M
m=1 Wms∗2xtm −∑M

m=1 Wms2
xtm

0

, and
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Ta =



(
M
∑

m=1
λmWmF 2

xtm

) (
M
∑

m=1
λmWmFxtms2

xtm

) (
M
∑

m=1
λmWmFxtm

)
(

M
∑

m=1
λmWmFxtms2

xtm

) (
M
∑

m=1
λmWms4

xtm

) (
M
∑

m=1
λmWms2

xtm

)
(

M
∑

m=1
λmWmFxtm

) (
M
∑

m=1
λmWms2

xtm

) (
M
∑

m=1
λmWm

)


After solving the equation system for δ

′
s, we get

δ21 =
A1

D1
, δ22 =

B1

D1
, δ23 =

C1

D1
,

where the values of A1, B1, C1, D1 are given in Appendix B.
The following results can be obtained after substituting the above δ

′
s into Equation (16),

then Equation (11) will be

Hbi =
M

∑
m=1

Wmcytm + θ3(dnew)

M

∑
m=1

Wm(F ∗xtm −Fxtm) + θ4(dnew)

M

∑
m=1

Wm

(
s∗2xtm − s2

xtm

)
where θ3(dnew) =

A∗1
D1

, θ4(dnew) =
B∗1
D1

, where the values of A∗1 and B∗1 as given in Appendix B.

Table 2 provides the members of the second proposed family.

Table 2. Second proposed family of estimators.

Hbi λm F xtm F *
xtm

Hb1 1 −
xm

−
x
∗
m

Hb2 1/
−
xm

−
xm

−
x
∗
m

Hb3 1/sxtm
−
xm

−
x
∗
m

Hb4 1/s2
xtm

−
xm

−
x
∗
m

Hb5 1/Cxtm
−
xm

−
x
∗
m

Hb6 1 Cxtm C∗xtm
Hb7 1/

−
xm Cxtm C∗xtm

Hb8 1/sxtm Cxtm C∗xtm
Hb9 1/s2

xtm Cxtm C∗xtm
Hb10 1/Cxtm Cxtm C∗xtm

3. Numerical Illustrations

Through simulation analysis, the proposed estimators are evaluated using the follow-
ing steps:

Step 1: Using SRSWOR from stratum m, select a random sample with size nm.
Step 2: Using a random sample in step 1, calculate the mean square errors (MSEs).
Step 3: Replicate Step 1 and Step 2, R = 5000 times, and then

MSE(Hai) =
1

5000

5000

∑
R=1

[(
5000

∑
R=1

Wmcytm + θ̂cv

5000

∑
R=1

Wm(F ∗xtm −Fxtm)

)
− Ho

]2

MSE(Hbi) =
1

5000

5000

∑
R=1

[(
5000

∑
R=1

Wmcytm + θ3(dnew)

5000

∑
R=1

Wm(F ∗xtm −Fxtm) + θ4(dnew)

5000

∑
R=1

Wm

(
s∗2xtm − s2

xtm

))
− Ho

]2

.

Generally, say ∆ = Hai, Hbi, where ai = 1, 2, . . . , 15 and bi = 1, 2, . . . , 10. Then

MSE(∆) =
1

5000

5000

∑
R=1

(
∆−

−
∆
)2
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Step 4: Calculate the percentage relative efficiency (PRE) as

PRE(∆) =
MSE(H0)

MSE(∆)
× 100

Additionally, detailed descriptions of the three considered populations and details of
the findings are given in the sub-sections below.

3.1. COVID-19 Data (Population-1)

The coronavirus disease (COVID-19) epidemic, which was later declared as a pandemic
by the WHO, struck Wuhan, capital city of China’s Hubei Province, at the end of 2019.
The epicenter of COVID-19 had shifted to Europe and the Middle East by 23 March 2020,
when the outbreak in China was nearly controlled. Coronavirus diseases, varying in
severity from colds and flu to even more serious diseases, such as severe acute respiratory
syndrome (SARS) and Middle East respiratory syndrome (MERS), are known to cause
respiratory diseases in humans. The number of confirmed cases rapidly rose in many
countries. Globally, the coronavirus had killed one million and 557 thousand people in
the world since the end of December 2019 and infected more than 68 million people. The
epidemic also caused the deterioration of economic and living conditions in many countries,
as well as the cessation of many activities for fear of the disease spreading again, which
began to spread widely during winter.

