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Abstract 

 Decision-making can be defined as the ability that allows organisms to choose one 

course of action from a set of alternatives. Decisions may take place under different 

circumstances and the way organisms decide may vary in accordance. For instance, the 

environment in which decisions are made could be uncertain and may involve risk, but also 

could be known and completely safe to the decision-makers. Thus, decision-making usually 

comprises a synthesis of different psychological processes that may play different roles 

depending on the characteristics of the context surrounding the decisions. At a behavioural 

level, several clinical populations such as Obsessive-Compulsive Disorder, Attention 

Deficit/Hyperactivity Disorder, and Substance Use Disorder, among others, have shown 

maladaptive decision-making that may underlie their clinical condition. In this sense, the 

Research Domain Criteria (RDoC) initiative has proposed various decision-making-related 

processes, such as reward responsiveness, reward valuation, cognitive control, or action 

planning, as transdiagnostic domains. At the physiological level, the study of the 

neurofunctional pathways of those processes has usually situated the prefrontal cortex as a 

critical brain region. Among other PFC subregions, the orbitofrontal, dorsolateral, and medial 

prefrontal cortices have received special attention. The investigation on this topic from a 

connectionist perspective may provide meaningful insights about the neurological basis of 

decision-making, through the study of functional connectivity, both at rest and during task 

performance, among dispersed brain areas.  

 In the present Doctoral Thesis, we studied decision-making through a traditionally 

well-established and widely used behavioural paradigm: the Iowa Gambling Task (IGT). The 

IGT is supposed to assess contingency-based decision-making processes under uncertain 

situations and has been proposed as a real-world decision-making model. Briefly, in this task, 

participants began with a certain amount of points or money and they are instructed to 
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maximize their long-term profits by making one hundred choices between four different 

decks. These decks differ in the magnitude of gains, in the frequency and magnitude of losses 

and in the long-term net outcome they offer. In addition, different neuroimaging techniques, 

such as functional Near-Infrared Spectroscopy (fNIRS) and Electroencephalography (EEG), 

and different Transcranial Electrical Stimulation, such as Transcranial Direct and Alternating 

Current Stimulation (tDCS and tACS) were used to study the neurological basis of decision-

making under the IGT context.  

 The main aim of the present Doctoral Thesis was to study decision-making through 

IGT in order to understand the different strategies adopted by individuals to make decisions 

in situations of uncertainty, and to find out whether these strategies can be manipulated and 

predicted at a neurophysiological level. The research work is composed of four different 

studies, in which the performance on the IGT of a total of 409 participants, including healthy 

people and impulsive-compulsive spectrum disorder patients, was analysed and modulated 

from different approaches. Neurophysiological measures of electrical and haemodynamic 

activity of the functional networks are also provided. 

The first study aimed to investigate the potential of tDCS to modulate the IGT 

performance as a function of sex. For that, we applied a single session of anodal- and sham-

tDCS over the right orbitofrontal cortex in a pre-post experimental design in order to 

modulate IGT performance in healthy psychology undergraduates. Results revealed that only 

women under anodal-tDCS showed an increased net score after stimulation.  

 In the second study, we tried to go beyond the net score so we paid special attention to 

how and when individual deck preferences are developed aiming to clarify the behavioural 

mechanisms underlying the formation of different response strategies. Five differential 

decision-makers profiles based on how they developed their deck preferences during the task 

were revealed. These differences may be conceptualised under several dimensions proposed 
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by the RDoC. Bayesian data analysis was used from this study onwards for the statistical 

inference process, due to the many mean comparisons and statistical models that will be 

performed. Sex differences in the net score were not replicated in this study.  

 For the third study, we recruited healthy adults and impulsive-compulsive spectrum 

disorder patients and employed fNIRS to record resting-state functional connectivity (rsFC) 

between several important nodes of the frontoparietal network (FPN). We followed a similar 

methodology and theoretical framework to the previous investigation to identify three 

differential decision-making strategies that cut across diagnostic labels. Importantly, these 

behavioural profiles were replicated from the previous study. We found no credible evidence 

about the role of the rsFC between any FPN nodes as a biomarker of any decision-making 

strategy. 

 Lastly, the fourth study proposed a combined EEG-tACS approach to study the role of 

frontal-midline theta oscillatory activities in the performance of the IGT and the capability of 

tACS at theta frequency (6 Hz) to modulate the mentioned performance. Preliminary results, 

obtained by a Bayesian Logistic Regression Model, seem to point to a possible positive 

relationship between frontal-midline theta power and the final performance on the task of the 

sham group. No evidence of a frequency-specific effect of theta-tACS was found. 

 Taken together, we consider that the results of the present Doctoral Thesis highlight 

the importance of paying special attention to the individual differences that guide the 

decision-making processes that occur during the different stages of the IGT. We provided 

evidence about different, stable, and observable types of decision-makers among both healthy 

and clinical populations that may be useful for future research in understanding and inferring 

how and why people make decisions in contexts similar to the IGT. At the physiological 

level, our results seem to suggest an implication of the right orbitofrontal cortex and frontal-

midline theta power in decision-making. However, further research is needed on this topic, 
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following homogenised conceptual and methodological approaches, in order to clarify the 

neurophysiological basis of decision-making. 
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Resumen 

La toma de decisiones puede definirse como la capacidad que permite a los 

organismos elegir un curso de acción entre un conjunto de alternativas. Las decisiones 

pueden tomarse en distintas circunstancias y la forma en que los organismos deciden puede 

variar en función de las mismas. Por ejemplo, el ambiente en el que se toman las decisiones 

puede ser incierto y entrañar riesgos, pero también puede ser conocido y completamente 

seguro para los organismos. Así pues, la toma de decisiones comprende una síntesis de 

distintos procesos psicológicos que pueden desempeñar papeles diferentes en función de las 

características del contexto que rodea a las decisiones. A nivel conductual, varias poblaciones 

clínicas como el Trastorno Obsesivo-Compulsivo, el Trastorno por Déficit de Atención e 

Hiperactividad, y el Trastorno por Uso de Sustancias, entre otros, han mostrado una toma de 

decisiones desadaptativa que puede subyacer a su condición clínica. En este sentido, el 

Research Domain Criteria (RDoC) ha propuesto diversos procesos relacionados con la toma 

de decisiones, como la sensibilidad a las consecuencias, la valoración de la recompensa, el 

control cognitivo o la planificación de la acción, como dominios transdiagnósticos. A nivel 

fisiológico, el estudio de las vías neurofuncionales de dichos procesos habitualmente ha 

situado al córtex prefrontal como una región cerebral importante. Entre otras de sus 

subregiones, las cortezas orbitofrontal, dorsolateral y prefrontal medial han recibido especial 

atención. Por su parte, la investigación desde una perspectiva conexionista puede aportar 

conocimientos sobre las bases neurológicas de la toma de decisiones, a través del estudio de 

la conectividad funcional, tanto en reposo como durante tareas, entre áreas cerebrales 

dispersas.  

 En la presente Tesis Doctoral, se estudia la toma de decisiones a través de un 

paradigma conductual tradicionalmente bien establecido y ampliamente utilizado: la Tarea de 

Juego de Iowa (IGT, por sus siglas en inglés). Se supone que la IGT evalúa los procesos de 
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toma de decisiones en situaciones de incertidumbre, y se ha propuesto como modelo de toma 

de decisiones en el mundo real. En resumen, en esta tarea, los participantes comienzan con 

una cierta cantidad de puntos o dinero y se les instruye a maximizar sus beneficios a largo 

plazo realizando cien elecciones entre cuatro barajas de cartas diferentes. Estas barajas se 

diferencian en la magnitud de las ganancias, en la magnitud y en la frecuencia de las pérdidas 

y en la recompensa neta a largo plazo. Además, se emplean diferentes técnicas de 

neuroimagen, como la Espectroscopia funcional por infrarrojo cercano (fNIRS, por sus siglas 

en inglés) y la Electroencefalografía (EEG), y diferentes técnicas de Estimulación Eléctrica 

Transcraneal, como la Estimulación Transcraneal por Corriente Directa (tDCS, por sus siglas 

en inglés) y por Corriente Alterna (tACS, por sus siglas en inglés) para estudiar las bases 

neurológicas de la toma de decisiones en el contexto de la IGT. 

 El objetivo principal de la presente Tesis Doctoral fue estudiar los procesos de toma 

de decisiones a través de la IGT para entender en profundidad las diferentes estrategias de 

elección adoptadas por los individuos en situaciones de incertidumbre, e investigar si estas 

estrategias pueden ser manipuladas y predichas a nivel neurofisiológico. El trabajo de 

investigación está compuesto de cuatro estudios en los cuales el rendimiento en la IGT de un 

total de 409 participantes, entre los que se incluyen personas sanas y pacientes del espectro 

impulsivo-compulsivo, fue analizado desde diferentes perspectivas teóricas, aportando, 

además, medidas neurofisiológicas de actividad eléctrica y hemodinámica de las redes 

funcionales relacionadas con la toma de decisiones.  

 En el primer estudio, el objetivo fue investigar el potencial de la tDCS para modular la 

toma de decisiones, medida a través de la IGT, en función del sexo. Para ello, aplicamos una 

única sesión de tDCS anodal y placebo sobre el córtex orbitofrontal derecho en un diseño 

experimental pre-post para modular el rendimiento en la IGT de estudiantes de psicología 
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sanos. Los resultados revelaron que sólo las mujeres bajo la condición de tDCS anodal 

mostraron un aumento de la puntuación neta tras la estimulación.  

 En el segundo estudio, intentamos ir más allá de la puntuación neta en la IGT, por lo 

que prestamos especial atención a cómo y cuándo se desarrollan las preferencias por cada 

mazo, con el objetivo de aclarar los mecanismos conductuales que subyacen a la formación 

de diferentes estrategias de respuesta en la tarea. Identificamos cinco perfiles diferenciados 

en población sana en función del desarrollo de distintas preferencias por distintos mazos 

durante la tarea. Las diferencias entre estos perfiles pueden ser conceptualizadas bajo varias 

dimensiones propuestas por el RDoC. A partir de este estudio, el análisis de datos y el 

proceso de inferencia estadística siguió una aproximación Bayesiana debido a las numerosas 

comparaciones que van a ser analizadas, así como a la interpretación de los modelos 

estadísticos utilizados. Las diferencias de sexo en la puntuación neta no se replicaron en este 

estudio. 

 Para el tercer estudio, reclutamos adultos sanos y pacientes con trastornos del espectro 

impulsivo-compulsivo y empleamos fNIRS para registrar la conectividad funcional en estado 

de reposo (rsFC, por sus siglas en inglés) entre varios nodos importantes de la red 

frontoparietal (FPN, por sus siglas en inglés). Seguimos una metodología y un marco teórico 

similares a los de la investigación anterior para identificar tres diferentes estrategias de toma 

de decisiones que atraviesan las etiquetas diagnósticas. Estos perfiles conductuales fueron 

replicados del anterior estudio. No encontramos evidencia creíble sobre el papel de la rsFC 

entre ningún nodo de la FPN como biomarcador de ninguna estrategia de toma de decisiones. 

 Por último, el cuarto estudio propuso un enfoque combinado EEG-tACS para estudiar 

el papel de la actividad oscilatoria de frecuencia theta en el rendimiento en la IGT, así como 

la capacidad de la tACS a frecuencia theta para modular el dicho rendimiento. Los resultados 

preliminares parecen apuntar a una posible relación positiva entre la potencia theta y el 
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rendimiento final en la tarea del grupo placebo. No se hallaron evidencias de un efecto 

específico de la frecuencia de estimulación.  

En conclusión, consideramos que los resultados de la presente Tesis Doctoral ponen 

de manifiesto la importancia de prestar especial atención a las diferencias individuales que 

guían los procesos de toma de decisiones que tienen lugar durante las diferentes etapas de la 

IGT. Se aportan evidencias sobre tipos de estrategia de respuesta diferentes, estables y 

observables tanto en población sana como en población clínica, que pueden ser útiles para 

futuras investigaciones en la comprensión e inferencia de cómo y por qué se toman 

decisiones en contextos similares al de la IGT. A nivel fisiológico, nuestros resultados 

parecen sugerir una implicación del córtex orbitofrontal derecho y de la potencia de la onda 

theta en la toma de decisiones. Sin embargo, es necesario seguir investigando sobre este 

tema, siguiendo enfoques conceptuales y metodológicos homogéneos, para aclarar la base 

neurofisiológica de la toma de decisiones. 

 

 

 

 

 

 

 

 

 

 



IX 

 

Abbreviations 

ACC. Anterior Cingulate Cortex. 

ADHD. Attention-Deficit/Hyperactivity Disorder. 

AM-tACS. Amplitude Modulated Transcranial Alternating Current Stimulation. 

AUDIT. Alcohol Use Disorders Identification Test. 

BA. Brodmann Area. 

BOLD. Blood Oxygen Level Dependent. 

CEN. Central Executive Network. 

CSF. Cerebrospinal fluid. 

DAST-10. Drug Abuse Screening Test.  

DLPFC. Dorsolateral Prefrontal Cortex. 

DMN. Default Mode Network. 

EEFF. Executive Functions. 

EEG. Electroencephalography. 

EPF. Endogenous Peak Frequency. 

ERPs. Event-Related Potentials. 

EU. Expected Utility. 

EUT. Expected Utility Theory. 

EV. Expected Value. 

FEM. Finite Element Method. 

fMRI. Functional Magnetic Resonance Imaging. 

FMT. Frontal-midline theta. 

fNIRS. Functional Near-Infrared Spectroscopy. 

FPN. Frontoparietal Network.  

FRN. Feedback Related Negativity.  



X 

 

GLM. General Linear Model.  

HbO2. Oxy-haemoglobin. 

HbR. Deoxy-haemoglobin. 

HDI. Highest Density Interval.  

IGT. Iowa Gambling Task. 

JAGS. Just Another Gibbs Sampler.  

MCMC. Markov Chain Monte Carlo. 

MDD. Major Depressive Disorder. 

MEPs. Motor-Evoked Potentials. 

mPFC. Medial Prefrontal Cortex. 

NIBS. Non-Invasive Brain Stimulation.  

OCD. Obsessive-Compulsive Disorder. 

OFC. Orbitofrontal Cortex. 

ORL. Outcome-Representation Learning Model.  

PFC. Prefrontal Cortex. 

PG. Pathological Gambling. 

pPC. Posterior Parietal Cortex. 

PPC. Posterior Predictive Check. 

PVL-Decay. Prospect-Valence Learning Model With Decay Reinforcement Learning Rule. 

PVL-Delta. Prospect-Valence Learning Model With A Delta Learning Rule. 

RDoC. Research Domain Criteria.  

RL. Reinforcement Learning. 

ROIs. Regions of Interest. 

ROPE. Region Of Practical Equivalence.  

rsFC. Resting State Functional Connectivity.  



XI 

 

SCRs. Skin Conductance Responses. 

SEM. Standard Error of the Mean. 

SMH. Somatic Marker Hypothesis.  

SNR. Signal-to-Noise Ratio. 

SOGS. South Oaks Gambling Screen.  

SSD. Stop Signal Delay. 

SSRT. Stop Signal Reaction Time.  

SST. Stop Signal Task.  

STAI. State-Trait Anxiety Inventory. 

SUD. Substance Use Disorder. 

tACS. Transcranial Alternating Current Stimulation. 

tDCS. Transcranial Direct Current Stimulation. 

TENS. Transcutaneous Electrical Nerve Stimulation. 

TES. Transcranial Electrical Stimulation. 

TMS. Transcranial Magnetic Stimulation.  

UPPS-P. Short Impulsive Behaviour Scale.  

vmPFC. Ventromedial Prefrontal Cortex.  

VPP. Value-Plus Perseverance Model.  

WCST. Wisconsin Card Sorting Test. 

WJ. Welch-James Test. 

  



 

 



1 

 

CHAPTER 1. INTRODUCTION 

 Decision-making is a critical capacity for the adaptability of organisms to the 

environment. It is a complex and multidimensional process that comprises several 

underlying factors. In other words, it is a synthesis of several psychological processes. 

Thus, to have an in-depth knowledge of how and why organisms make decisions is 

crucial to understand why organisms behave the way they do and, therefore, to develop 

specific rehabilitation strategies. This is why decision-making has been studied from 

different theoretical perspectives and paradigms. One of the most widely used 

behavioural paradigms for this purpose comes from the neuroscience field and is the 

Iowa Gambling Task. This task has been historically used by a vast amount of research 

and, despite it has been useful to provide insights about the decision-making processes 

in healthy and clinical populations, it also has left some gaps of knowledge about their 

underlying psychological factors. Likewise, the emergence of neuroimaging and 

neurostimulation techniques leads to a specific research field aiming to disentangle the 

neurological basis of different cognitive mechanisms, including decision-making.  

The study of the dimensions or constructs related to decision-making can be 

framed within the Research Domain Criteria Project (RDoC; National Institute of 

Mental Health). RDoC is a framework for researchers and clinicians with the long-term 

goal of understanding the aetiopathogenesis and clinical manifestations of mental health 

problems, considering the study of the most relevant dimensions or mechanisms of 

biological and psychological systems (Cuthbert, 2020). From this perspective, decision-

making may be studied from different levels of analysis and may constitute a relevant 

dimension to explain the variability between individuals due to its crucial role in daily 

and social functioning.  
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Taken together, decision-making research would be greatly benefited from 

integrating meaningful insights from different disciplines such as economics, 

psychology, and neuroscience, to be able to formulate not only descriptive but also 

explanatory models. Paying special attention to biological and behavioural individual 

differences, as well as to socio-economic factors, may provide useful information to 

formulate explanatory models of the different types of decision-making that may allow 

clinicians and researchers to focus on the specific processes driving adaptive or 

maladaptive decision-making. Therefore, the present Doctoral Thesis constitutes an 

attempt to better understand the neurophysiological and psychological mechanisms 

underlying human decision-making processes conceptualized under the Iowa Gambling 

Task context. The following sections of this chapter are intended to set the stage for the 

rationale and the approach to the study of decision-making processes employed during 

this work, providing some theoretical and historical perspectives from different research 

fields. 
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Decision-making from economics 

 

“[…] psychological theories of intuitive thinking cannot match the elegance and 

precision of formal normative models of belief and choice, but this is just another 

way of saying that rational models are psychologically unrealistic”. 

Daniel Kahneman, 2003. 

 

Human and non-human organisms share many features that had been naturally 

selected to guarantee survival. One of these shared features, perhaps the most important, 

is learning. Learning is the way through which the behaviour of organisms adjusts and 

adapts to increase their probability to survive in an unstable and changing environment. 

Although, as stated by Domjan (1982), “a universally accepted definition of learning 

does not exist”, it seems to be evident that learning is at the basis of maintained 

behavioural strategies and cognitive skills presented by organisms.  

Decision-making is one of these learned skills (Newell et al., 2015). Non-human 

and human animals have to make important decisions every day of their lives, from 

when to feed or when to sleep, to deciding on a safe place to raise offspring. Deciding 

implies choosing a course of action from a set of alternatives. Some of the most basic 

decisions for survival might be on whether it is appropriate to change one’s behaviour 

or, on the contrary, to persist in the current action. For instance, when to go foraging. 

Foraging requires many decisions to be made (Stephens, 2008), so several factors must 

be assessed by the animal when going to search for food sources (McFarland, 1977) 

such as potential food gains, predation risk or increasing hunger (McFarland, 1977; 

Stephens, 2008), to decide whether to stay or to leave the nest. Then, the resulting 

behaviour (staying or leaving) will be often the one that maximizes the chances of 

survival and reproduction of the organism in its environment, or, in other words, the one 
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which increases its fitness, in a Darwinian sense of the term (Smith and Winterhalder, 

2017).  

Following classical decision theory, this would be very similar to what happens 

in humans; but in this case, a good decision has been traditionally understood as a 

rational decision. After all, human is labelled as the rational animal for a reason (Santos 

and Rosati, 2015). However, how is a rational choice defined? Many authors have 

situated the philosophical roots of the concept of rational choice in an exchange of 

letters between the mathematicians Blaise Pascal and Pierre Fermat (Hertwig et al., 

2004). A rational choice would be defined as the choice associated with the highest 

expected value (EV) among other choices, being EV defined as “the sum of the product 

of the probability of an outcome and the value of that outcome” (Kahneman, 2011; 

Newell et al., 2015). For instance, consider a situation where one would win 50€ with a 

30% probability and 25€ with a 70% probability. Then, the EV of that choice would be 

32.5 (50 * .3 + 25 * .7). If a decision-maker had to choose between that situation and 

another like a 95% chance to win 25€ or 40% chance to win 60€ (EV = 25 * .95 + 60 * 

.4 = 47.75), then, following rational decision theory, they always would choose the 

situation presenting the highest EV. 

Imagine a situation where a decision-maker had to choose between receiving 

certainly 2000€ and wagering an amount of money on the following game. A coin is to 

be flipped until it comes tails. If the coin comes tails in the first flip, the decision-maker 

would earn 2€. If it comes tail in the second flip, the gain would be 4€. If it occurs in the 

third, the total outcome would be 8€. Following this, the decision-maker would earn 2n 

€, where n is the number of tosses needed to get tails on the coin. Two questions could 

be derived from this situation. First, should the decision-maker take the certain 2000€ or 

play the game? And second, how much money should the decision-maker bet if they 



5 

 

decide to play? Following rational decision theory, the decision-maker should not only 

play the game but bet everything at their disposal, as the game presented an infinite 

expected value. This is Nicholas Bernoulli’s St. Petersburg paradox, which reflects that 

even in a gambling context with an infinite EV people will be willing to pay small 

amounts. His cousin, Daniel Bernoulli, warned that in this situation most humans would 

choose safe money because of risk aversion, so the classical formulation of the EV 

could be not representative of how humans evaluate those contexts to decide. Bernoulli 

introduced the concept of expected (or subjective) utility (EU) to resolve the St. 

Petersburg paradox. The EU supposes the replacement of the objective value of the 

outcome of a decision, with the subjective value that a certain outcome has for a 

decision-maker, so the utility of the outcome increases or decreases nonlinearly (as the 

EV does), but logarithmically with its the objective amount (Davis et al., 2013; Hertwig 

et al., 2004).  

One of the most important attempts to build an axiomatic theory of rational 

decision-making comes from the mathematician John von Neumann and the economist 

Oskar Morgenstern when their book entitled Theory of Games and Economic Behavior 

(1947) was published. The Expected Utility Theory (EUT) is considered the “major 

paradigm in decision-making since the Second World War” (Schoemaker, 1982). The 

EUT proposes four mathematical axioms (transitivity, completeness, independence, and 

continuity) attempting to describe or define what underlies a rational decision-maker 

(von Neumann and Morgenstern, 1947).  

The EUT has not been free of criticisms stemming from research testing each of 

its axioms. Perhaps, one of the most important critiques of the EUT comes from the 

Prospect Theory developed by Kahneman and Tversky (1979). Kahneman and Tversky 

developed a body of experimental work where participants were exposed to various 
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uncertain situations in which they had to choose between two alternatives. They 

provided clear evidence about the usual violations of the axioms of EUT when humans 

have to make such decisions. Following the Prospect Theory, the value of an outcome is 

multiplied by decision weights, which are not only probabilities (as in the EUT theory) 

but reflect the impact that a change of an outcome has on a reference point. Then, the 

gains and losses derived from a choice, and not the final amount, would drive the 

psychological value of an outcome. Furthermore, it is argued that losses will influence 

more negatively than gains positively on the psychological value of a possible outcome, 

which is named loss aversion (see Figure 1).  

Figure 1 

Graphical description of the utility function proposed by the Prospect Theory.  

 

Note. Adapted from Kahneman, 2011. Thinking, Fast and Slow. Copyright: original 

publisher. 

Despite the precision of the mathematical formulations of the EUT and their 

variants, observed decisions in humans (and non-human animals; Ferrari-Toniolo et al., 

2022) usually deviate from the predictions of the EUT models. In other words, real 

choices do not always fit with the rational decisions that humans are supposed to make 
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(Arioli et al., 2018; Colman, 2003; Kahneman and Tversky, 1979; Sanfey, 2007; Santos 

and Rosati, 2015). The human described by the EUT is an economic human. Following 

Edwards (1954), the economic human is completely informed and rational, which 

means that they would be able to take all decision surrounding information, integrate it 

and make a choice that maximizes something. In contrast, Simon (1955) supported that 

the decision-maker is usually a boundedly rational agent, so a completely rational 

decision will be hardly made because of the limited capacity of the input information 

process. The real world is uncertain, and decision-makers are often unaware of all 

alternatives or consequences when decisions are made. At this point, a rapid or even 

automatic, evaluation, namely heuristics, of the whole decision context may lead the 

decision-maker to look for not an optimal (or rational) choice, but just a satisficing one 

(Fiori, 2011; Kahneman, 2003; Simon, 1955, 1990). Taken together, the existence (and 

inevitability) of heuristics makes classical normative models of decision-making not as 

desirable as expected to predict human behaviour (Tversky, 1975), especially in social 

interactions (Colman, 2003). Other irrationalities, such as preferences for a certain set 

of probabilities or the tendency to risk-taking behaviour, or even emotional states, may 

also challenge the basic assumptions of these economic decision theories (for an 

excellent review, see Edwards, 1954). In the end, human is not an economic organism, it 

is just human.   
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Decision-making from psychology and neuropsychology 

 

“It is therefore not without merit to suppose that in many decisions affect plays a 

more important role than we are willing to admit”. 

Robert B. Zajonc, 1980. 

 

Making a decision requires a set of alternatives and a variety of courses of action 

to choose, and, usually, moves the decision-maker from one state into another one. 

Experimental psychologists have studied this process since the early 60s. Back a few 

years, the British economist Francis Edgeworth introduced a concept that was very 

useful for psychologists interested in decision-making: indifference curves (Edgeworth, 

1881, from Edwards, 1954). The basic notion of the indifference curve is that, when 

choosing between two options and, assuming that utility is a continuum, there will be 

infinite points in which decision-makers will present an indifferent state, regardless of 

the expected utility of the choice. In Figure 2, each indifference curve links the 

combination of two equally desirable outcomes and the points represent states of 

indifference between each outcome. For instance, in the first indifference curve, there 

could be two (or more) states (points) in which the decision-maker would consider both 

options (10 apples and 0 bananas and 5 apples and 5 bananas) equally desirable. 

Figure 2  

A graphical example of a hypothetical indifference map. 
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Note. Adapted from Edwards, 1954, copyright: original publisher. Coloured circles 

represent indifference points. 

In 1965, Frank A. Logan published an experimental work in which hungry rats 

were placed at one end of a double-alley maze while different amounts of food were 

being placed at different delays on two different food cups at the end of each of the 

alleys of the maze. Rats were exposed to free and forced choice trials to ensure all rats 

faced and learned all conditions. In free choice trials both alleys of the maze remained 

open, so rats could go through both. Rats were considered to be committed to an alley 

when they crossed a photobeam. In forced-choice trials, one of the guillotine doors was 

closed, so rats were forced to seek the open alley. Then, the number of choices of each 

reward in each delay condition was registered.  

 Obtained results suggested that different combinations of preferences depending 

on amounts of rewards and delays could be identified consistently among male hooded 

rats, shedding light on the amount-delay of reward interaction and the indifference 

points of decisions (Logan, 1965).  

Rachlin and Green (1972) studied pigeons’ choice behaviour using a concurrent-

chains procedure, in which two schedules of reinforcement were involved. In one of 

these (Choice Y), pigeons had to choose between a larger-delayed (LD) reward and a 

smaller-sooner (SS) reward. In this case, pigeons always chose the SS reward. 

However, when another choice (Choice X) is offered after a delay, the preference of the 

pigeons depends on the amount of delay. Their main finding was that when pigeons had 

to wait for a long time to get to Choice Y, then they tended to choose the LD reward 

(Rachlin and Green, 1972). This procedure was designed to study choice commitment 

in pigeons, and their results set the basis of self-controlled behaviour research (Domjan, 

1998).  
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One key behavioural concept regarding self-controlled behaviour is that the 

value (or utility) of a reinforcer decreases as a function of time. In other words, the more 

time the organism must wait to obtain a reward, the less value it has for it. James E. 

Mazur (1987) developed the so-called delay discounting function to account for the 

mentioned phenomena. An impressive body of research, in both human and non-human 

animals, has been devoted to the study of delay discounting phenomena (for reviews, 

see Odum, 2011) and it has been proposed that an excessive discounting rate could be a 

central trait in several psychopathologies such as Substance Use Disorder (SUD), 

Obsessive-Compulsive Disorder (OCD), Pathological Gambling (PG) and Attention 

Deficit-Hyperactivity Disorder (ADHD) (Carlisi et al., 2017; Dixon et al., 2003; Ong et 

al., 2019; Robles et al., 2011; Steinglass et al., 2017). However, the conceptualization of 

delay discounting as a transdiagnostic domain has not been exempted from 

methodological and theoretical criticism (Bailey et al., 2021). 

In the previous section, we exposed the classical decision theories and some of 

their basic assumptions like the decision-maker as an economic human (Edwards, 

1954). This theoretical framework has dominated the psychological research on 

decision-making for most of the past century, leading to a purely cognitive perspective 

of this process. Research had been focused on identifying the “cognitive errors” through 

which decision-makers misestimate the odds of consequences (for reviews see, Lerner 

et al., 2015; Loewenstein and Lerner, 2003). Thus, decision-making was understood as 

a purely cold function. The concept of bounded rationality introduced by Simon (1955) 

opened, in some way, a relatively new discussion about the cognitive constraints that 

challenge the pure rationality under which organisms were supposed to make decisions. 

In 1980, the social psychologist Robert B. Zajonc published a widely applauded paper 

entitled Feeling and Thinking. Preferences Need No Inferences (Zajonc, 1980). In this 
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review, Zajonc claims, based on empirical evidence, that affective reactions do not 

occur only after cognitive processing of the input stimuli as it was widely thought, but 

affective reactions are usually the first reaction of the organism when facing diverse 

challenging situations. Actually, the human decision-maker assumed by the Prospect 

Theory is mainly driven by the immediate emotional impact of gains and losses 

(Kahneman, 2011). Therefore, if affective reactions are primary, then they could shape 

posterior cognitive processing. In this line, by the 90s, the influence of emotional states 

on decision-making was empirically demonstrated by a vast amount of research 

(Schwarz, 2000). 

Another cornerstone of the research on the interplay of emotion, cognition, and 

decision-making comes from the works of Antonio Damasio and his colleagues. In 

1985, Eslinger and Damasio published an interesting case report (Eslinger and Damasio, 

1985). Patient E.V.R suffered a brain tumour affecting mostly bilateral orbitofrontal 

(OFC) and ventromedial prefrontal (vmPFC) areas of the brain. Despite E.V.R. 

demonstrating an average (and, in some cases, above average) performance on 

neuropsychological evaluation, he was no longer able to take positive actions for their 

life in real-life equivalent hypothetical problems. The decision-making deficits found in 

E.V.R. and other vmPFC patients inspired Damasio to think that they could be due to an 

inability to integrate emotion-related body signals that are evoked when organisms have 

to evaluate different action options (Dunn et al., 2006). This is considered the starting 

point of the Somatic Marker Hypothesis (SMH), which was formally developed in 

Damasio’s Descartes’s error book (Damasio, 1994; Dunn, 2006). The SMH has been 

considered a biological explanation of the relationship between emotional states and 

real-life decision-making (Bechara, 2004). These “somatic markers” would be useful in 

the evaluation of available options and, therefore, they may influence the decision-
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making process (Damasio, 1996), suggesting that decision is guided by emotion 

(Bechara et al., 1999; Bechara, 2004). 

The first attempt to support the SMH with empirical evidence likely comes from 

Bechara, Damasio, Damasio, and Anderson (1994). In this work, Bechara and 

colleagues introduced to the field of the study of decision-making a new 

neuropsychological task to assess real-life decision-making problems: the Iowa 

Gambling Task (IGT; Bechara et al., 1994). The first time the IGT was applied, 

participants were given a starting loan of hypothetical $2000, and four different decks of 

cards were presented to them. Participants were instructed to maximize their profits by 

choosing cards, only one per trial, being free to switch from any deck to another, 

without knowledge about the total number of card selections they had to make. Each 

deck had a pre-programmed deterministic and sequential schedule of reward and 

punishment. An example of this can be seen in Figure 3. Each deck contained forty 

cards following a specific order. Picking any card from decks A or B yielded $100 

while choosing decks C or D always resulted in $50. After choosing deck A 10 times, 

participants would have earned $1000, but they also would have encountered 5 

punishments which sum would be $1250, resulting in a total net loss of $250. The same 

occurs with deck B, but the loss of $1250 happens all at once every ten cards. Decks C 

and D always offer $50 when chosen, and after 10 choices they result in a net gain of 

$250, but, similar to decks A and B, they differ in the frequency and magnitude of the 

punishment. Thus, decks A and B are called “disadvantageous decks” because they 

suppose a net loss in the long term, and decks C and D are “advantageous decks” 

because they result in a net gain in the long term (Bechara et al., 1994). The dependent 

variable was the net score, which is obtained by subtracting the number of 

disadvantageous decks picks from the number of advantageous deck picks (Bechara et 
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al., 1994). They found that E.V.R. and E.V.R.-type patients chose fewer cards from 

advantageous decks than healthy people and other brain-damaged patients. This finding 

was mainly interpreted as that kind of patients presented insensitivity to future 

consequences and were governed by immediate outcomes, what they called “myopia for 

the future” (Bechara, 2000; Bechara et al., 1994, 2000).  

Figure 3  

Examples of performance on the IGT of a healthy control and a typical target subject. 

 
Note. Orange circles represent the trial in which each deck was chosen. Red rectangles 

represent the position of negative outcomes in each set of ten cards. Adapted from 

Bechara et al., 1994. Copyright: original publisher. 
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A few years later, the same research group conducted another interesting 

experimental procedure aiming to look for an explicit biological signal that was related 

to decision-making, or, in other words, a somatic marker. Bechara et al. (1999) 

compared the performance on the IGT of healthy people and bilateral amygdala (not 

vmPFC damage) and bilateral vmPFC patients. Additionally, they measured their skin 

conductance responses (SCRs) as an indicator of somatic (emotional) activation. They 

found amygdala and vmPFC-damaged patients underperformed healthy controls during 

the task. Both groups of patients presented less SCR, in general than the control group. 

However, when comparing the SCR generated by positive and negative feedback, only 

amygdala patients showed not to evoke SCRs. Findings were taken as evidence of the 

differential role of the amygdala (to generate somatic states associated with emotional 

attributes of stimuli) and vmPFC (to integrate somatic information) in decision-making 

processes (Bechara et al., 1999), and led, in some ways, to growing research aiming to 

the study of the neurological basis of decision-making.  

Over the years, IGT has become one of the most widely used paradigms for 

evaluating decision-making. But also, critical reviews have increased together with their 

rise in popularity among the scientific community (for critical reviews, see Dunn et al., 

2006; Steingroever et al., 2013; van den Bos et al., 2013). Potential influence variables 

for decision-making processes, such as personality factors (Suhr and Tsanadis, 2007), 

age (Beitz et al., 2014), sex (Reavis and Overman, 2001), educational level (Evans et 

al., 2004) and socio-economic status (Sheehy-Skeffington, 2020) have emerged. 

Conflictive and contradictory findings in both healthy and clinical populations have 

challenged the construct validity of the task and its clinical utility (Barnhart and 

Buelow, 2021; Buelow and Suhr, 2009). In addition, despite the effort that has been 

made by neuroscientists, the neurological basis of decision-making is still unclear. 
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Neuroimaging the decision-making processes 

 

“So modern neuroimaging is like asking an astronaut in the space shuttle to look out the 

window and judge how America is doing”. 

David Eagleman, 2011. 

 

Neuropsychologists have been historically devoted to disentangling the complex 

interactions between the central nervous system and behaviour (Savoy, 2001). This 

tradition began following a localizationist understanding of brain functions that was 

early influenced by Franz Joseph Gall’s phrenology (Sutterer and Tranel, 2017). The 

first data supporting this localizationist view comes from acquired brain-damaged 

patients like Phineas Gage, “Tan” or H. M. (Savoy, 2001). Those patients shared the 

affection of specific functions (such as social skills, language, and memory) after their 

brain was injured, which will motivate future works on brain mapping.  