For the simulation study, we consider the COVID-19 pandemic data for four continents
(strata) (Source: https://www.worldometers.info/coronavirus, accessed on 1 June 2020),
namely, I. Africa; II. Asia; III. Europe; IV. North America, respectively, with 57, 49, 48 and
39 countries, for the period from 22 January 2020 up to 23 August 2020, which is related to:

X: Total number of cases,
Y: Total number of recoveries.
The size of each stratum is represented by the number of countries. The scatter plots

in Figures 1–4 clearly reflect the extreme values of each stratum and, thus, the data are
suitable for our proposed estimators.
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3.2. Apple Data: Population-2 and Population-3

The apple is one of the most popular types of fruits spread all over the world. It
originated in Central Asia, but today it is growing in various sizes and colors worldwide.
Apples contain many nutrients necessary for the human body. Every 100 g of apple contain
52 calories, in addition to a wide range of vitamins and minerals necessary for human
health, including carbohydrates, protein and fiber.
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Table 3. PRE for Population-1 Linear Moments.

Ha1–Ha5 Ha6–Ha10 Ha11–Ha15 Hb1–Hb5 Hb6–Hb10

L-Moments
Ha1 = 1246.220 Ha6 = 3361.743 Ha11 = 642.175 Hb1 = 162.967 Hb6 = 502.176
Ha2 = 1216.976 Ha7 = 3123.211 Ha12 = 539.083 Hb2 = 157.088 Hb7 = 495.305
Ha3 = 1205.824 Ha8 = 3070.417 Ha13 = 534.932 Hb3 = 158.348 Hb8 = 489.415
Ha4 = 1020.39 Ha9 = 2536.17 Ha14 = 391.596 Hb4 = 157.205 Hb9 = 425.094
Ha5 = 1255.05 Ha10 = 3356.21 Ha15 = 655.033 Hb5 = 163.568 Hb10 = 503.224

TL-Moments
Ha1 = 3294.33 Ha6 = 3546.62 Ha11 = 3472.12 Hb1 = 380.06 Hb6 = 572.68
Ha2 = 2442.93 Ha7 = 2697.86 Ha12 = 2105.47 Hb2 = 333.81 Hb7 = 522.46
Ha3 = 2577.21 Ha8 = 2834.58 Ha13 = 2299.15 Hb3 = 326.79 Hb8 = 535.05
Ha4 = 1910.66 Ha9 = 2010.83 Ha14 = 1362.76 Hb4 = 302.38 Hb9 = 476.81
Ha5 = 3356.04 Ha10 = 3474.52 Ha15 = 3520.58 Hb5 = 350.45 Hb10 = 566.91

Table 4. PRE for Population-2 Linear Moments.

Ha1–Ha5 Ha6–Ha10 Ha11–Ha15 Hb1–Hb5 Hb6–Hb10

L-Moments
Ha1 = 6524.37 Ha6 = 14119.89 Ha11 = 8005.75 Hb1 = 614.34 Hb6 = 2194.49
Ha2 = 6304.89 Ha7 = 13913.70 Ha12 = 7954.47 Hb2 = 572.14 Hb7 = 2070.46
Ha3 = 6269.62 Ha8 = 13849.74 Ha13 = 7942.56 Hb3 = 567.62 Hb8 = 2073.52
Ha4 = 5418.52 Ha9 = 11906.34 Ha14 = 7228.25 Hb4 = 485.66 Hb9 = 1846.88
Ha5 = 6534.82 Ha10 = 14161.05 Ha15 = 8033.62 Hb5 = 613.27 Hb10 = 2205.79

TL-Moments
Ha1 = 18272.29 Ha6 = 16040.23 Ha11 = 15817.65 Hb1 = 2836.75 Hb6 = 4089.52
Ha2 = 18126.08 Ha7 = 16268.30 Ha12 = 13663.40 Hb2 = 2997.55 Hb7 = 4130.74
Ha3 = 18034.97 Ha8 = 16001.49 Ha13 = 13519.75 Hb3 = 2983.53 Hb8 = 4117.02
Ha4 = 16743.16 Ha9 = 14892.12 Ha14 = 11250.34 Hb4 = 3038.89 Hb9 = 3813.37
Ha5 = 18267.43 Ha10 = 15919.32 Ha15 = 15691.31 Hb5 = 2818.59 Hb10 = 4112.41

For the purposes of this article, the data collection of apple fruit used in [18] is consid-
ered. The description of the variables for both the populations is given below.

Population-2: X represents the number of apple trees in 1999, and Y represents the
total number of apples produced in 1999.

Population-3: X represents the total amount of apples produced in 1998, and Y repre-
sents the total amount of apples produced in 1999.

Worth noting is that we consider the data of 1999 for 477 villages in each of the four
strata: Marmaran, Aegean, Mediterranean and Central Anatolian, termed, respectively,
as (1, 2, 3 and 4). The scatter plots from Figures 5–12 clearly reflect the extreme values of
each stratum.

For N1 = 106, N2 = 106, N3 = 94, N4 = 171, the first and second phase samples are
selected with different sizes as given below:

First phase samples sizes: n∗1 = 58, n∗2 = 58, n∗3 = 52, n∗4 = 94, Second phase samples
sizes: n1 = 29, n2 = 29, n3 = 26, n4 = 47.

Tables 4 and 5 report the PRE of the estimators obtained by using the simulation steps
described in Section 3.1.
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Table 5. PRE for Population-3 Linear Moments.

Ha1–Ha5 Ha6–Ha10 Ha11–Ha15 Hb1–Hb5 Hb6–Hb10

L-Moments
Ha1 = 10825.95 Ha6 = 18393.77 Ha11 = 7447.06 Hb1 = 140.21 Hb6 = 12715.94
Ha2 = 10458.80 Ha7 = 18157.09 Ha12 = 6719.55 Hb2 = 120.75 Hb7 = 12119.58
Ha3 = 10461.14 Ha8 = 18151.10 Ha13 = 6720.06 Hb3 = 120.79 Hb8 = 12118.44
Ha4 = 9444.26 Ha9 = 17519.14 Ha14 = 5775.01 Hb4 = 117.42 Hb9 = 10785.67

Ha5 = 10841.68 Ha10 = 18391.98 Ha15 = 7449.97 Hb5 = 140.73 Hb10 = 12722.06

TL-Moments
Ha1 = 13705.33 Ha6 = 51904.90 Ha11 = 21792.93 Hb1 = 4422.69 Hb6 = 13337.94
Ha2 = 12224.22 Ha7 = 51013.90 Ha12 = 21365.08 Hb2 = 3718.79 Hb7 = 12354.95
Ha3 = 11713.26 Ha8 = 50707.39 Ha13 = 20954.36 Hb3 = 3521.54 Hb8 = 12103.89
Ha4 = 9397.11 Ha9 = 46318.36 Ha14 = 17425.20 Hb4 = 2212.79 Hb9 = 9299.54
Ha5 = 13496.39 Ha10 = 51997.11 Ha15 = 21736.69 Hb5 = 4360.83 Hb10 = 13232.65

3.3. Discussion of Results

(1) The results (Hai, Hbi) of linear moments for population-1 are reported in Table 3,
which indicates that
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PRE(LinearMoments) :



PRE(L−Moments)
PRE(Ha6−10) > PRE(Ha1−5) > PRE(Ha11−15), w.r.t.Hai

PRE(Hb6−10) > PRE(Hb1−5), w.r.t.Hbi
PRE(TL−Moments)

PRE(Ha1,5,6,10,11,15) > PRE(Ha2,3,7−9,12,13) > PRE(Ha4,14), w.r.t.Hai
PRE(Hb6−10) > PRE(Hb1−5), w.r.t.Hbi

The proposed estimators Ha6 and Hb10 (for L-moments) and Ha6 and Hb6 (for
TL-moments) report the highest efficiency as compared to the conventional estimators.