Research in this field has stated that the prefrontal cortex is a critical region for 

decision-making (Aram et al., 2019; Friedman and Robbins, 2022). Among prefrontal 

cortex subregions, the orbitofrontal cortex (OFC) seems to play a very important role in 

this process. OFC corresponds to the ventral part of the frontal lobe and could be 

subdivided into five subregions (BAs 10, 11, 13, 14, and 47/12) (Wallis, 2007). It is 

mainly connected to somatosensory processing areas and limbic structures, due to 

which, it seems to be a crucial integration area, necessary to evaluate all aspects 

(hedonic and valence values, probabilities of success…) of a potential reward. OFC 

neurons have been shown to fire when presenting olfactory, visual, and gustatory 

information of a reinforcer, and even anticipating the outcomes (Schoenbaum et al., 

1998; for a review, see Wallis, 2007). One of the main functions of the OFC, at least in 

primates (including humans), is the evaluation of the consequence of an action, or, in 
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other words, the evaluation of the stimulus-reinforcement association (Rolls, 2000; 

Rolls and Grabenhorst, 2008). The value (or utility, in decision theory terms) would be, 

therefore, represented by the OFC functionality (Hare et al., 2008; Kim et al., 2006; 

Rolls et al., 2008).  

However, other studies have shown that those reward neurons can be found not 

only in the OFC but also in other areas such as the dorsolateral prefrontal cortex 

(DLPFC) (for a review, see Wallis, 2007). In this sense, Tanaka et al. (2004) established 

an interesting distinction in the role of different brain regions in the evaluation of the 

reward as a function of the delay of its presentation. While lateral OFC and striatum 

presented a significant activity when the learning process was based on immediate 

rewards, DLPFC, among other areas, was activated when participants learn to behave in 

a long-term goal-directed manner. DLPFC is another important subregion of the frontal 

lobe, functionally constituting BA46, 9, 9/46, and 8 (Carlen, 2017; Haber et al., 2022). 

DLPFC has been suggested to be a core area in executive functions (EEFF) (Koechlin 

and Summerfield, 2007; Miyake et al., 2000; Nejati et al., 2018). Working memory is a 

central executive function responsible not only for storing information but also for 

actively manipulating it in order to perform complex tasks (Baddeley, 1992). Following 

this definition, one feasible link between working memory and decision-making is that 

organisms would need to actively maintain the information related to a consequence of 

a certain choice and use this information to guide their behaviour in an adaptive way. 

So, DLPFC may be also implicated in decision-making, specifically in decision-making 

under explicit risk conditions (Brand et al., 2006; Schiebener and Brand, 2015) via 

working memory (Bechara and Damasio, 2005; Li et al., 2010). Actually, DLPFC has 

been proposed to take part in the neurological circuitry that underlies the IGT 

performance (Li et al., 2010). However, contradictory results from spatial neuroimaging 
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studies have been also reported in this sense (for a more detailed review, see Aram et 

al., 2019), which means that more research in this field is still needed.  

Nowadays, the localizationist perspective is losing popularity in favour of other 

approaches based on the premise that cognitive functions are dependent not only on a 

brain area but on its connections with other regions (for an extensive review, see 

Sutterer and Tranel, 2017). Thus, another compendium of research has focused on the 

study of the neurological basis of decision-making from this connectionist perspective. 

Instead of exploring whether a certain brain region is activated or deactivated during a 

task, brain-connectivity-devoted researchers assume that the neurological basis of a 

cognitive process is not a region itself, but its connections with other regions. In other 

words, they focused on the synchrony between signals originating from different and 

dispersed regions of interest (ROIs). Three main and different approaches to brain 

connectivity have been proposed: neuroanatomical connectivity, functional 

connectivity, and effective connectivity (Fingelkurts et al., 2005). Neuroanatomical 

connectivity refers to the synaptic connection between close neurons or between spatial 

distant areas through the white matter (Lang et al., 2012). Functional connectivity refers 

to “the temporal correlation of a neurophysiological index measured in different brain 

areas” (Friston et al., 1993). It is worth noting that functional connectivity informs only 

about temporal correlations, not about directionality or causality between areas (Friston 

et al., 1993). Effective connectivity, on the contrary, is defined as the influence of one 

ROI over another one (Friston et al., 1993), which necessarily implies directionality and 

causality. Following Fingelkusts et al., (2005), functional connectivity represents the 

most challenging approach to brain connectivity and for theories aiming to explore 

brain-behaviour relationships.  
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The study of the brain as an efficient network has yielded a vast body of growing 

research aiming to discover functional networks, such as the default mode network 

(DMN) and the frontoparietal network (FPN) or central executive network (CEN) 

across the whole brain (van den Heuvel and Hulshoff Pol, 2010). The DMN is a large-

scale functional network consequence of the synchronized functioning of the vmPFC, 

dorsomedial prefrontal cortex, the posterior cingulate cortex, and adjacent precuneus 

plus the lateral parietal cortex (Raichle, 2015). Recently, it has been proposed that the 

DMN would also comprise subcortical areas such as the basal forebrain, cholinergic 

nuclei, and anterior and mediodorsal thalamic nuclei (Alves et al., 2019). The DMN 

activity usually decreases when the organism is challenged by a task, so it could be a 

reflect of spontaneous brain activity during the resting state (Raichle, 2015; Smallwood 

et al., 2021). The discovery of the DMN has attracted the attention of many researchers 

interested in establishing relationships between spontaneous brain activity and 

psychiatric disorders (for reviews, see Bathelt and Geurts, 2021; Hu et al., 2017; 

Whitfield-Gabrieli and Ford, 2012; Zhang and Volkow, 2019). On the other hand, the 

FPN seem to be recruited in contexts where executive functioning is needed and 

comprises a broad range of areas such as DLPFC, OFC, frontopolar cortex, and anterior 

cingulate cortex (ACC), as well as subcortical regions such as the basal ganglia and 

cerebellum (Niendam et al., 2012). 

However, fMRI-based research has not been free from criticism due to its 

methodological limitations, mostly the poor signal-to-noise ratio (SNR) when an event-

based paradigm is applied (Greicius, 2008). Biswal et al. (1995, 1997) proposed an 

innovative experimental design in which they studied the functional connectivity of 

spontaneous low-frequency brain signals (blood level oxygen dependent, BOLD). In 

other words, they studied the resting-state functional connectivity (rsFC) of the 
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somatosensory cortex. This rsFC approach to brain connectivity is supposed to 

overcome some fMRI limitations and has led to an emerging new field of research in 

clinical neuroscience, revealing stable brain networks that could be the basis of 

neurological diseases (Greicius, 2008; Mulders et al., 2015; Sheffield and Barch, 2016). 

rsFC has been shown to be predictive of personality traits (Nostro et al., 2018), 

executive functions (Gordon et al., 2015), fluid intelligence (Cole et al., 2012; Finn et 

al., 2015) and the behavioural deficits following stroke (Siegel et al., 2016). Concerning 

the application in the clinical population, the disruption in rsFC networks is being 

considered a promising biomarker (Deco and Kringelbach, 2014; Yamada et al., 2017). 

Recently, functional Near-Infrared Spectroscopy (fNIRS) has been emerging as 

a promising neuroimaging technique, since it can be used in unsuitable situations for 

fMRI, such as real-world and movement environments, and it is easy to combine with 

other techniques such as electroencephalography (EEG) or transcranial electrical 

stimulation techniques (TES). fNIRS is an optical and non-invasive neuroimaging 

technique that enables to monitor relative changes in the concentration of oxy- (HbO) 

and deoxy- (HbR) haemoglobin related to human cortical brain functions 

(haemodynamic activity) (Venclove et al., 2015). Within the last few years, fNIRS has 

been validated as a suitable method to provide valuable information about cortical 

functional connectivity, yielding comparable results to fMRI (Duan et al., 2012; Sasai et 

al., 2012). This technique offers a more versatile and easier data collection with a higher 

temporal resolution than fMRI (Pinti et al., 2018). However, as a limitation, only the 

haemodynamic activity of cortical areas can be registered.  

Electroencephalography (EEG) is another promising non-invasive neuroimaging 

technique useful to understand the neural mechanisms that underlie cognitive processes, 

especially due to its excellent temporal resolution (Britton et al., 2016; Light et al., 
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2010). EEG registers the electrical activity of the neurons as the summation of the 

synchronously generated postsynaptic potentials (Blinowska and Durka, 2006), 

consequently, it is a suitable technique to combine with neurostimulation tools. EEG 

signals could be divided into different bands based on different postsynaptic potentials 

frequencies. Low frequency bands would be delta (< 4 Hz) and theta (4-8 Hz), while 

high frequency bands would be alpha (8-12 Hz), beta (12-30 Hz) and gamma (30-100 

Hz). Each of these frequency bands have been associated to different, but also to 

overlapping psychological processes (Cavanagh and Shackman, 2015; Foxe and Snyder, 

2011; Herrmann et al., 2004; Nicolas-Alonso and Gomez-Gil, 2012; Viviani and 

Vallesi, 2021). 

A large body of EEG-based research has been aslso focused on event-related 

potentials (ERPs), which could be defined as small changes in the voltages of EEG 

activity generated by events or stimuli in a certain brain region. Thus, ERPs would 

manifest the time-locked activation of a neural population due to an external stimulus 

(Blackwood and Muir, 1990; Sur and Sinha, 2009). ERPs presented several components 

based on wave latency and amplitude and have been proposed as a suitable way to study 

the neurophysiology of several psychological processes (for a review, see Sur and 

Sinha, 2009). 
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Neuromodulating the decision-making processes 

 

The notion of the use of electricity for medical purposes was born in the Roman 

Empire. The court physician of the emperor Claudius, Scribonious Largus, wrote about 

the use of the torpedo fish to treat headaches and gout, which could be considered the 

first proposal of transcutaneous electrical nerve stimulation (TENS) as a tool to alleviate 

pain (Wagner et al., 2007). For many years, neuroscientists had adopted an observer 

perspective when studying the neurological correlates of cognitive processes and 

behaviour in humans (Vosskuhl et al., 2018) until the irruption of non-invasive brain 

stimulation (NIBS) techniques in the scientific field. NIBS allowed neuroscientists to 

manipulate actively and safely the excitability of certain brain regions, and therefore, to 

propose new diagnostic and therapeutic approaches to better understand the brain-

behaviour relationship (Boes et al., 2018; Vosskuhl et al., 2018).  

The most established NIBS are transcranial magnetic stimulation (TMS) and 

transcranial electrical stimulation (TES) techniques (Vosskuhl et al., 2018). TMS was 

introduced by Baker, Jalinous, and Freeston in 1985 and, rapidly, it became one of the 

most used NIBS in clinical and research contexts (Hallett, 2000). For TMS, a wired coil 

is placed about the scalp and a magnetic field is generated through a high-current pulse 

into the coil. The magnetic field is produced by lines of flux that pass perpendicularly to 

the plane of the magnetic coil (Hallett, 2000, 2007). This magnetic field would flow 

through the scalp provoking neuronal depolarization and, therefore, action potentials 

(Barker and Shields, 2017) that may induce behavioural changes (Galletta et al., 2011). 

Thus, TMS is thought to be a reliable approach to better understanding the neural basis 

of cognitive processes and pathologies. TMS can be applied following three different 

methods. Single-pulse TMS consists of the administration of only one electrical pulse 
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every few seconds over the targeted area. In repetitive TMS protocols, on the contrary, a 

series of pulses are applied. TMS can also be applied through two different pulses, 

which is named paired-pulse TMS (Galletta et al., 2011). The physiological and 

behavioural effects of TMS may vary depending on the frequency of the stimulation, 

the geometry and positioning of the magnetic coil, the endogenous frequency, and the 

rate of stimulation, among other factors (Barker and Shields, 2017). TMS has been used 

in the clinical field to treat migraine (Barker and Shields, 2017; Lan et al., 2017), major 

depressive disorder (MDD; Croarkin and MacMaster, 2019), OCD (Carmi et al., 2019; 

Liang et al., 2021; Perera et al., 2021) and schizophrenia (Shi et al., 2014). However, its 

effect on cognition remains unclear (Beynel et al., 2019). 

The starting point of TES could be situated along with Volta’s invention of the 

electric pile (Paulus, 2011). As early as 1802, Hellwag and Jacobi already wrote about 

the potential therapeutic effects of the application of direct current in stroke patients 

(Paulus, 2011; Sarmiento et al., 2016). Early uses of weak (< 2 milliamperes) 

transcranial direct current stimulation (tDCS) can be observed around 1880 among 

German psychiatrists, but around 1930 tDCS disappeared from the clinical and research 

fields, due to unclear and varied methodological procedures (Sarmiento, 2016). As 

pointed out by Brunoni et al. (2012), the re-born of tDCS as a potentially useful tool to 

modulate brain activity could be situated in the work of Priori and colleagues (Priori et 

al., 1998). Two years later, Nitsche and Paulus (2000) applied a weak direct current to 

the motor cortex through a pair of electrodes (anode and cathode) and recorded the 

motor-evoked potentials (MEPs) by stimulation. They stated that anodal and cathodal 

weak direct stimulation is able to increase or decrease (respectively) the excitability of 

neurons of the target area. This modulation is not induced by a “direct” effect on the 

membrane potential, but by modulating the resting membrane potential. Therefore, 
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tDCS would facilitate or impede the fire of an action potential, but it does not cause an 

action potential per se (Brunoni et al., 2012). At a molecular level, excitatory tDCS 

effects seem to be related to GABAergic and glutamatergic (via N-methyl-D-aspartate 

receptors facilitation or its inhibition) systems (Liebetanz et al., 2002; Stagg et al., 

2009), and to modulation of ionic concentration (Ardolino et al., 2005). As shown by 

Nitsche and Paulus (2001), continuous tDCS that last from nine to 13 minutes yielded 

an increasing MEP amplitude that lasted from 30 to 90 minutes, respectively.  

So far, tDCS has shown great safety outcomes in its use for humans (Bikson et 

al., 2016). This fact together with its neuromodulatory capabilities has evoked an 

increasing interest, especially in the neurorehabilitation field (Dubljević et al., 2014). 

Administered over the PFC, the results comprehend improvements in executive 

functions (Boggio et al., 2006; Dockery et al., 2009; León et al., 2020; Zaehle et al., 

2011). In clinical populations, prefrontal tDCS has shown promising clinical outcomes 

(Kekic et al., 2016; Kuo et al., 2014), decreasing psychiatric symptomatology in 

attention deficit hyperactivity disorder (Ditye et al., 2012; Soff et al., 2017), OCD 

(Brunelin et al., 2018) or schizophrenia (Brunelin et al., 2012). However, several meta-

analyses (Dedoncker et al., 2016; Horvath et al., 2015; Tremblay et al., 2014) have 

reported that the benefits over cognitive performance are not completely consistent. 

Mixed, occasionally opposite, effects in various cognitive domains are common, 

especially in single-session protocols (Horvath et al., 2015; Senkowski et al., 2022). 

Thus, the scientific community devoted to tDCS claims a more deep understanding of 

the effects and underlying mechanisms of this technique over the stimulated region. 

Another TES technique that has become core in the neuromodulation field is 

transcranial alternating current stimulation (tACS). In contrast to tDCS, tACS targets 

relevant brain oscillations in a frequency-specific manner (Ali et al., 2013; Herrmann et 
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al., 2013). As one may think, one of the key points of tACS is the stimulation 

frequency. Brain electrical activity can be divided into 5 different frequency bands 

depending on their frequency (delta, theta, alpha, beta, and gamma, from slow to fast) 

(Hanslmayr et al., 2019). Two main mechanisms of action of tACS have been proposed: 

oscillation entrainment and resonance (Ali et al., 2013; Herrmann et al., 2013; Nasr et 

al., 2022). On the one hand, entrainment is referred to the modulation of the natural 

rhythms of neural oscillations, by which neurons would start firing at the stimulation 

rhythms (Hanslmayr et al., 2019). On the other, resonance is the increase in the 

amplitude of the oscillations as a consequence of frequency-specific stimulation (Ali et 

al., 2013; Herrmann et al., 2013; Nasr et al., 2022). tACS at different frequencies have 

been used in basic research to study the neurophysiological basis of cognitive processes 

such as working memory (for an extensive review, see Senkowski et al., 2022), 

decision-making (Wischnewski and Compen, 2022; Yaple et al., 2017) and attention 

(Baldauf et al., 2016; Hopfinger et al., 2017). 

NIBS techniques constitute a promising tool to better understand the 

neurological basis of different behavioural processes and a potential therapeutical 

strategy in the clinical field. Combined neuroimaging-NIBS and behavioural paradigms 

approaches may allow researchers to disentangle the brain-behaviour relationship 

underlying several psychological processes. First, NIBS allows an active manipulation 

of the basal functioning of a certain cortical area or a specific neuronal frequency band. 

Second, neuroimaging would serve to directly observe the magnitude of the induced 

manipulation. And third, researchers can observe whether the stimulation has produced 

a behavioural change. Despite the potentiality of such approach to the understanding of 

the brain-behaviour relationship, the mixed and, occasionally, contradictory findings 

and methodologies employed across research, call for further investigation on this topic.
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CHAPTER 2. GENERAL RATIONALE AND APPROACH 

As exposed in the first Chapter, human decision-making has been studied from 

different scientific fields such as economics, psychology, and neuroscience using 

different behavioural paradigms and neuroimaging and neurostimulation techniques, 

given that it is a process that is as complex as it is cardinal in daily life well-functioning. 

The present Doctoral Thesis aimed to fill some remaining gaps of knowledge about the 

decision-making process conceptualized under the IGT context, as well as its 

neurological basis, through four different studies that cover different levels of analysis 

within the RDoC framework. Specifically, at the behavioural level, all people who 

participated in the Studies were exposed to the IGT, which is one of the most widely 

used paradigms to assess contingency-based decision-making processes under uncertain 

situations. We paid special attention to individual differences in healthy people (Studies 

I and II) and impulsive-compulsive spectrum patients when performing the task (Study 

III). We also applied computational models of reinforcement learning to investigate the 

psychological aspects driving decision-making under the IGT context (Studies II and 

III). Eventually, we proposed novel theoretical and statistical approaches to the 

understanding of the IGT and its underlying psychophysiological processes (Studies II, 

III and IV). At the physiological level, we used fNIRS and EEG in combination with 

NIBS techniques such as tDCS and tACS for different purposes, which are discussed 

below  

Study I was designed with the aim of investigating the sex differences that 

previous research had shown to emerge when the healthy population faces the IGT. 