(2) The results (Hai, Hbi) of linear moments for population-2 are reported in Table 4,
which indicates that

PRE(LinearMoments) :



PRE(L−Moments)
PRE(Ha6−10) > PRE(Ha11−15) > PRE(Ha1−5), w.r.t.Hai

PRE(Hb6−10) > PRE(Hb1−5), w.r.t.Hbi
PRE(TL−Moments)

PRE(Ha1−5) > PRE(Ha6−8,10) > PRE(Ha9,11−15), w.r.t.Hai
PRE(Hb6−10) > PRE(Hb1−5), w.r.t.Hbi

The proposed estimators Ha10 and Hb10 (for L-moments) and Ha1 and Hb7 (for
TL-moments) report the highest efficiency as compared to the conventional estimators.

(3) The results (Hai, Hbi) of linear moments for population-3 are reported in Table 5,
which indicates that

PRE(LinearMoments) :



PRE(L−Moments)
PRE(Ha6−10) > PRE(Ha1−5) > PRE(Ha11−15), w.r.t.Hai

PRE(Hb6−10) > PRE(Hb1−5), w.r.t.Hbi
PRE(TL−Moments)

PRE(Ha6−10) > PRE(Ha11−15) > PRE(Ha1−5), w.r.t.Hai
PRE(Hb6−10) > PRE(Hb1−5), w.r.t.Hbi

The proposed estimators Ha6 and Hb10 (for L-moments) and Ha10 and Hb6 (for
TL-moments) report the highest efficiency as compared to the conventional estimators.

(4) For each population, the comparison between the two proposed families leads to
the following findings:

Population− 1 :


PRE(L−Moments)

PRE(Ha1−13,15) > PRE(Hb1−10)andPRE(Ha14) > PRE(Hb1−5)
PRE(TL−Moments)

PRE(Ha1−15) > PRE(Hb1−10)

Population− 2 :


PRE(L−Moments)

PRE(Ha1−15) > PRE(Hb1−10)
PRE(TL−Moments)

PRE(Ha1−15) > PRE(Hb1−10)

Population− 3 :


PRE(L−Moments)

PRE(Ha6−10) > PRE(Hb1−10)andPRE(Ha1−15) > PRE(Hb1−5)
PRE(TL−Moments)

PRE(Ha1,5−15) > PRE(Hb1−10)andPRE(Ha2−4) > PRE(Hb1−5,9)

(5) Furthermore, all members of the newly formed family have PRE > 100 w.r.t. to
the traditional estimator Ho, and this evidence shows that the suggested linear estimators
are superior to the traditional estimators.
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(6) Moreover, among all suggested L-moment estimators, the proposed CV estimators
Ha6, Ha10 and Ha6 are the best estimators, having PREs of 3361.743, 14161.05 and 18393.77
for populations 1-3, respectively. Furthermore, among all proposed TL-moment estimators,
the proposed CV estimators Ha6, Ha1 and Ha10 are the best estimators, having PREs of
3546.62, 18272.2 and 51997.11 for populations 1-3, respectively.

4. Conclusions

The existence of extreme values in the data reduces the accuracy of the CV estimation
based on the central moment. Linear moments and calibration estimation are indispens-
able statistical methods that provide a robust statistical framework to address this issue.
Calibration estimation utilizes auxiliary data to assign the original weights to the design in
order to enhance the accuracy of the estimators. In this article, new families of estimators
were introduced for estimating population CV based on linear (L and TL) moments and
calibration methods with some appropriate calibration constraints under double stratified
random sampling. Furthermore, to evaluate the performance of the proposed estimators
compared to the conventional estimators, a simulation study was conducted by using some
real data sets. Simulation-based relative efficiency results reveal that, in the presence of
extreme values, all suggested estimators are consistently superior and more efficient (more
robust) than the conventional estimators. Therefore, it is recommended that the proposed
estimators can be used in the presence of extreme observations.