Additionally, we were interested in the potential capability of tDCS to enhance 

decision-making, and in its differential effect as a function of sex when applied over an 
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IGT-related brain region such as the right orbitofrontal cortex. In this study, the total 

Net Score was used to make inferences about the performance of our participants.  

This traditional conceptualization of the IGT performance adopted in Study I led 

to a period of rethinking the amount of useful information concerning the decision-

making process that the total net score may be hiding. In Study II, therefore, we focused 

on how healthy undergraduates develop (or not) a preference for a certain deck as they 

are learning from their experience with them, and on how they respond in a changing 

environment. In other words, we aimed to identify idiosyncratic decision-making 

profiles or strategies and to explore whether these strategies are maintained when the 

environment changes.  

Study III followed the same rationale, and aimed to identify those profiles not 

only in the healthy population but also in impulsive-compulsive spectrum patients. 

Also, measures of rsFC between nodes belonging to the frontoparietal network were 

recorded through fNIRS in order to investigate its role as a potential biomarker of 

maladaptive and/or adaptive decision-making strategies. 

Lastly, Study IV tried to modulate, again, the decision-making process. In this 

case, instead of using tDCS, which effect might be unspecific, tACS was used to target 

a specific EEG frequency band. In particular, the aim was to investigate the role of 

frontal-midline theta oscillatory activities in the IGT performance, as well as the 

capability of tACS to modulate it. In this study, the identification of particular decision-

making strategies was not possible due to the reduced number of subjects, so the IGT 

performance was conceptualized following a fully probabilistic approach, which may 

lead to clear definitions of different processes that occur during the task, and, therefore 

to a better understanding of them.  
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A detailed and specific rationale for each Study can be found within their 

respective Chapters. In addition, a summarized schedule of research objectives can be 

consulted in Table 1.  

From Study I onwards we switched from frequentist statistics to Bayesian 

statistics in our approaches, we believe that, at this point, it is worthwhile to point out, 

briefly, a few basic concepts about Bayesian data analysis. When we try to study a 

natural phenomenon, we usually have a prior certain degree of information about the 

functioning of that phenomenon. Then, we make observations and update our prior 

knowledge towards the most plausible explanation of the phenomenon through the 

Bayes’ rule, which is considered a reliable mathematical approach to this process 

(Kruschke and Liddell, 2018a, 2018b). The result of this process is a posterior degree of 

knowledge about each plausible explanation of the phenomenon. This is essentially 

Bayesian analysis: the “reallocation of credibility across possibilities” (Kruschke and 

Liddell, 2018a, 2018b).  

 Consider the following case. The neighbour's baby has started crying at ungodly 

hours. You have heard in the neighbourhood that the baby has been colicky for a few 

days, so likely your first intuition would be that the baby is crying because of pain. 

However, there may be many other explanations for the baby's crying. For example, 

they might be hungry, have had a bad dream, or be getting their parents' attention. All 

these possible explanations are called parameters, and, bearing in mind what we heard 

about the colic, we will allocate a prior distribution of plausible values to each one. To 

put an end to the uncertainty surrounding the baby's crying, you decide to go and ask 

your neighbour (or to collect data or observations). The neighbour's response (for 

example, my baby is hungry) will lead to an update of our prior distribution of 
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possibilities (or to a reallocation of the credibility of each parameter), which will result 

in an updated posterior distribution of each parameter.  

This posterior distribution will reflect the degree of uncertainty about the 

credibility of the value of the parameters and can be directly examined to make 

inferences. Posterior distribution contains an updated (for prior distribution) range of 

the most credible values of each parameter of interest, given new observations 

(Kruschke and Liddell, 2018a, 2018b). The 95% of the most credible values of each 

parameter constitute the 95% of the high-density interval (HDI) or, in other words, the 

95% of the HDI includes the 95% most credible values of each parameter of interest 

(Kruschke and Liddell, 2018a, 2018b). Therefore, statistical decisions can be made 

directly observing and comparing the HDIs of the posterior distribution of each 

parameter of interest. 
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Table 1 

Summarized research schedule and objectives. 

Study I.  

Explore individual differences (sex-related differences) on the IGT. 

Explore the role of the rOFC in decision-making under the IGT context. 

Explore the capacity of anodal tDCS to modulate decision-making. 

Explore the interaction between sex and anodal-tDCS in decision-making.  

Study II. 

Explore the idiosyncratic choice behaviour of undergraduate students on the IGT. 

Explore the capability of undergraduate students to adapt their behaviuor to unexpected and 

changing contingencies. 

Identify particular behavioural profiles that could emerge when performing the IGT. 

Study III.  

Explore the deck preferences of healthy and impulsive-compulsive spectrum patients during 

the IGT. 

Identify particular decision-making profiles in impulsive-compulsive spectrum patients and 

healthy controls based on their deck choice behaviour during the IGT. 

Investigate the role of rsFC between different regions of the FPN as a possible biomarker of 

this idiosyncratic choice behaviour. 

Study IV.  

Explore the role of frontal-midline theta power in IGT performance. 

Explore the capability of theta-tACS to modulate the decision-making process. 

Explore the potential of understanding the IGT performance from a fully probabilistic 

perspective. 
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CHAPTER 3. STUDY I: Transcranial direct current 

stimulation improves risky decision making in women but not 

in men: A sham-controlled study 

This study constitutes the first contact with the IGT and neurostimulation 

techniques of the present Doctoral Thesis. We aimed, firstly, to explore sex-related 

differences in IGT and, secondly, to explore whether anodal-tDCS over the right OFC 

could boost the decision-making ability of our participants. We conducted a single-

session pre-post experimental procedure. First, participants completed the IGT. Then, 

they were asked about their willing to continue with the stimulation phase. Anodal-

tDCS and sham-tDCS over the rOFC were applied for 20 minutes, after which, 

participants performed the IGT again. Our main finding was a sex-dependent tDCS 

effect by which only women who were under anodal stimulation improved their 

performance between sessions.  

This experiment was published in León, J.J., Sánchez-Kuhn, A., Fernández-

Martín, P., Páez-Pérez, M.A., Thomas C., Datta A., Sánchez-Santed F., & Flores P. 

(2020). Transcranial direct current stimulation improves risky decision making in 

women but not in men: A sham-controlled study. Behavioural Brain Research. DOI: 

10.1016/j.bbr.2020.112485. 
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Rationale 

tDCS over the prefrontal cortex has shown clinical improvements in decision-

making measured by IGT in Parkinson's disease (Benussi et al., 2017) and gambling 

disorder (Soyata et al., 2019), as well as an enhancement of decision-making in healthy 

adults (Fecteau, Knoch, et al., 2007; Fecteau, Pascual-Leone, et al., 2007; Ouellet et al., 

2015). These studies have contributed to a new rehabilitation approach to risky 

decision-making, suggesting that this process could be modulated. However, with 

exception of Ouellet et al., (2015), these studies have targeted the DLPFC as the 

stimulated region. Some studies have been focusing on the role of the dorsolateral 

prefrontal cortex in IGT (Brand et al., 2006; Manes et al., 2002), although this task 

seems to be mainly related to right OFC activity (Lawrence et al., 2009; Verdejo-Garcia 

et al., 2007).  

Previous literature has proposed sex as a modulating variable in IGT 

performance (Evans and Hampson, 2015; Reavis and Overman, 2001; van den Bos et 

al., 2013), being these differences attributed to a different sensitivity to punishment 

when long-term advantageous decks are chosen (Eriksson and Simpson, 2010; van den 

Bos et al., 2013). Following the abovementioned studies, both men and women choose 

deliberately advantageous decks when they realize they suppose a net gain, but women 

seem to need a greater number of trials to learn this strategy. Women's decision-making 

strategy is supposed to be driven more by punishment and gain-loss frequency, 

changing, and scattering their response strategy after each loss and preferring decks 

with rare losses (for an extensive review see van den Bos et al., 2013).  

At a neuroanatomical level, sex-related different activation patterns have been 

also found during the IGT (Bolla et al., 2004; Reber and Tranel, 2017; Sutterer et al., 

2015). In this sense, Bolla et al. (2004) have shown that men had right-hemisphere 
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lateralization and a significantly increased activation in the right lateral orbitofrontal 

cortex compared to women during the task performance, while women showed greater 

activation in the left medial frontal gyrus, left temporal lobe, and left medial 

orbitofrontal cortex.  

Moreover, the tDCS technique presents high rates of inter-and intra-individual 

variability (Li et al., 2015), a decisive issue that needs to be clarified to move toward 

more effective and individualized-based treatments. This variability within the strength 

of the outcomes has been attributed due to different explanations, including the role of 

sex. tDCS studies have consistently reported results of an interaction effect between 

cortical modulation and sex, where women usually show higher behavioural benefits 

from the stimulation (for review see Dedoncker et al., 2016) and also heightened 

cortical excitability compared to age-matched male subjects (Chaieb et al., 2008). 

Therefore, previous literature points out that neuromodulation studies may find more 

meaningful results if they are analysed by sex (Russell et al., 2014). In this sense, while 

sex-dependent differences have not been explored in decision-making after tDCS, a 

different response to anodal tDCS has been reported in women and men in other 

cognitive functions. In this way, anodal tDCS has been shown to increase search 

behaviour (Yang et al., 2017), theory of mind ability (Adenzato et al., 2017), and 

emotion recognition (Boggio et al., 2008) in women but not in men. In addition, 

enhancement of verbal working memory depends on right DLPFC stimulation in 

women while left DLPFC in men (Meiron and Lavidor, 2013); and social norm 

compliance decreases in women and increases in men after anodal stimulation over right 

DLPFC (Chen et al., 2019). 

The present work aims at exploring the interaction of sex and tDCS in decision-

making processes by studying the specific stimulation of the rOFC over a healthy 
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sample of male and female participants. Following previous literature, we hypothesized 

that (1) men will show a better performance in IGT than women, (2) anodal tDCS over 

the rOFC would improve decision-making and (3) tDCS effects would be sex-

dependent. 

Method 

Experimental procedure 

Two different experimental phases were conducted. The first phase aimed to 

explore sex-related differences in IGT, in which ninety-one participants were recruited 

to perform this task. Sixty-one participants agreed to continue with the stimulation 

phase. These participants received a single session of anodal or sham tDCS for 20 min. 

Right before and immediately after the stimulation, participants completed parallel 

versions of the IGT. Additionally, a Stop Signal Task (SST) was used as a control task 

to ensure the focality of the montage. SST is a response inhibition measure that has 

been found to be unrelated to the activation of the rOFC (Aron, 2006; Jacobson et al., 

2012). The experimental procedures were approved by the Bioethics Committee of 

Human Research of the University of Almeria, Spain. The volunteers gave their 

informed consent to participate in the study, which was performed following the ethical 

standards of the World Medical Association Declaration of Helsinki (1991; p.1194). All 

personal information was treated according to the Spanish Protection of Personal Data 

Law 15/1999 of 13 December. 

Participants 

In the first phase, ninety-one non-clinical volunteers were recruited from the 

University of Almeria (Mage = 20.76; SD = 3.08; 54.9% women) (see Table 2). A 

demographic and screening questionnaire was also administered to confirm the 

following inclusion criteria: (1) naïve to the behavioural tasks and tDCS, (2) absence of 
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consumption of drugs or psychotropic substances, (3) no diagnosed psychopathology, 

(4) no history of epilepsy, (5) under thirty-five years old, and (6) no metallic implants in 

the head area. A reward of five Euro was offered. 

Table 2 

Number (n) and age (Mean ± Standard Deviation) of the participants in the first 

experimental phase. 

Group Women Men 

N 50 41 

Age (Mean ± Standard Deviation) 22.28±6.44 21.02±5.29 

 

Sixty-one participants continued to the second phase (Mage = 20.75; SD = 2.82; 

55.7% women). They were pseudo-randomly assigned to the anode or sham groups 

while controlling for sex distribution (see Table 3). 

Table 3 

Number (n) and age (Mean ± Standard Deviation) of the participants in each group in 

the second experimental phase. 

Group 
Anode Sham 

Women Men Women Men 

N 16 15 18 12 

Age (Mean ± Standard Deviation) 21.06±3.53 20.53±1.24 20.61±2.27 20.83±4.01 

Materials 

Iowa Gambling task 

In this task, which was adapted from Bechara et al. (1994), four decks of cards 

appeared on a computer screen. Each participant had to choose a card from any deck by 

clicking on it. The task consisted of 100 trials. For each choice, deck A and deck B 

produced profits of 100 points, while decks C and D produced 50-point profits. 

However, for every 10 trials, a choice of deck A or B resulted in a net loss of 250 
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points, while a choice of deck C or D resulted in a net gain of the same amount. 

Therefore, any choice of Deck A presented losses of 150/200/250/300/350 points in a 

1:2 ratio. Deck B could make participants to lose 1250 points in a 1:10 ratio. Deck C 

choices were penalized with losses of 25/50/75 points in a 1:2 ratio. Lastly, with Deck 

D, participants could lose 250 points in a 1:10 ratio. Decks A and B are called 

disadvantageous decks, and the selection of these cards is considered risky, while decks 

C and D are called advantageous. All participants started with 2,000 points, and they 

were instructed to maximize their benefits. The literal instructions of the task were as 

follows for all Studies: 

“In front of you, there are four decks of cards A, B, C, and D. I want you 

to select one card at a time from any deck you choose by pressing 1, 2, 3, or 4 

number keys, respectively. I will give you some points each time you select a 

card. Every so often, however, you will have to pay me some points too. I will 

not tell you now when these payoffs will occur or how much they will cost you. 

You will find out as we go along. You are absolutely free to switch from one deck 

to the other at any time, and as often as you wish. The goal of the game is to win 

as many points as possible or avoid losing points as much as possible. 

All I can say is that some decks are worse than others. You may find all 

of them bad, but some are worse than others. No matter how much you find 

yourself losing, you can still win if you stay away from the worst decks. I will 

give you now a loan of 2000 points. In the end, I will collect back the loan and 

see how much you won or lost. 

If you have understood everything, press X to continue.” 

The dependent variable was the Net Score, which is the difference between the 

number of advantageous and disadvantageous choices in 100 trials. In the post-test, we 
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applied a parallel test of IGT to avoid the learning effect. We changed the names of the 

decks (deck 1, deck 2, deck 3, and deck 4) and the order of presentation of the 

advantageous and disadvantageous alternatives.  

Stop Signal task 

The participants performed an adapted version of the SST (Verbruggen et al., 

2008). After looking at a fixation cross on the computer screen, arrows pointing right or 

left appeared. The task required pressing as fast as possible the left response key if the 

arrow pointed to the left, or pressing the right response key if the arrow pointed to the 

right unless a signal beep was played after the presentation of the arrow (in this case, the 

response was to be stopped before execution). The delay between the presentation of the 

arrow and the signal beep (starting at 250 milliseconds) was adjusted up or down (by 50 

milliseconds) depending on performance. The stop signal delay (SSD) was increased if 

the previous signal stop was successful (up to 1,150 milliseconds) or decreased if the 

previous signal stop was not successful (down to 50 milliseconds). The inter-trial 

interval was fixed at 2,000 milliseconds. Participants responded up until the next trial 

started. The variable measured was the Stop Signal Reaction Time (SSRT), which was 

defined as the estimated time required to stop an initiated response. SSRT was 

calculated following the tracking procedure by subtracting mean SSD from mean 

reaction time (Verbruggen et al., 2008; Verbruggen and Logan, 2009). 

Transcranial direct current stimulation  

tDCS was administered using a neuroConn Magstim DC-STIMULATOR PLUS 

(neuroCare Group GmbH, Ilmenau, Germany) on the right OFC (rOFC) (fp2) according 

to the International 10-20 system for EEG electrode placement. The selected area and 

both electrodes were soaked in physiological saline (~50 mL per participant). To 

determine the behavioural specificity of tDCS targeting the rOFC, the stimulation was 
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delivered to one side of the head with the reference electrode located over the 

contralateral trapezius. The target electrode (3 cm × 3 cm) was kept in place on the 

selected area (fp2) by an adjustable elastic headband, and the reference electrode (5 cm 

× 7 cm) was kept in place on the contralateral trapezius with hypoallergenic adhesive 

tape. The size of the target electrode was smaller than the reference electrode to 

improve focality (Nitsche et al., 2008) and reduce discomfort (Turi et al., 2014). Anodal 

stimulation was delivered at 1.5 mA for 20 min (plus fade-in and fade-out periods of 30 

s), which is considered within safe parameters (Bikson et al., 2016). In the sham 

condition, the stimulation lasted only for the first minute. Total charge is an important 

parameter for tDCS safety criteria. Tissue damage has been detected at a minimum total 

charge of 216 C/cm2 (Yuen et al., 1981). Our protocol involves a total charge of 0.033 

C/cm2, which is far below this threshold. In the sham condition, the real stimulation 

lasted only for the first min (plus fade-in and fade-out periods of 30 s) (0.001 C/cm2) in 

a whole 20 min period. During stimulation, participants were told to be seated and 

relaxed. After completing the entire experiment, all participants were asked if they 

thought they had been stimulated. They could answer, “Yes”, “No” or “I am not sure” 

(no standardized questionnaire was used). 

Numerical simulation of current flow distribution 

We considered whole-body models from the Virtual Family dataset (Christ et al., 

2010) which represents a collection of highly detailed high-resolution anatomical 

models derived from MRI data of volunteers. Our objectives to determine brain current 

flow were two fold: a) to support the choice of the experimental montage used and b) to 

explore potential differences due to known sex-based anatomical differences (Gennatas 

et al., 2017; Gur et al., 1999; Herron et al., 2015). We, therefore, considered a male 

representative model: Duke (34-year-old), and a female representative model: Ella (26-
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year-old). We note that while a systematic evaluation of the influence of sex-related 

anatomical differences in current flow would need to involve a larger dataset (Thomas 

et al., 2019), the consideration of two representative models allows us to provide initial 

insight into potential dissimilarities, specifically using the montage employed. We 

adapted both models by identifying 14 different tissue compartments, ensured 

continuous cerebrospinal fluid (CSF), and integrated the exact stimulation electrode 

montage (mimicking the experimental montage) within the anatomical data (Synopsys 

Simpleware, USA). The whole-body models were truncated at the level of the torso, 

volumetric meshes were generated and finally exported to a solver for finite element 

method (FEM) computation (COMSOL Multiphysics, USA). The electrical properties 

of all compartments (tissue and electrode) were assigned representative isotropic 

average values in (S/m): skin: 0.465; bone: 0.01; CSF: 1.65; gray matter: 0.276; white 

matter: 0.126; muscle: 0.35; urinary bladder wall: 0.408; intestines: 0.164; heart: 0.381; 

cartilage: 1.01; liver: 0.221; kidney: 0.403; tongue: 0.255; air:1e-15; sponge: 1.4; and 

pad electrode: 5.9 e7. 

The relevant boundary conditions for the tDCS dose used were imposed: Anode: 

1.5 mA and Cathode: ground. All other exterior surfaces were treated as electrically 

insulated. The standard Laplacian equation for volume conduction was used and the 

induced cortical electric-field (e-field) magnitude was determined (Datta et al., 2012). 

Statistical analysis 

The statistical analysis was performed using SPSS Statistics 21 software (IBM 

Corporation, Armonk, NY, USA) and R software (R Core Team, 2018). First, we 

analysed the distribution of each dependent measure through the Shapiro-Wilk test and 

kurtosis and skew data to support the interpretation of the W statistic. We also analysed 

the homoscedasticity of the variance for each dependent variable through Levene’s Test. 
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Z-scores of each participant were calculated and those who had ±2.5 z-score were 

removed from the corresponding analysis. Chi-squared test was applied to analyse the 

integrity of the blinding procedure. 

Depending on the distribution of the data and following previous research, we 

performed different analysis. Since normality and homoscedasticity assumptions were 

not violated in the most of IGT measures, we performed a two-factor mixed ANOVA to 

analyse the IGT scores in the first experimental phase with one between-subject factor 

[sex (two levels: men and women)] and one within-subject factor [block (five levels: 

blocks of 20 trials)]. To analyse data from the second experimental phase, we performed 

a three-factor mixed-way ANOVA to analyse the IGT Net Score with two between-

subject factors [sex (two levels: men and women) and group (two levels: anode and 

sham)] and one within-subject factor [session (two levels: pre- and post-intervention)]. 

We applied Mauchly’s sphericity test to check the sphericity of variances and applied 

Greenhouse-Geisser correction when the sphericity assumption was violated. We 

calculated partial eta squared (ղp
2) as an estimation of the effect size as recommended 

by Lakens (2013). 

Since normality and homogeneity of variance are not assumed in a sufficient 

number of measures to ensure the robustness of a parametric statistical model, we 

performed a Welch-James (WJ) test to analyse the SSRT using the “welchADF” R 

package (Villacorta, 2017). This test is able to deal with non-normal and heterogeneous 

distributions. WJ test was carried out with two between-subject factors [sex (two levels: 

men and women) and group (two levels: anode and sham)] and one within-subject 

factor [session (two levels: pre- and post-intervention)]. p values less or equal to 0.05 

were considered statistically significant. 
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Results 

Integrity of blinding 

No significant differences were found between the groups when participants 

were asked about whether they thought they had received active tDCS (anodal tDCS = 

48.4%; sham tDCS group = 36.7%; χ² = 2.466, df = 2, p = .291). Therefore, we suggest 

that our blinding procedure was successful. 

tDCS acceptability  

None of the participants reported any significant adverse effect during of after 

the tDCS procedure. 

Phase 1: Sex-related differences in IGT 

Two-factor mixed-way ANOVA showed a main effect of block (F2.93, 257.85 = 

14.013; p = .00 ղp
2 = .137). However, we found no main effect of sex (F1,88 = 1.11; p = 

.259; ղp
2 = .012) nor group.  The analysis revealed a significant sex × block interaction 

effect (F2.93, 257.85 = 3.323; p = .021; ղp
2 = .036). Post-hoc analysis comparing sex 

showed that men outperformed women in block 4 (p = .04) and block 5 (p = .05) (see 

Figure 4). When comparing blocks, post-hoc analysis showed statistically significant 

differences between block 1 and blocks 3 (p = .027), 4 (p = .000), and 5 (p = .000) in 

men. In women, there were no differences between block 1 and blocks 3 (p = .071), 4 (p 

= .213), and 5 (p = .255). 
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Figure 4  

Mean and SEM of the Net Scores obtained in pre-intervention in each block of 20 trials 

of the Iowa Gambling task. 
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Phase 2: Neuromodulation of risky decision-making 

Three-factor mixed-way ANOVA showed a main effect of session (F1,56 = 

7.127; p = .01 ղp
2 = .113). However, we found no main effect of sex (F1,56 = 2.379; p = 

.129; ղp
2 = .041) nor group (F1,56 = .195; p = .66; ղp

2 = .003).  The analysis revealed a 

significant group × sex × session interaction effect (F1,56 = 5.958; p = .018; ղp
2 = .096).  

We explored this effect by splitting all factors. When splitting by sex, we found a 

significant group × session interaction effect in women (F1,32 = 5.063; p = .031; ղp
2 = 

.137). Post-hoc analysis revealed significant differences between sessions in anodal-

stimulated women (p = .021) but not in sham-stimulated women (p = .481) (see Figure 

5). When comparing groups, there were no differences in the pre-intervention session (p 

= .69) nor in the post-intervention session (p = .182). We also found no main effect of 

session (F1,32 = 1.615; p = .231; ղp
2 = .048). In men, there was no significant group × 

session interaction effect (F1,24 = 1.737; p = .200; ղp
2 = .068) but a main effect of session 

was found (F1,24 = 5.137; p = .033; ղp
2 = .176) (see Figure 2.B). When splitting by 
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group, we found a significant main effect of session in the anode group (F1,28 = 4.489; p 

= .043; ղp
2 = .138) but no main effect of sex (F1,28 = .451; p = .507; ղp

2 = .016), nor sex 

× session interaction effect (F1,28 = .87; p = .359; ղp
2 = .03). In the sham group, a sex × 

session interaction effect was found (F1,28 = 6.043; p = .02; ղp
2 = .178). Post-hoc 

analysis revealed that, when comparing sex, there were significant differences in the 

post-intervention session between sham-stimulated men and women (p = .03). When 

comparing sessions, we found significant differences between pre- and post-

intervention sessions in men (p = .013), but not in women (p = .541).  

Figure 5  

Mean and SEM of the total Net Scores obtained in the Iowa Gambling task by men and 

women before and after stimulation.  

 

In the SST, results showed no main effects of group (TWJ(1, 24.13) = .55; p = 

.50) or sex (TWJ(1, 24.13) = .34; p = .56). There was no significant group × sex × 

session effect (TWJ(1, 31.26) = .02; p = .60), sex  × group (TWJ(1, 24.13) = .04; p = .96), 

sex × session (TWJ(2, 42) = .25; p = .88) or group × session (TWJ(1, 31.26) = .39; p = 

.52). However, a main effect of session was found (TWJ(1, 31.26) = 7.42; p = .006; δR = 

1.658) (see Figure 6). 
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Figure 6  

Mean and SEM of SSRT obtained in the SST by men and women before and after 

stimulation.  

 

Numerical simulation of current flow distribution  

With respect to our first objective, numerical simulations support the choice of 

the electrode montage employed. We note substantial e-field in the right orbitofrontal 

cortex (∼.8 V/m) with other brain regions largely spared. With the cathode electrode on 

the contralateral trapezius, the simulations confirm the overall expected current flow – 

i.e. starting with the current flow in rOFC, current flows downward towards 

the brainstem and end at the contralateral side. The current flow pattern is similar for 

both head models. With respect to potential sex dis-similarity, we observe a higher 

average induced e-field in the female head model in comparison to the male head model 

(see Figure 7A. and Figure 7A.6 versus Figure 7B.4 and Figure 7B.6). We also note 

deeper current flow in the female head model as highlighted by the two representative 

2D sagittal slices (see Figure 7A.7 and Figure 7A.8 versus Figure 7B.7 and Figure 

7B.8). The left section of the Figure 4 displays results using the representative female 

model whereas the right section displays results using the representative male model. 

The first row shows the respective FEM models with the experimental montage 

employed (red: anode electrode and dark grey: cathode electrode). The second and third 

https://www.sciencedirect.com/topics/neuroscience/brainstem
https://www.sciencedirect.com/science/article/pii/S0166432819313518?via%3Dihub#fig0020
https://www.sciencedirect.com/science/article/pii/S0166432819313518?via%3Dihub#fig0020
https://www.sciencedirect.com/science/article/pii/S0166432819313518?via%3Dihub#fig0020
https://www.sciencedirect.com/science/article/pii/S0166432819313518?via%3Dihub#fig0020
https://www.sciencedirect.com/science/article/pii/S0166432819313518?via%3Dihub#fig0020
https://www.sciencedirect.com/science/article/pii/S0166432819313518?via%3Dihub#fig0020
https://www.sciencedirect.com/science/article/pii/S0166432819313518?via%3Dihub#fig0020
https://www.sciencedirect.com/science/article/pii/S0166432819313518?via%3Dihub#fig0020
https://www.sciencedirect.com/science/article/pii/S0166432819313518?via%3Dihub#fig0020
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rows show the corresponding 3-D front view and 3-D side view of surface e-field 

magnitude respectively. The dashed region is expanded in corresponding insets to show 

the zoomed surface e-field magnitude plots. The fourth and bottom-most rows show two 

2-D sagittal views for both the female and the male model. The approximate level at 

which the slice is obtained in the rOFC region is indicated by the red line on the 3D 

head model in the top left. 

Figure 7  

Computational results of cortical current flow due to the experimental montage.  
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Discussion 

This study proposed a combination of a neurostimulation technique and 

neurobehavioural tasks in order to explore the interaction of sex differences and tDCS 

in decision-making processes assessed by IGT. First, sex-related differences in IGT 

performance were confirmed. In addition, a differential effect of tDCS was found 

depending on sex in IGT. We found that anodal tDCS increased the net score in women, 

while in men tDCS did not produce any effect. We found no effect of tDCS nor sex in 

SST, supporting the specificity of the neuromodulation over rOFC. 

To the best of our knowledge, this is the first study to show the relationship 

between sex-related differences in the IGT and tDCS. We found results in consonance 

with previous literature showing men outperforming women on the IGT, especially in 

the final trials (Evans and Hampson, 2015; Reavis and Overman, 2001; van den Bos et 

al., 2013). These studies suggest that women learn the reinforcement contingencies 

differently than men do (Byrne and Worthy, 2016; Cornwall et al., 2018) and that these 

differences are related to the different neuroanatomic activation and lateralization 

patterns observed during the task (Bolla et al., 2004; Reber and Tranel, 2017; Sutterer et 

al., 2015). 

Results also supported the hypothesis that anodal tDCS would improve IGT 

performance, but this effect was restricted to female participants. A possible explanation 

for the present result is the fact that low performers have shown to be more responsive 

to tDCS (Hsu et al., 2014; Sánchez-Kuhn et al., 2018), which might have led to the 

greater benefit from tDCS obtained by women. Moreover, a constant finding across 

several studies (Berryhill and Jones, 2012; Fehring et al., 2019; Wu et al., 2014; Wu et 

al., 2016) is that the effect of tDCS commonly emerges in difficult tasks settings that are 

challenging for the participant. However, this explanation might be not fully 

https://www.sciencedirect.com/topics/neuroscience/neurostimulation
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explicative, as in our study the behavioural differences between men and women were 

only observed in the first experimental phase. In the second experimental phase, we did 

not find any sex differences since the sample was smaller compared to the first phase. 

This may be explained by the fact of sex differences in IGT is a consistent but small 

effect that needs large samples to be observed (Li et al., 2010; Reavis and Overman, 

2001; van den Bos et al., 2013; Weller et al., 2010). 

As men and women did not differ in IGT performance in the second phase, we 

cannot assume that the differential effect of anodal tDCS is due to high or low 

performance. Therefore, we suggest that this could be explained by a different task-

induced rOFC activity. Considering the previously mentioned neuroimaging data, we 

can assume that we have modulated a critical area to IGT performance (Lawrence, 

Jollant, and Daly, 2009; Tranel et al., 2002), which entailed women to choose more 

advantageous decks after the stimulation. In other words, stimulation led to a long-term 

advantageous contingency learning facilitation. Nevertheless, in men, there was no 

effect of anodal tDCS. One possible explanation is that rOFC is specially recruited 

during IGT performance in men but not in women (Bolla et al., 2004). In this sense, 

anodal tDCS over the rOFC in our female participants has been able to generate more 

neural activity in the area, facilitating its recruitment during the performing of the task 

and, therefore, the learning process. The OFC region belongs to the reward neural 

system and plays a key role in the evaluation of large rewards and also in the learning of 

stimulus–reward contingencies (Rolls, 2000; Rudebeck and Rich, 2018; Tsuchida et al., 

2010). This region is critical for the adjustment of the behaviour to changing 

contingencies by a double mechanism carried out by different OFC-subregions. While 

medial OFC (Brodmann areas 11 and 13) is implicated in the evaluation of specific 

qualities of outcomes, lateral regions (Brodmann area 12) are involved in learning from 
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probabilistic feedback (Rolls, 2000). In this sense, the integrity of the OFC ensures the 

ability to behave flexibly, adapting the behaviour to the unexpected demands occurring 

in the environment. Decision-making processes assessed by IGT imply this kind of 

probabilistic reward/punishment learning since the task requires recognizing four 

different reward/punishment probabilistic contingencies and to choose deliberately the 

most advantageous one. Consequently, anodal tDCS-treated women might have 

improved their performance because of greater behavioural flexibility promoted by an 

increase in OFC activity. In contrast, task-induced rOFC recruitment might seem to be 

enough for men to perform the task properly. In fact, all of our male participants 

improved their performance between sessions despite anodal or sham tDCS.  

Another possible explanation would refer to cortical excitability. In this way, 

some studies have shown sex-related differences regarding tDCS-induced changes in 

cortical excitability (for a review see Dedoncker et al., 2016). For instance, Chaieb et 

al., (2008) found a facilitating effect of anodal tDCS over the visual cortex in women, 

but not in men. This could be explained by a sex-related different cortical excitability, 

which could be influenced by gonadal sex hormones or the menstrual cycle (Inghilleri et 

al., 2004; Smith et al., 1999). In this sense, the consideration of the FEM model of 

tDCS-generated current flow highlights two important points: confirmation of the 

choice of the electrode montage and the likely presence of sex-related differences 

mediated by sex-specific morphological differences. The differential current flow 

pattern thereby provides another potential explanation of the differences in decision-

making found between women and men in this study. This is rational given the fact that 

the e-field magnitude is a correlate for modulation. We have previously shown that a 

higher e-field (∼10 %) is induced in female head models than in male head models for 

the classic M1-SO montage across multiple metrics (mean and median) (Thomas et al., 

https://www.sciencedirect.com/topics/neuroscience/cortical-excitability
https://www.sciencedirect.com/topics/neuroscience/visual-cortex
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2019). The dataset consisted of 5 female and 5 male subjects with an age range 

spanning 27–47 years. We note that while we considered only one representative male 

and one representative female subject in this study, we observe a similar higher e-field 

magnitude induced in the female subject. This is not unexpected given the known 

anatomical differences with females having higher grey matter percentages and lower 

white matter and CSF percentages than males (Gur et al., 1999). Therefore, further 

research is needed to disentangle sex-related cortical excitability differences in high-

order cognitive functions. 

In response inhibition control measure, we found no effect of tDCS but only a 

main effect of the session, which supports the focality of our montage. All participants 

performed better in the post-intervention session regardless of sex and stimulation but 

due to learning effects. The absence of any stimulation effects over the rOFC suggests 

that this region might not be involved in response inhibition. This is in agreement with 

previous findings, which reported that this type of response inhibition is mainly related 

to other regions, such as the dorsolateral PFC, pre-supplementary motor area (Chikazoe, 

2010; Swann et al., 2012), sub-thalamic nuclei (Mancini et al., 2019; Mirabella et al., 

2012, 2013), the striatum (Li et al., 2008; Zandbelt and Vink, 2010), the premotor 

cortex (Mattia et al., 2013; Mirabella et al., 2011), the motor cortex (Coxon et al., 2006; 

Mattia et al., 2012) and inferior frontal gyrus (Aron et al., 2014; Chikazoe et al., 2009). 

  

https://www.sciencedirect.com/topics/neuroscience/premotor-cortex
https://www.sciencedirect.com/topics/neuroscience/premotor-cortex
https://www.sciencedirect.com/topics/neuroscience/motor-cortex
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CHAPTER 4. STUDY II: Revealing idiosyncratic decision-

making strategies in healthy undergraduates. A Bayesian 

approach 

This study aimed to further investigate the behavioural mechanisms that drive 

the decision-making process during the IGT under stable and changing choice 

contingencies. 160 undergraduate students performed a modified IGT with three 

additional reversal-learning phases. We employed a cluster-based strategy and revealed 

five different decision-maker profiles that differed in their deck preferences during the 

task. We employed computational models of reinforcement learning to identify the core 

features of each differential profile. At this point, we moved from frequentist to 

Bayesian statistical methods in which statistical decisions are based on posterior 

probabilities of parameters of interest. Bayesian mean comparisons showed no credible 

differences between men and women regarding their overall performance.  

This work corresponds to León, J. J., González-Rodríguez, A., Sayans-Jiménez, 

P., Sánchez-Santed, F., Cañadas, F., Estévez, A. F. and Flores, P. (2023). Revealing 

idiosyncratic decision-making strategies in healthy undergraduates. A Bayesian 

approach. Under revision. 
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Rationale 

Traditionally, IGT decks have been divided into two disadvantageous decks, 

which provide a larger immediate gain but also a long-term loss, and two advantageous 

decks, which provide a smaller immediate gain but also a long-term benefit (Bechara et 

al., 1994), and good performance has been widely understood as a positive net score (or 

as a higher net score compared to other condition). This procedure has been shown to be 

useful to detect deficits in decision-making in different populations diagnosed with 

neuropsychological disorders such as ADHD (Malloy-Diniz et al., 2007), OCD 

(Cavedini et al., 2006), pathological gambling (Cavedini et al., 2002) or schizophrenia 

(Brown et al., 2015; Fond et al., 2013; Struglia et al., 2011). These clinical populations 

have presented worse net scores compared with healthy populations, suggesting an 

impairment to optimize their decision-making processes in the long term. Nevertheless, 

the literature also reveals some inconsistent results for some of these populations. As an 

example, studies carried out by Agay et al., (2010) and Ernst et al.,(2003) found no 

differences in the net score obtained by ADHD patients and healthy control group (for a 

review, see Groen et al., 2013). Conflictive results have also been found in OCD 

patients (Lawrence et al., 2006). Finally, some studies have also revealed a similar 

performance of people with schizophrenia and a healthy control group in the IGT 

(Rodríguez-Sánchez et al., 2005). 