In future studies, the present work will be extended on the lines of [23,24].
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Appendix A

The formulae for L-moments and TL-moments are given below.
Population L-Moments, Lixm; i = 1, . . . , 4

L1xm = E
(

Xm(1:1)

)
L2xm = 1

2 E
(

Xm(2:2) − Xm(1:2)

)
L3xm = 1

3 E
(

Xm(3:3) − 2Xm(2:3) + Xm(1:3)

)
L4xm = 1

4 E
(

Xm(4:4)−3Xm(3:4) + 3Xm(2:4) + Xm(1:4)

)
Population TL-Moments, TLixm; i = 1, . . . , 4

TL1xm = E
(

Xm(2:3)

)
TL2xm = 1

2 E
(

Xm(3:4) − Xm(2:3)

)
TL3xm = 1

3 E
(

Xm(4:5) − 2Xm(3:5) + Xm(2:5)

)
TL4xm = 1

4 E
(

Xm(5:6)−3Xm(4:6) + 3Xm(3:6) + Xm(2:6)

)
Sample L-Moments, L∗ixm; i = 1, . . . , 4
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L∗1xm =

(
nm
1

)−1 nm
∑

d=1
xm(d)

L∗2xm = 1
2

(
nm
2

)−1 nm
∑

d=1

{(
d− 1

1

)
−
(

nm − d
1

)}
xm(d)

L∗3xm = 1
3

(
nm
3

)−1 nm
∑

d=1

{(
d− 1

2

)
− 2
(

d− 1
1

)(
nm − d

1

)
+

(
nm − d

2

)}
xm(d)

L∗4xm = 1
4

(
nm
4

)−1 nm
∑

d=1

{(
d− 1

3

)
− 3
(

d− 1
2

)(
nm − d

1

)
+ 3
(

d− 1
1

)(
nm − d

2

)
−
(

nm − d
3

)}
xm(d)

where xm(d) denotes the dth order statistics with binomial coefficient.
Sample TL-Moments, TL∗ixm; i = 1, . . . , 4

TL∗1xm =

(
nm
3

)−1nm−1
∑

d=2

(
d− 1

1

)(
nm − d

1

)
xm(d)

TL∗2xm = 1
2

(
nm
4

)−1nm−1
∑

d=2

{(
d− 1

2

)(
nm − d

1

)
−
(

d− 1
1

)(
nm − d

2

)}
xm(d)

TL∗3xm = 1
3

(
nm
5

)−1nm−1
∑

d=2

{(
d− 1

3

)(
d− 1

1

)
− 2
(

d− 1
2

)(
nm − d

2

)
+

(
d− 1

1

)(
nm − d

3

)}
xm(d)

TL∗4xm = 1
4

(
nm
6

)−1nm−1
∑

d=2

{(
d− 1

4

)(
nm − d

1

)
− 3
(

d− 1
3

)(
nm − d

2

)
+ 3
(

d− 1
2

)(
nm − d

3

)
−
(

d− 1
1

)(
nm − d

4

)}
xm(d)

Appendix B

A1 =

(
M
∑

m=1
Wm(F ∗xtm −Fxtm)

)(
M
∑

m=1
λmWm

)(
M
∑

m=1
λmWms4

xtm

)
−
(

M
∑

m=1
Wm(F ∗xtm −Fxtm)

)(
M
∑

m=1
λmWms2

xtm

)2

+

(
M
∑

m=1
Wm
(
s∗2xtm − s2

xtm
))( M

∑
m=1

λmWmFxtm

)(
M
∑

m=1
λmWms2

xtm

)
−
(

M
∑

m=1
Wm
(
s∗2xtm − s2

xtm
))( M

∑
m=1

λmWm

)(
M
∑

m=1
λmWms2

xtmFxtm

)

B1 =

(
M
∑

m=1
Wm(F ∗xtm −Fxtm)