While the aforementioned studies focus mainly on the net score, the behaviour 

of the participants may differ depending on other factors that may be relevant for 

researchers. For instance, many studies have shown that healthy participants may 

present an idiosyncratic choice behaviour, preferring decks with infrequent losses 

(usually decks B and D) over those with frequent losses (usually decks A and C), rather 

than led by the estimation of the long-term outcomes of these decks (for a review, see 
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Steingroever et al., 2013). Concerning healthy people, there are some relevant variables 

to consider within this population, such as age (Beitz et al., 2014), sex (Reavis and 

Overman, 2001), educational level (Evans et al., 2004), and socio-economic status 

(Sheehy-Skeffington, 2020), as well as some personality traits, such as anxiety (Miu et 

al., 2008) and fun-seeking (Suhr and Tsanadis, 2007). 

Decision-making tasks suppose a synthesis of several psychological processes, 

such as reinforcement learning and sensitivity to reward and punishment (Ahn et al., 

2017). To overlook these variables when analysing the performance in the IGT may 

lead to conflictive and non-totally founded conclusions about the decision-making 

process that is being assessed during the task. As individual choices seem to be an 

important factor, novel computational modelling approaches have allowed researchers 

to calculate different parameters that may be useful to acquire a deeper understanding of 

the processes involved in decision-making (Haines et al., 2018; Steingroever, Wetzels, 

and Wagenmakers, 2013; Worthy et al., 2013). This information could be extremely 

useful to make a better conceptualization of the decision-making process in both healthy 

and clinical populations, as well as for developing treatments and intervention programs 

that could specifically focus on certain problems depending on the target population 

(Adida et al., 2011; Clark et al., 2011), since this may help clinicians to correctly 

interpret the performance on the IGT and act accordingly, as recent research has 

suggested (Barnhart and Buelow, 2021).  

Another cognitive process that has been argued to be involved in decision-

making is cognitive flexibility (Dunn et al., 2006; Fellows and Farah, 2005). Cognitive 

flexibility could be defined as the ability to modify behaviour to overcome changing 

circumstances. This ability has been widely studied by researchers using probabilistic 

reversal learning paradigms (Izquierdo et al., 2017). Reversal learning has been 
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proposed as a key feature of the IGT since participants need to gradually adjust their 

choices attending to the reward/punishment rules of each deck to perform properly 

(Dunn et al., 2006). Thus, despite Bechara et al., (2005) argued against the reversal 

learning explanation of the task, there is still some controversy about this issue. 

Concerning this, for example, Brand et al., (2007) found negative correlations between 

perseverative errors in a Wisconsin Card Sorting Test (WCST) and the net score 

obtained from the second block of the IGT onwards. In order to elucidate the impact of 

cognitive flexibility on the IGT, some authors have also modified the task including this 

component, switching the reward/punishment rules associated with each deck 

throughout the task (Dymond et al., 2010). In a study, patients with negative symptoms 

of schizophrenia have been found to present impairments only when these contingencies 

change and not during the original task (Turnbull et al., 2006).  

Therefore, this study aims to explore the idiosyncratic choice behaviour of 

undergraduate students on the IGT, as well as their capability to adapt to unexpected 

and changing contingencies. We hypothesized that: (i) most participants will make 

choices based on the frequency of losses of each deck rather than based on the long-

term profit associated with each deck; (ii) participants who identify the long-term 

advantageous choices during the IGT will perform better when the contingencies shift 

than those who do not identify them; (iii) men will outperform women on the latter 

stages of the IGT and, therefore, will also have a better performance when the 

contingencies shift; and (iv) identified decision-makers profiles will depend on the 

frequency of punishment instead of on the long-term profit associated with each deck 

and (v) parameters estimated using computational models that are positively or 

negatively related with the performance on the IGT, such as loss aversion and response 
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consistency (Worthy et al., 2013), will be related in the same way with the performance 

on the blocks in which contingencies shifts. 

Method 

Participants 

A total of 160 (58.8% women) undergraduate students (Mage = 2.7; SD = 4.4) 

volunteered for the present study. Inclusion criteria were: (1) no previous experience in 

IGT and (2) no history of psychiatric illness. They all had a normal or corrected-to-

normal vision and two academic credits were offered as a reward for participating. The 

study was approved by the Ethics Committee of the University of Almeria and was 

conducted following the Declaration of Helsinki.  

Materials 

Iowa Gambling Task with Reversal learning blocks. 

In this task, adapted from Bechara et al. (2000), four decks of cards appeared on 

the computer screen. Each participant had to wait for 5 seconds before responding. 

After that, a green dot (response signal) appeared centred on the top of the screen, 

indicating the participants could make a choice. They were instructed to choose a card 

from any deck by pressing the keys 1, 2, 3, or 4, each corresponding to decks A, B, C, 

and D, respectively. After each choice, a feedback display that showed the current 

amount of points and the received outcome was shown for 6 seconds. All participants 

started with a total amount of 2000 points, and they were instructed to maximize their 

benefits. The total duration of the task was about 30 minutes. 

The task consisted of 160 trials. In the first 100 trials, decks A and B supposed a 

long-term loss, so they would be disadvantageous decks, and decks C and D supposed a 

long-term benefit, so they would be advantageous decks. Each choice of deck A offered 

100 points but could make participants lose 1250 points in a 1:10 ratio. Deck B also 
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offered 100 points and could make participants lose an amount ranging from 150 to 350 

points in intervals of 50 in a 1:2 ratio. When Deck C was chosen, the reward consisted 

of 50 points but a penalty of 50 points could be presented in a 1:2 ratio. Finally, Deck D 

was also associated with a reward of 50 points and a penalty of 250 points could be 

presented in a 1:10 ratio. These contingencies were adapted from Worthy et al. (2013) 

but the losses were presented probabilistically instead of sequentially in order to avoid a 

deterministic behaviour. The remaining 60 trials were divided into 3 blocks of 20 trials 

(3 reversal shifts), in which the outcomes associated with each deck were switched (see 

Figure 8). 

Figure 8  

Summary of the employed task. 

 

Computational learning models 

The IGT can be characterized as a four-armed bandit problem (Berry and 

Fristedt, 1985) in which the participant needs to learn from an environment by picking 

different choices and experiencing the possible outcomes to estimate the optimal 

response. Several factors influence this process, such as poor reinforcement learning, 

hypersensitivity or hyposensitivity to rewards and losses, or response inconsistency. 

Computational modelling has been proposed as an effective tool that allows us to 
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estimate these factors. In the present research, we compared some models that, 

following the literature, have shown an adequate fit. The compared models were the 

Prospect-Valence Learning model with a delta learning rule (PVL-Delta), the Prospect-

Valence Learning model with decay reinforcement learning rule (PVL-Decay), the 

Outcome-Representation Learning model (ORL), and the Value-Plus Perseverance 

model (VPP), from the “hBayesDM” R package (Ahn et al., 2017). As can be consulted 

in Appendix III, all reinforcement-learning models failed to simulate our participant’s 

behaviour, so related information will be no longer mentioned during the present study. 

Procedure 

The study was carried out in a single session. Participants were seated in a quiet 

and well-acclimated room and received instructions about the entire procedure. After 

that, they were asked to sign an informed consent document. Participants were tested 

individually using an Asus ROG GL552VW laptop with a 15.6” screen. For other 

research purposes, equipment employed to register physiological data were attached to 

our participants. Concretely, this equipment consisted of two Ag-AgCl electrodes, 

attached to the distal phalanges of the second and fourth digits of their right hand, and a 

prefrontal headband with 15 optodes to obtain fNIRS haemodynamic activity data. 

After verifying that both systems were recording correctly and that participants had 

understood the instructions, the task began.  

Data analysis 

Clustering procedure 

We aimed to explore the idiosyncratic deck choice behaviour of our sample to 

identify the key factors that determine their choices in the IGT. In order to better 

characterize our sample, we performed hierarchical combined with non-hierarchical 

cluster analysis methods. To perform those analyses, we divided the task into two 
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differentiated phases, an Early Stage, and a Late Stage. The Early Stage included the 

first 40 trials, while the Late Stage was composed of the last 60 trials (Li et al., 2019). 

This approach was motivated by previous research, which shows that from about trial 

40 onwards, participants begin to identify advantageous decks so early uncertainty 

would decrease, leading to more explicit-risk based decision-making (FeldmanHall et 

al., 2016; Li et al., 2019). As we were interested on characterize participants based on 

their initial strategy (i.e. how they behave with less experience with decks) and on their 

final strategy (i.e. how they behave with enough experience with decks), we considered 

the total number of choices of each deck in each stage to generate the clusters.  

All the analyses were performed using the free “R” software (R Core Team, 

2019). First, we explored the possible number of clusters through a hierarchical 

clustering method (Hair et al., 2019) using the hclust function. In order to reduce the 

within-cluster variance, Ward’s method was chosen (Szekely and Rizzo, 2005; Ward, 

1963). The optimal cluster solution was determined using the Gap statistic method, 

which may help to avoid a biased and arbitrary decision about the best cluster solution 

based only on the elbow method (Tibshirani et al., 2001), and by observing the 

dendrogram. Finally, we performed a non-hierarchical K-means analysis to determine 

the cluster membership of our participants through the hkmeans function, which 

generates a k number of clusters using the centroids obtained in the previous step (Hair 

et al., 2019). Besides, we also explored whether sex was equally distributed in the 

different clusters using a Chi-Squared test. 

Bayesian mean comparisons 

 As several analyses were going to be performed to test our hypotheses, we 

decided to employ Bayesian data analysis for mean comparisons. In Bayesian data 

analysis, decisions are based on posterior probabilities of the parameters of interest. In 
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contrast with frequentist statistics, there is no need to make corrections or adjustments 

to make decisions when exploring mean comparisons since there is only one posterior 

distribution that can be examined from multiple perspectives without affecting the 

inference process, substantially reducing the false alarm rate (Kruschke, 2015).  

 Posterior distributions may be used to make decisions along with their 95% 

Highest Density Interval (HDI), so values falling inside the HDI are more credible than 

those falling outside it. Also, a Region Of Practical Equivalence (ROPE) may be 

established. A ROPE is comprehended around values of interest, such as zero when we 

are doing mean comparisons or estimating the slopes of a regression line. If the ROPE 

completely excludes the HDI, we accept this value for practical purposes. If the HDI 

falls completely inside the ROPE, the effect is said to be not credible. If the HDI 

partially overlaps with the ROPE, we withhold making a decision (Kruschke, 2011). 

Clusters, net score, and individual deck choices 

Differences in the net score and individual deck choices depending on cluster 

membership were explored through Just Another Gibbs Sampler (JAGS) for Markov 

Chain Monte Carlo (MCMC) sampling and posterior inference. Our dependent variable 

was the net score and we considered cluster membership as a between-subject factor, 

and block (1, 2, 3, 4, and 5 in the first 100 trials; reversal 1, reversal 2, and reversal 3 in 

the reversal phase) as a within-subject factor using the program “Jags-Ymet-

XnomSplitPlot-MnormalHom.R” from Kruschke (2015), available at 

https://sites.google.com/site/doingbayesiandataanalysis/. Similarly, to explore the 

differences between clusters in individual deck choices on the IGT and the reversal 

blocks, we employed the same method, using the number of choices as our dependent 

variable and understanding deck (A, B, C, D) as a new within-subject factor. For an 

exhaustive exploration of these data, the analysis was repeated isolating each level of 

https://sites.google.com/site/doingbayesiandataanalysis/
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block and deck. For both purposes, an arbitrary ROPE of (-1, 1) for the difference of the 

means was used so no spurious differences of less than 1 choice will be considered if 

the HDI does not completely exclude these values. A total of 50000 samples were saved 

after 1000 adaptative and 2000 burn-in sampling with 4 chains for each analysis. The 

Gelman-Rubin test revealed a correct convergence of all the chains with values below 

1.10 for all parameters (Gelman and Rubin, 1992) in all analyses.  

Sex, net score, and individual deck choices 

Analysed followed the same methods explained above for exploring cluster 

differences. The only difference was that we considered sex as the between-subject 

factor instead of cluster membership.  

Results 

To ease the reading of the results only credible differences and those 

comparisons that are essentially relevant to the hypotheses will be commented on. All 

the statistics can be found in Appendix I. 

Clusters 

Clustering procedure 

After watching the dendrogram and following the Gap statistic method 

(Tibshirani et al., 2001) we observed an optimal solution of five clusters (see Figure 6). 

The K-means analysis resulted in 44 (A-Choosers; 30 women), 14 (C-Learners; 7 

women), 22 (D-Learners; 10 women), 48 (Scattering; 25 women), and 32 (A-Exploiters; 

22 women) participants composing each of the clusters. Please note the characteristics 

of decks A and B in this experiment are interchanged. The contingencies associated 

with Deck A in this study are those normally associated with Deck B, and vice versa 

(see Figure 9).  



61 

 

The sex distribution within each cluster was explored using a Chi-Squared test 

and no different sex distribution was found in any cluster (see Table 4). The individual 

preferences of each cluster are further explained below. 

Table 4 

Number of men and women in each cluster and Chi-squared statistics as a function of 

sex. 

Cluster n (Men) n (Women) χ2 P 

Cluster 1 (A-Choosers) 14 30 1.61 .203 

Cluster 2 (C-Learners) 7 7 .442 .506 

Cluster 3 (D-Learners) 12 10 1.60 .205 

Cluster 4 (Scattering) 23 25 .880 .348 

Cluster 5 (A-Exploiters) 10 22 1.32 .250 

 

Figure 9  

Graphical representation of the best clustering solution. 
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Clusters and net score 

IGT 

The net score of the different clusters during the whole task is graphically 

depicted in Figure 10. As early as in the first block, A-Exploiters showed the worst 

performance in terms of a lower net score than A-Choosers, C-Learners, D-Learners, 

and Scatterers. This same pattern of differences was maintained during the first five 

blocks, except in block 5, in which the net score of A-Exploiters does not show credible 

differences with A-Choosers and Scattering. 

From the second block onwards, C-Learners and D-Learners started showing a 

higher net score than A-Choosers and Scattering. C-Learners and D-Learners presented 

credible differences in their net scores only in the last block of the IGT. 

In the fourth block, Scatterers started showing a higher net score than A-

Choosers, which was maintained in block 5. 

First reversal phase 

C-Learners showed the highest net score compared to all other Clusters. D-

Learners showed a higher net score than A-Choosers and A-Exploiters. Scatterers also 

showed a higher net score than A-Exploiters. 
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Second reversal phase 

The same pattern of credible differences was maintained between the clusters, 

except for the difference between D-Learners and A-Choosers. 

Third reversal phase 

C-Learners showed again the highest net score. A-Choosers presented a lower 

net score than D-Learners and Scatterers.  

Figure 10  

Mean of the net score during the five blocks of the IGT and the reversal phases 

depending on cluster membership.  

 

Note. The vertical bars represent the standard error of the mean. 

Clusters and individual deck choices 

IGT 

The individual deck choices of the different clusters during the whole task are 

graphically depicted in Figure 11. Since Block 1, A-Choosers and A-Exploiters showed 

a higher preference for Deck A than for other decks. These preferences were maintained 

during the first five blocks of the task. 

In contrast to A-Choosers, A-Exploiters presented a higher number of choices of 

Deck A than other Clusters since this first Block. A-Choosers started showing a higher 
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number of choices of Deck A than C-Learners, D-Learners, and Scatterers from Block 3 

onwards and showed no credible differences with A-Exploiters in the number of Deck 

A choices in Block 5.  

 C-Learners started showing a higher number of choices of Deck C than of Deck 

B and Deck D in Block 2. Since Block 3, C-Learners also presented more choices of 

Deck C than Deck A. In addition, C-Learners presented the highest number of choices 

of Deck C compared to all other Clusters since Block 2 onwards.  

D-Learners showed a higher preference for those decks in which losses are 

presented infrequently (Deck A and Deck D) since Block 2. Since Block 3, D-Learners 

also began to show a higher preference for Deck D than for Deck A, showing that they 

preferred the advantageous deck with infrequent losses. Furthermore, from Block 3 

onwards, D-Learners is the group with the highest number of choices of Deck D 

compared to other Clusters.  

Scatterers did not show any preference for any deck during the IGT (for a 

detailed description, see Appendix I). 

First reversal phase 

In the first reversal phase, A-Choosers and C-Learners looked for the same deck 

they chose in the last stages of the IGT. Surprisingly, D-Learners began to scatter 

among decks when the first shift was presented.  

Second reversal phase 

In the second shift, A-Choosers and A-Exploiters kept looking for their 

preferred deck, as well as C-Learners. D-Learners continued scattering among all decks. 

Scatterers began to prefer Deck C (previously Deck A) over Deck B (previously Deck 

D) and Deck D (previously Deck B). 
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Third reversal phase 

In the last reversal phase, A-Choosers still looked for their previously preferred 

deck, presenting more choices of Deck D (previously Deck A) compared to Deck A 

(previously Deck B) and Deck B (previously Deck C). In addition, they presented more 

choices of Deck C (previously Deck D) than Deck B. C-Learners also searched their 

preferred deck. Regarding D-Learners, credible differences were found between the 

picks of Deck D and Deck A. No credible differences were found in the preferences of 

Scatterers and A-Exploiters. 

Figure 11  

Mean of the individual deck choices during the five blocks of the IGT and the reversal 

phases depending on cluster membership.  

 
Note. The vertical bars represent the standard error of the mean. 
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Sex 

Sex, net score, and individual deck choices 

The results of men and women during the whole task are depicted graphically in 

Figure 12. When exploring the performance of men and women, no credible differences 

between them were found during any of the blocks. The decision regarding differences 

between men and women in Block 4 and Block 5, as well as in the reversal phases, is to 

be withheld because part of the HDI is inside the ROPE threshold (-1, 1). Analyses also 

revealed that both, men and women, increased their net score from both Block 1 and 

Block 2 to both Block 4 and Block 5.  

Figure 12  

Mean of the net score of men and women during the IGT and the reversal phases. 

 

Note. The vertical bars represent the standard error of the mean. 

Regarding individual deck choices, parts of the ROPE are also always within the 

HDI in between-subject comparisons, so no credible differences between men and 

women were present during the IGT or the reversal phases. All these choices are 

graphically represented in Figure 13. However, there were some within-group 

differences in the pattern of responses during the IGT depending on sex. The most 

notable difference in these patterns was found in the third block of the IGT, where men 
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still preferred Deck A over Deck B and Deck C in this block. In contrast to men, women 

preferred Deck A over Deck B, Deck C, and also Deck D. 

Besides, in the first reversal, men showed a higher preference for Deck A 

(previously Deck C) and Deck C (previously Deck A) over Deck B (previously Deck 

B). In contrast, women showed a higher preference for Deck C than for Deck A and 

Deck B. Nevertheless, no differences in deck choices between groups were present.  

In the second reversal phase, men preferred Deck A (previously Deck C) over 

Deck B (previously Deck D) and Deck C (previously Deck A) over Deck B and Deck D 

(previously Deck B). However, women showed a higher preference for Deck C over 

Deck A, Deck B, and Deck D. As on the previous shift, no differences in deck choices 

between groups were present.  

In the third reversal phase, women were the only ones showing a higher 

preference for Deck D (previously Deck A) over Deck A (previously Deck B). Men did 

not show any clear preference for any deck and there were not any differences between 

groups.  
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Figure 13  

Individual deck choices of men and women during the IGT and the reversal phases.  

 

Note. The vertical bars represent the standard error of the mean. 

Discussion 

The main purpose of this research was to identify those factors that may 

influence the performance of participants from a non-clinical population in both 

changing and unchanging environments using the IGT paradigm. We paid special 

attention to sex, which effect is inconsistent in the literature.  

Regarding our first hypothesis, which was related to the deck choice preferences 

of our participants, cluster analysis revealed some interesting data. Our analysis 

revealed five different profiles of decision-makers based on participants’ idiosyncratic 

deck choice behaviour. Only two clusters (C-Learners and D-Learners), which 

surprisingly summed only for 22.5% of our total sample, showed an optimal long-term 

performance during the IGT. In other words, 77.5% of our total sample showed a 
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negative or around zero net score at the end of the task, which is in consonance with 

recent research (Barnhart and Buelow, 2021).  

C-Learners stuck to the advantageous deck associated with high-frequency and 

low-magnitude losses (Deck C during the IGT) from the early stages and kept 

exploiting that option even when contingencies changed. This Cluster rapidly identified 

this deck as a long-term advantageous one and spent the whole task exploiting it. We 

suggest the members of this Cluster are not so sensitive to the loss frequency, so their 

decision-making is not biased by an over-weight of the probabilities to receive a loss. It 

is worth noting that this cluster was composed of only the .0875% of our sample, even 

more, when in our adapted IGT this deck did not ever offer a net loss. This is consistent 

with previous research challenging the conception of this deck as an advantageous one 

(Chiu and Lin, 2007). 

A-Choosers, D-Learners, and A-Exploiters preferred decks with a 1:10 

win/losses ratio and summed for a total of 61.3% of the sample. Apparently, this choice 

preference (for decks with low-frequency and high-magnitude losses) was common 

among participants, as we predicted. Therefore, our participants were more leaded by 

the ratio of wins and losses than by the long-term outcomes, since, in contrast, less than 

a quarter part of our sample had a high preference for advantageous decks during the 

IGT. Following the Prospect Theory (Kahneman and Tversky, 1979), these participants 

would likely be over-weighting the more probable losses. However, they also differ in 

several key points. Both A-Choosers and A-Exploiters showed a high preference for the 

disadvantageous deck associated with low-frequency and high-magnitude losses (Deck 

A during the IGT). Nevertheless, while for A-Choosers this preference started to be 

observable since the third block of the task, A-Exploiters presented this preference from 

the beginning. These preferences were maintained when the contingencies changed 
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since they kept actively looking for this deck. Both groups present a pattern of 

behaviour that is extremely negligent to make long-term advantageous decisions in the 

task. This is in accordance with previous literature, in which it is argued that many 

healthy participants have some difficulties figuring out that the disadvantageous deck 

associated with low-frequency and high-magnitude losses is a bad deck in the long-term 

(Steingroever et al., 2013). These participants seem to be guided by an overestimation 

of the larger immediate reward and a negligent valuation of the magnitude and 

frequency of the loss, which results in a choice pattern consistent with what Bechara et 

al. (1994) called “myopia for the future”. It is impressive that A-Exploiters rigidly 

maintained this disadvantageous strategy since so early, but it is also surprising that A-

Choosers, after having experienced several outcomes from different decks, stuck to the 

same response.  

As we previously mentioned, D-Learners also opted for a deck with low-

frequency and high-magnitude losses. The difference between participants in this cluster 

and participants A-Choosers and A-Exploiters is that the choices preferred by D-

Learners were advantageous in the long term (Deck D). We suggest that participants 

belonging to this Cluster could share some characteristics with A-Choosers and A-

Exploiters because of their similar preference for low-frequency losses. However, we 

suppose that the impact of the outcomes on their decisions is lower for D-Learners, so 

they avoid the larger immediate rewards in favour of a long-term gain. Finally, 

Scatterers did not show a clear preference for any deck during the IGT nor during two 

of the three reversal phases. 

Concerning our second hypothesis and contrary to our expectations, the only 

cluster that maintained a good performance when the contingencies changed was C-

Learners. Although C-Learners and D-Learners were characterized by a high preference 
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for advantageous decks during the IGT, C-Learners preferred the deck associated with 

high-frequency, low-magnitude losses while D-Learners preferred the deck associated 

with low-frequency, high-magnitude losses. This difference leading to a different 

performance when contingencies change may be explained in several manners. One 

possible explanation is that the deck with high-frequency and low-magnitude losses, 

which has a similar ratio of trials with (1:2) and without (1:2) losses, is easier to detect 

since participants of C-Learners quickly find this deck in all the reversal phases, which 

could make it a more reliable choice than its counterpart with low-frequency and high-

magnitude losses. Another possibility is that participants of D-Learners, who might 

have a higher aversion to frequent losses, may simply present a higher probability of 

taking risky choices when the uncertainty is higher, which is the condition in the 

changing environment. Previous studies have found that modifying the environment 

may have effects on the loss aversion of individuals, suggesting that even though 

participants may differ in their individual preferences and strategy, this latter may be 

sufficiently unstable and could change depending on the environmental influence 

(Rakow et al., 2020). The fact that D-Learners suddenly present a severe reduction in 

their performance could be in line with this finding. 

Our behavioural results revealed that the decision about sex-related differences 

in the IGT performance is to be withheld. In fact, results from Bayesian mean 

comparisons suggest that, if any difference is even present between both groups, it 

could have an effect size so small that it does not credibly reach a difference of one 

choice per block. It is also interesting to note that the percentage of men and women in 

each of the clusters was not suggested to be different. Nevertheless, some within-group 

choice patterns differed when looking into both groups. In relation to deck preferences, 

we observed that in the third block women seemed to prefer Deck A over all the other 
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decks while men did not credibly choose Deck A over Deck D. In our experiment, both 

Deck A and Deck D are the choices associated with low-frequency, high-magnitude 

losses, so both men and women showed a higher preference for this type of decks. 

However, Deck A involves a disadvantageous long-term outcome while Deck D 

involves an advantageous long-term outcome. Thus, following this result, men could 

start to modify their preference towards advantageous decks before women (for an 

extensive review, see van den Bos et al., 2013). In addition, although the performance 

of men and women in the reversal phases seems to be similar when comparing the net 

score, women, apparently, prefer disadvantageous decks with high-magnitude and low-

frequency losses, especially in the second reversal phase. Importantly, our sample 

included more women than men, which supposes a narrower HDI due to a lower 

standard error of the mean in our analyses for this first group, so these results may not 

be taken as conclusive.  

Some of our results should be cautiously considered due to some limitations. 

Firstly, as we have previously commented, age has been proposed as a relevant variable 

to take into account when performing IGT (Caroselli et al., 2006; Cauffman et al., 

2010). Secondly, socioeconomic status may also be an influential factor in decision-

making processes (Sheehy-Skeffington, 2020) and, therefore, affect IGT performance 

through higher risk-taking behaviour (Ursache and Raver, 2015). In addition, some 

personality traits, such as impulsivity, should be taken into account when splitting 

participants into clusters to ensure that certain cluster is not overrepresented by certain 

personality trait. In this sense, future studies exploring these processes in a larger and 

more representative sample extracted from the general population instead of university 

students could cover broader age and socioeconomic status ranges and personality traits 

and could provide important insights. Thirdly, it is widely accepted that emotional states 
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may influence decision-making processes, especially those which take place under 

ambiguous conditions (Aïte et al., 2013; Brand et al., 2006; Heilman et al., 2010). 

Further research could also investigate emotion-related physiological variables, such as 

skin conductance response or heart rate variability (Bechara and Damasio, 2005; 

Boucsein et al., 2012), and check their relationship with the different parameters and the 

behavioural profiles. Lastly, clustering analyses considering individual choices should 

be repeated in future studies to test whether these profiles are also typical in the general 

population and do not underlie the specific composition of our sample. 
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CHAPTER 5. STUDY III: Decision-making and 

frontoparietal resting-state functional connectivity among 

impulsive-compulsive diagnoses. Insights from a Bayesian 

approach 

This study is directly derived from the results obtained in the previous one. We 

followed the same rationale and applied the same clustering procedure and 

reinforcement learning modes in order to explore idiosyncratic decision-making 

profiles. In the present study, we investigate how healthy adults and impulsive-

compulsive spectrum patients developed particular decision-making strategies during 

the IGT. Additionally, we recorded the frontoparietal resting-state functional 

connectivity of our participant and investigated the role of rsFC between different 

regions of the FPN as a possible biomarker of each idiosyncratic choice behaviour. We 

found three different decision-makers profiles, each of them composed of the same 

proportion of healthy and diagnosed participants. After applying a Bayesian General 

Linear Model, we found no evidence of frontoparietal rsFC as a biomarker or defective 

or adequate decision-making patterns, nor differences in the frontoparietal network of 

healthy and diagnosed participants.  

This work corresponds to León, J.J., Fernández-Martin, P., González-Rodríguez, 

A., Rodríguez-Herrera, R., García-Pinteño, J., Pérez-Fernández, C., Sánchez-Kuhn, A., 

Amaya-Pascasio, L., Soto-Ontoso, M., Martínez-Sánchez, P., Sánchez-Santed, F., & 

Flores, P. (2023). Decision-making and frontoparietal resting-state functional 

connectivity among impulsive-compulsive diagnoses. Insights from a Bayesian 

approach. Addictive Behaviors. Accepted with minor revision. 
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Rationale 

In line with RDoC initiatives, understanding brain resting-state functional 

connectivity (rsFC) as a transdiagnostic target may be helpful to identify specific 

neurobiological patterns associated (or not) with specific cognitive profiles (Siugzdaite 

et al., 2020). The frontoparietal network (FPN) seems to be implicated in coordinating 

and adapting behavior in a goal-driven manner (Marek & Dosenbach, 2018), and seems 

to comprise a wide-spread network including frontal and parietal main cores: the 

dorsolateral prefrontal cortex (DLPFC), orbital gyrus, medial prefrontal cortex, 

frontopolar areas and posterior parietal regions (Markett et al., 2014; Stern et al., 2012). 

Frontoparietal network has shown to present an aberrant rsFC in some 

impulsive-compulsive spectrum disorder patients compared to healthy controls. Vaghi 

et al. (2017) showed reduced connectivity between the striatum and frontoparietal 

regions in OCD patients. In this line, recent meta-analysis and reviews have revealed a 

hypoconnectivity between caudate and FPN regions such as DLPFC and dorsomedial 

(dmPFC) prefrontal cortex and a general hypoconnectivity within the FPN (Gürsel et 

al., 2018; Liu et al., 2022). Regarding SUD patients, increased connectivity within 

orbitofrontal cortex has been reported in heroin users (Ieong and Yuan, 2017). 

Additionally, a recent meta-analysis has reported a reduced rsFC within the FPN in 

different SUDs (Taebi et al., 2022). Concerning ADHD, aberrant connectivity in the 

FPN has been also shown, although the directionality of the relationship between the 

strength of the rsFC and ADHD symptomatology remains unclear (Bush, 2011; Lin et 

al., 2015; Mostert et al., 2016; Silk et al., 2008).  

In these terms, from a psychological perspective, rsFC could be a predictor of 

behavioural patterns, which could make rsFC a promising biomarker for decision-

making. The predictive role of different rsFC networks, including FPN, has been 
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studied in decision-making paradigms such as the Delay Discounting Task (Hobkirk et 

al., 2019; Li et al., 2013) and the Balloon Analogue Risk Task (Wei et al., 2016). While 

these experimental works showed a negative relationship between the strength of the 

rsFC within and between different networks and impulsivity during decision-making 

tasks, other research has revealed a positive relationship and different interactions 

between the strength of the rsFC in the executive control network (or FPN) and other 

networks and ADHD symptomatology (Gao et al., 2019; Mostert et al., 2016). Also, a 

general dysconnectivity between different hubs of different networks, including FPN, 

has been proposed as a characteristic of OCD pathophysiology (Liu et al., 2022). 

Although the rsFC of the FPN is supposed to be critical in controlling and 

adapting behaviour in a goal-directed manner during both, resting- and task-induced 

sates (Marek and Dosenbach, 2018), its relationship with IGT performance remains, to 

the best of our knowledge, unclear.  

Taking into account all the above exposed, in this study, we aimed (i) to identify 

potential particular decision-making profiles in impulsive-compulsive spectrum patients 

and healthy controls based on their deck choice behaviour during the IGT through the 

application of an exploratory clustering approach and (ii) to investigate the role of rsFC 

between different regions of the FPN as a possible biomarker of each potential 

idiosyncratic choice behaviour. We hypothesized that (i) decision-making profiles will 

mainly depend on the frequency of punishment instead of on the long-term profit 

associated with each deck, (ii) decision-making profiles in healthy adults and impulse-

compulsive spectrum patients will cut across diagnostic labels, and (iii) identified 

decision-making profiles will show different and specific predictive rsFC patterns. 

Specific directions of these effects are difficult to predict due to the abovementioned 
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inconsistences in the literature, so our approach regarding these issues will be mainly 

exploratory. 

Method 

Participants 

A total of 114 adults participated in this study. All participants gave verbal and 

written informed consent. The study was approved by the local Ethics Committee and 

was conducted following the Declaration of Helsinki. Demographic and clinical features 

are detailed in Table 5.  

41 inpatients with SUD were recruited from a recovery and relapse-prevention 

centre. A clinical psychologist introduced them to the study and checked the eligibility 

criteria. They must have been abstinent for at least 15 days. If so, they underwent a 

clinical interview and completed rating scales, including the Spanish version of the 

Beck Depression Inventory-II (Sanz et al., 2003) and the State-Trait Anxiety Inventory 

(Buela-Casal et al., 2015). 33 SUD patients had a diagnosis of polysubstance 

abuse while 8 SUD patients had been addicted to one substance (n=4 alcohol; n=3 

cocaine; n=1 cannabis). All SUD participants were men because of the internal rules of 

the centre. 30 SUD patients were on pharmacological treatment.  

OCD (n=25) and ADHD (n=14) participants were recruited from the mental 

health unit of the Torrecárdenas University Hospital (Almería, Spain). An experienced 

psychiatrist introduced them the project and assessed eligibility criteria by phone.  They 

must have a clinical diagnosis of OCD/ADHD according to DSM-5 criteria (‘DSM V’, 

2013). Healthy controls (HC; n=34) were recruited by word of mouth from the 

community. They must have no history of neurological or psychiatric diseases. After 

eligibility assessment, OCD, ADHD, and HC participants were administered a clinical 

interview and several questionnaires to confirm the diagnosis. They completed the 
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Spanish versions of the ADHD Rating Scale-5 (Richarte et al., 2017), the Obsessive 

Compulsive Inventory-Revised (Fullana et al., 2005), and the Adult Self-Report Scale 

(Achenbach and Rescorla, 2003). ADHD patients met criteria for Combined (n=5), 

Inattentive (n=6), Hyperactive (n=1) and non-specified (n=2) presentations. 18 OCD 

and 13 ADHD patients were undertaking medication. 6 OCD and 9 ADHD patients had 

a wash-out period of at least 24h. 

Table 5 

Demographics and clinical features of the sample.  

 HC 

(n=34) 

OCD 

(n=25) 

SUDb 

(n=41) 

ADHDb 

(n=14) 
Comparisonse 

Demographics      

% Women 58.82 40 0 21.42 p < .05 

Agea, d 35.21±11.36 38.28±11.91 44.12±8.67 34.36±13.26 p > .05 

Annual incomea 22,117.65±11,996.3 13,464±12,373.32 6,091.625±5309.576 19,276.92±19,543.89 HC>OCD=SUD=ADHD 

Years of formal 
educationa,c 

16.794±3.675 15.44±4.673 8.735±4.406 14.929±3.245 SUD<HC=OCD=ADHD 

% comorbidities      

Depressive disorder -- 16 19.51 7.14  

Anxiety disorder -- 20 7.32 7.14  

Bipolar disorder -- .00 2.44 .00  

Personality disorder -- 16 2.44 14.29  

Tics disorder -- 4 .00 7.14  

Learning disorder -- .00 .00 28.57  

Eating disorder -- 12 .00 .00  

ADHD -- 4 .00 .00  

OCD -- .00 .00 7.14  

SUD -- 4 .00 7.14  

ICD -- .00 .00 7.14  

PTSD -- 4 .00 .00  

% Prescribed medication -- 72 73.17 92.86  

Stimulants -- .00 .00 42.86  

Antihypertensive -- .00 2.44 .00  

Antipsychotic -- 50 14.63 .00  

Antidepressant -- 77 31.71 14.28  

Anxiolytic -- 50 51.22 14.28  

Antiepileptic -- .00 2.44 7.14  

Opioid -- .00 21.95 .00  

Clinical measuresa      

ADHD-RS-V 11.24±6.44 18.58±1.24 -- 31.07±7.74 ADHD>OCD>HC 

OCI-R 17.25±11.76 39.91±13.49 -- 23.93±13.22 OCD>ADHD=HC 

ASR DSM OCD 55.12±6.81 72.52±8.70 -- 64.86±8.88 OCD>ADHD>HC 

ASR DSM ADHD 56.68±7.18 64±11.09 -- 70±1.86 ADHD=OCD>HC 

BDI-II -- -- 18.60±9.25 --  

STAI-State -- -- 22.69±11.65 --  

STAI-Trait -- -- 25.77±1.89 --  
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Note. SUD participants did not complete ADHD-RS-5, OCI-R and ASR questionnaires, 

while ADHD, OCD and HC participants did not complete BDI-II and STAI 

questionnaires because clinical groups belonged to two different funded research 

projects. Scores in the clinical range are boldfaced. 