)(
M
∑

m=1
λmWm

)(
M
∑

m=1
λmWms4

xtm

)
−
(

M
∑

m=1
Wm(F ∗xtm −Fxtm)

)(
M
∑

m=1
λmWms2

xtm

)2

+

(
M
∑

m=1
Wm
(
s∗2xtm − s2

xtm
))( M

∑
m=1

λmWmFxtm

)(
M
∑

m=1
λmWms2

xtm

)
−
(

M
∑

m=1
Wm
(
s∗2xtm − s2

xtm
))( M

∑
m=1

λmWm

)(
M
∑

m=1
λmWms2

xtmFxtm

)

C1 =

(
M
∑

m=1
Wm(F ∗xtm −Fxtm)

)(
M
∑

m=1
λmWms2

xtm

)(
M
∑

m=1
λmWms2

xtmFxtm

)
−
(

M
∑

m=1
Wm(F ∗xtm −Fxtm)

)(
M
∑

m=1
λmWms2

xtm

)(
M
∑

m=1
λmWms2

xtmFxtm

)
+

(
M
∑

m=1
Wm
(
s∗2xtm − s2

xtm
))( M

∑
m=1

λmWmFxtm

)(
M
∑

m=1
λmWmFxtms2

xtm

)
−
(

M
∑

m=1
Wm
(
s∗2xtm − s2

xtm
))( M

∑
m=1

λmWmF 2
xtm

)(
M
∑

m=1
λmWms2

xtm

)
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D1 =

(
M
∑

m=1
λmWm

)(
M
∑

m=1
λmWms4

xtm

)(
M
∑

m=1
λmWmF 2

xtm

)
−
(

M
∑

m=1
λmWmFxtm

)2( M
∑

m=1
λmWms4

xtm

)
−
(

M
∑

m=1
λmWm

)(
M
∑

m=1
λmWms2

xtmFxtm

)2

−
(

M
∑

m=1
λmWms2

xtm

)2( M
∑

m=1
λmWmF 2

xtm

)
+2
(

M
∑

m=1
λmWmFxtm

)(
M
∑

m=1
λmWms2

xtm

)(
M
∑

m=1
λmWmFxtms2

xtm

)

A∗1 =

(
M
∑

m=1
λmWmFxtmcytm

)(
M
∑

m=1
λmWm

)(
M
∑

m=1
λmWms4

xtm

)
−
(

M
∑

m=1
λmWmFxtmcytm

)(
M
∑

m=1
λmWms2

xtm

)2

−
(

M
∑

m=1
λmWms2

xtmcytm

)(
M
∑

m=1
λmWms2

xtmFxtm

)(
M
∑

m=1
λmWm

)
+

(
M
∑

m=1
λmWms2

xtmcytm

)(
M
∑

m=1
λmWmFxtm

)(
M
∑

m=1
λmWms2

xtm

)
+

(
M
∑

m=1
λmWmcytm

)(
M
∑

m=1
λmWms2

xtm

)(
M
∑

m=1
λmWms2

xtmFxtm

)
−
(

M
∑

m=1
λmWmcytm

)(
M
∑

m=1
λmWmFxtm

)(
M
∑

m=1
λmWms4

xtm

)

B∗1 =

(
M
∑

m=1
λmWmFxtmcytm

)(
M
∑

m=1
λmWmFxtm

)(
M
∑

m=1
λmWms2

xtm

)
−
(

M
∑

m=1
λmWmFxtmcytm

)(
M
∑

m=1
λmWm

)(
M
∑

m=1
λmWms2

xtmFxtm

)
+

(
M
∑

m=1
λmWms2

xtmcytm

)(
M
∑

m=1
λmWm

)(
M
∑

m=1
λmWmF 2

xtm

)
−
(

M
∑

m=1
λmWms2

xtmcytm

)(
M
∑

m=1
λmWmFxtm

)2

+

(
M
∑

m=1
λmWmcytm

)(
M
∑

m=1
λmWmFxtm

)(
M
∑

m=1
λmWms2

xtmFxtm

)
−
(

M
∑

m=1
λmWmcytm
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