ICD =Impulse Control Disorder; PTSD = Post-traumatic stress disorder; ADHD-RS-V 

= ADHD Rating Scale-5; OCI-R = Obsessive-Compulsive Inventory-Revised; ASR 

DSM OCD = Adult Self-Report OCD DSM-Oriented Scale; ASR DSM ADHD = Adult 

Self-Report ADHD DSM-Oriented Scale; BDI-II = Beck Depression Inventory-II; 

STAI = State-Trait Anxiety Inventory. 

aMean ± SD is represented. bInformation on prescribed medication and comorbid 

disorders from 4 SUD participants is missing. We could not collect annual income from 

nine of the SUD participants and from one of the ADHD participants. cYears of formal 

education from seven of the SUD participants is missing. dAge from six of the SUD 

participants is missing. eStatistical comparisons were performed using a Welch-James 

ANOVA. Fisher Exact Test was used to compare sex proportions between groups. 

Materials 

Iowa Gambling Task 

We used a computerized version of the IGT. The task comprised 100 trials. In 

each trial, four decks of cards (A, B, C, and D) appeared on the screen. Participants had 

to press the keys 1, 2, 3, or 4, respectively, to pick one. After each choice, a feedback 

display showing the outcomes received was presented for 2000ms. During the whole 

task, Decks A and B entailed a long-term loss (disadvantageous decks) while decks C 

and D supposed a long-term benefit (advantageous decks). Decks could also be 

classified according to the frequency and magnitude of losses. Therefore, any choice of 

Deck A (high frequency-low magnitude losses) would result in a gain of 100 points, but 

participants could also receive a loss of 150/200/250/300/350 points in a 1:2 ratio. Deck 

B (low frequency-high magnitude losses) also offered 100 points but they could lose 

1250 points in a 1:10 ratio. Deck C (high frequency-low magnitude losses) was 

rewarded with 50 points but penalized with losses of 25/50/75 points in a 1:2 ratio. 
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Lastly, Deck D (low frequency-high magnitude losses) also offered 50 points when 

chosen, but participants could lose 250 points in a 1:10 ratio.  

All participants began with an amount of 2000 points and were instructed to 

maximize their benefits by picking cards from the different decks. They were not 

informed about the number of trials.  

Computational learning models 

We applied the same computational learning models as in the previous Study, 

which also showed poor simulations (Appendix III). 

rsFC data acquisition  

We recorded the relative changes in the concentration of oxy- (HbO2) and 

deoxy- (HbR) hemoglobin in cortical areas of the FPN network during 10 minutes of 

resting state. We used two portable continuous-wave functional near-infrared 

spectroscopy (fNIRS) systems in tandem mode (NIRSport device, NIRx Medical 

Technologies LLC, Berlin, Germany). fNIRS data were acquired using the NIRStar 

Software version 15.0 (NIRx Medical Technologies LLC, Berlin, Germany) at a 

sampling rate of 3.41 Hz.  

We employed a custom probe array of 32 optodes (16 light sources and 16 

detectors at two wavelengths, 760 nm, and 850 nm) according to the International 10-10 

system of electrode layout with an inter-optode distance of approximately 30 mm. This 

source-detector configuration resulted in 54 fNIRS measurement channels. In this study, 

we selected 18 channels that cover up six regions of interest (ROIs) from the FPN: 

dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), and posterior 

parietal cortex (pPC), each of them in the right and left hemisphere. The remaining 

channels were used for a larger research project.    
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AtlasViewer software was employed to evaluate the probe sensitivity. Figure 14 

depicts the spatial sensitivity profile obtained for each used measurement channel on the 

cortical surface after performing a Monte Carlo photon migration simulation with 107 

photons.  

Figure 14  

Graphical visualization of the spatial sensitivity profile in log10(mm-1).  

 

Note. Red and blue dots represent the position of sources and detectors. Solid and dotted 

lines represent right and left hemisphere. Red, light blue and yellow lines cover up, 

respectively, the defined ROIs: orbitofrontal, dorsolateral and posterior parietal cortex. 

(A) Coronal plane. (B) Horizontal plane. 

rsFC data pre-processing  

fNIRS signals were pre-processed and analysed using a customized MATLAB-

based script from the open-source package NIRS Brain AnalyzIR toolbox (Santosa et 

al., 2018). We down-sampled the raw intensity signal to 1 Hz and then converted it into 

changes in optical density. We applied the modified Beer-Lambert Law to obtain the 

relative changes in the concentration of HbO2 and HbR. We select HbO2 signals to 

compute the analyses since it is the most correlated measure with the blood oxygen 

level-dependent (Duan et al., 2012). Pre-whitening and pre-weighting methods were 
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applied to ensure the correction of confounding signals such as systemic physiological 

noise and motion artifacts. The combination of both filtering methods has been 

suggested to be a reliable approach to better control type-I errors (Barker et al., 2013; 

Huppert, 2016; Santosa et al., 2017). 

rsFC was computed at the time domain through a whole-brain correlation 

approach. Functional connectivity was then understood as the strength of the temporal 

correlation of the hemodynamic activity of each pairwise comparison. We conducted 

Pearson correlation analyses between the time series of every pair of ROIs to obtain the 

functional connectivity between the measured areas. 

Procedure 

First, we collected rsFC data for 10 minutes. Participants were instructed to be 

seated, relaxed, and as quiet as possible, keeping their eyes open and looking at a blank 

wall. The experimental room was well-acclimated and soundproofed. At least one 

researcher was always monitoring the recording. fNIRS data from 8 participants were 

discarded due to technical issues during the recording. 

Afterward, we removed the fNIRS cap and participants completed the IGT, 

which lasted approximately 10 minutes. After they read the instructions, participants 

were asked to explain the task before starting to make sure they understood it correctly. 

Once they finished, we explicitly asked them (6.42% of the participants were asked) 

whether they thought there was an optimal strategy to maximize their profits and, if so, 

which decks they had to pick.  

Statistical analysis 

Clustering procedure 

We used hybrid hierarchical K-means clustering analyses to identify specific 

behavioural profiles associated with the IGT. This method combines hierarchical 
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(Ward’s linkage method on Euclidean distance) and non-hierarchical (K-means) 

methods to deal with the randomness of initial centroids selection (Hair et al., 2019). 

This algorithm was performed over the whole sample on the standardized number of 

choices of each deck in each 20-trial block of the IGT. We selected the optimal number 

of clusters based on dendrogram visualization and the gap statistic method (Tibshirani 

et al., 2001). Proportion tests were then performed to check if the number of cases in 

each cluster concerning to the total sample for each diagnostic group was different from 

the expected. All analyses were run in R software (R Core Team, 2021). 

Bayesian data analysis 

We were interested in the number of choices of each deck in each block, as well 

as in the effect that rsFC, traditional diagnostic labels, and cluster membership, may 

exert on these choices. As several comparisons were going to be made, we decided to 

employ Bayesian data analysis, which allows us to explore a single posterior 

distribution from multiple perspectives granting a higher control over Type I errors 

(Kruschke, 2015). For making these estimations, we designed a General Linear Model 

(GLM) that considers, for each deck, block, and group, an estimated number of choices 

that may also be affected by the standardized rsFC between each of the ROIs of each 

individual. Additionally, Bayesian mean comparisons were used to explore whether 

there were differences in rsFC between diagnostic groups or cluster membership 

between the ROIs. For each of these purposes, two different models were run, with the 

only difference between them being the variable used as “Group”, which could be 

diagnostic group or cluster membership. The full details of these models are specified as 

follows. 
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In all the equations, the symbol “~” means “distributed as”, and N(x, y) indicates 

a normal distribution with mean = x and SD = y, while Exp(x) indicates an exponential 

distribution with λ = x. The number of cases is represented by [i]. 

Choices[i] ~ N(μ_choices[i] , σ_choices[Group[i], DB[i]] )   (1) 

μ_choices[i] = α[Group[i], DB[i]] + βrsFC1 [Group[i],  DB[i]]* rsFC1[i] + 

… 

βrsFC15 [Group[i],  DB[i]]* rsFC15[i]        (2) 

0 < σ_choices[Group[i], DB[i]] ~ Exp(1/2)      (3) 

α[Group[i], DB[i]] ~ N( 5, σ_α[Group[i], DB[i]] )     (4) 

0 < σ_α[Group[i], DB[i]] ~ Exp(1/5)       (5) 

βrsFC1 [Group[i],  DB[i]] ~ N(μ_βrsFC1[DB[i]], σ_βrsFC1[DB[i]])    (6) 

…            

βrsFC15 [Group[i],  DB[i]] ~ N(μ_βrsFC15[DB[i]], σ_βrsFC15[DB[i]])             (20) 

0 < σ_βrsFC1[DB[i]] ~ Exp(1)                  (21) 

…            

0 < σ_βrsFC15[DB[i]] ~ Exp(1)                  (35) 

μ_βrsFC1[DB[i]] ~ N(0, 1)                  (36) 

…            

μ_βrsFC15[DB[i]] ~ N(0, 1)                  (50) 

The number of cases [i] was equal to the number of different decks (4; A, B, C, 

or D) times the number of blocks (5) times the number of participants (n = 114) so the 

total number of cases was 2280. The variable Group[i] may present a number of 

different values equal to the levels of the grouping variable employed in each run of the 

model, which was either the traditional diagnostic labels (Control, OCD, SUD, or 

ADHD) or the cluster membership (D-Learners, B-Exploiters, or Scattering). On the 
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other hand, the variable DB[i] always could acquire 20 different values, which result 

from the combination of each type of deck (A, B, C, or D) in each of the blocks of the 

IGT (block 1, 2, 3, 4, or 5). To choose the priors of our model we considered values that 

may be plausible in the linear space of our variables, as recommended in McElreath 

(2018). 

Equation (1) represents the likelihood of the model, which targets the number of 

choices in each case [i]. In equation (2), μ_choices aims to provide the mean estimate of 

this number of choices. Parameter α accounts for the intercept of the model, which may 

present different values depending on the group of the participant, indicated by 

Group[i], and each deck and block, indicated by DB[i]. Additionally, regression 

coefficients βrsFC1 to βrsFC15 evaluate the possible effect that the standardized rsFC 

between our ROIs detailed in the “rsFC data acquisition section” may exert on the 

number of these choices, allowing these coefficients to vary for each group, type of 

deck, and block. In participants who had not had their rsFC registered due to technical 

issues (n = 8), their behaviour was predicted using only the α parameter. Equation (3) 

represents the prior of σ_choices, which provides an estimate of the SD for each number 

of choices that may also vary depending on each group, type of deck, and block, for 

which we chose an exponential distribution with a rate of 2. 

In equation (4) we have the prior for the intercept parameter α, a normal 

distribution centered at 5 since this would indicate an equal number of choices of each 

deck in each block, but with a standard deviation σ_α that may vary for each group, type 

of deck, and block, and for which we choose an exponential distribution σ_α with a rate 

of 5 aiming to be able to capture a wide but plausible variability between conditions, as 

exposed in equation (5). 
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Equations (6) to equation (20) represent the priors for the regression coefficients 

βrsFC1 to βrsFC15 for each group, type of deck, and block. A normal distribution 

depending on higher-level populational parameters was decided for the means 

(parameters μ_βrsFC1 to μ_βrsFC1) and the SDs (parameters σ_βrsFC1 to σ_βrsFC15) of these 

distributions. For the priors of the populational means of these parameters, we assumed 

a normal distribution centred at 0 and with an SD of 1, as exposed in equations (21) to 

(35), while for the priors of the populational SDs were assumed an exponential 

distribution with a rate of 1, as can be seen in equations (36) to (50). The reason for 

establishing this hierarchical structure was to be able to check whether a credible effect 

of the rsFC is detected when all individuals are taken into account, which may indicate 

that rsFC could be associated with the number of choices of each deck in each block for 

everybody. Additionally, we would also be able to detect if this effect is specific to a 

particular diagnostic group or cluster, which would mean that rsFC between our ROIs 

may present different roles depending on these individual features. 

To estimate the differences between means regarding the number of choices in 

the different conditions, we generated new posterior distributions from the subtractions 

of α parameters on each sample of the posterior corresponding to each group and 

condition we aimed to compare. 

Additionally, we also wanted to explore whether there were differences in 

connectivity between diagnostic groups or cluster membership among, those participants 

who had their rsFC registered (n = 106). Bayesian mean comparisons were performed 

assuming the following priors: 

μ[Group[i], rsFC[i]] ~ N( 0, σ_rsFC[Group[i], rsFC[i]] )                (51) 

0 < σ_rsFC[Group[i], rsFC[i]] ~ Exp(1)                 (52) 
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 Equation (51) represents the prior of the mean μ, one for each group and 

connectivity between our ROIs. The distribution for these priors will be centered at 0 

and may present a different standard deviation σ_rsFC depending on these same 

variables, following an exponential distribution with a rate of 1 as exposed in equation 

(52). These priors will adapt to the specific distribution of each measure, which may 

allow for an accurate estimation of each mean of interest. After all, these means were 

estimated, to estimate the differences between means, we generated new posterior 

distributions from the subtractions between means estimated on each sample of the 

posterior of the groups we aimed to compare. 

After the models were run, statistical decisions were made employing the 95% 

Highest Density Intervals (HDIs) as well as Regions Of Practical Equivalence (ROPEs), 

which determine a range around specific values of interest, such as zero when we 

estimate the difference between means or the value of regression coefficients. When the 

HDI completely excludes the ROPE, we will conclude that the values inside the ROPE 

are not credible (Kruschke, 2011). Regarding the number of choices, we will only 

consider as relevant those effects that suggest at least a change of one in the number of 

decks chosen per block, so we will establish a ROPE of (-1,1) for mean comparisons 

and a ROPE of (-.5, .5) on the standardized regression coefficients of the rsFC between 

our ROIs, which would suppose a difference of at least one choice when this measure 

varies by two standard deviations (SDs). On the other hand, when we explore 

differences in rsFC between our ROIs in the different groups, we will consider as 

relevant all the differences in which the 95% HDIs exclude the value. As this measure is 

given as the correlation between two areas and since our approach here is exploratory, 

we have no a priori knowledge of which amount of change would suppose a relevant 

difference. 
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All analyses were performed using the RStan package (Stan Development Team, 

2022). For each analysis, we extracted 12000 samples using Markov Chain Monte Carlo 

(MCMC) sampling, each of the 4 chains having 2000 warmup samples and saving 3000 

samples. Traceplots for all chains and parameters, as well as the Gelman-Rubin test 

(Gelman and Rubin, 1992), showed an appropriate convergence with all �̂� values below 

1.05.  

Results 

Clustering analyses 

A three-cluster structure was the optimal solution to characterize all participants’ 

deck choice behaviour according to the Gap statistic method. Graphical exploration of 

the dendrogram also supported this clustering solution (see Figure 15). 

Figure 15  

Graphical representation of the best clustering solution.  
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The first cluster (n =27; Mage = 37.72, SDage = 9.71) exhibited a preference for 

Deck D. The second cluster (n=25; Mage = 43.37, SDage = 1.41) exhibited a preference 

for deck B. The third cluster (n=62; Mage = 37.81, SDage = 12.14) did not develop a 

preference for any deck. Thus, we labelled these profiles as “D-Learners”, “B-

Exploiters” and “Scattering”, respectively. Proportion tests suggested there were no 

differences in the number of individuals belonging to each cluster depending on their 

diagnostic group when compared to the expected proportion of cases within each cluster 

(see Table 6 and Figure 16). 

Table 6 

Participants’ proportional distribution in each cluster according to each diagnostic 

label. 

Cluster 
HC 

(n = 34) 

OCD 

(n = 25) 

SUD 

(n = 41) 

ADHD 

(n = 14) 

D-Learners 

(n = 27) 

n = 9 

χ2=.03 

p=.09 

n = 10 

χ2=2.84 

p=.09 

n = 6 

χ2=1.39 

p=.24 

n = 2 

χ2=.26 

p=.61 

B-Exploiters 

(n = 25) 

n = 5 

χ2=.66 

p=.42 

n = 6 

χ2=.000 

p=.99 

n = 9 

χ2=.000 

p=.99 

n = 5 

χ2=.85 

p=.36 

Scattering 

(n = 62) 

n = 20 

χ2=.12 

p=.73 

n = 9 

χ2=2.71 

p=.10 

n = 26 

χ2=1.02 

p=.32 

n = 7 

χ2=.004 

p=.95 
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Figure 16  

Graphical representation of the percentage of participants in each cluster based on 

their diagnostic label. 

 

 

Table 7 

Demographic information of each cluster. 

Cluster Number of women Annual incomea 
Years of formal 

educationb 

D-Learners 

(n = 27) 

8  

χ2=.00 

p = .999 

14,30.46 ± 

11,15.65 
15.58 ± 5.62 

B-Exploiters 

(n = 25) 

8 

χ2=.012 

p = .911 

11,352.38 ± 

9,83.70 
11.65 ± 5.20 

Scattering 

(n = 62) 

17 

χ2=.024 

p = .876 

16,209.12 ± 

15,249.68 
13.62 ± 5.02 

Note. aWe could not collect annual income from nine of the SUD participants and from 

one of the ADHD participants. bYears of formal education from seven of the SUD 

participants is missing. 
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Deck preference 

To ease the comprehension of the results, only credible differences will be 

commented on. Statistics regarding the differences in means are exposed in Appendix 

II. 

Diagnostic group 

Participants did not show any credible differences regarding deck choice0 

behaviour in the IGT as a function of their diagnostic group (see Figure 17).  

Figure 17  

Real (solid points) and predicted (blank points) number of choices of each deck as a 

function of diagnostic group and block, respectively representing the true means and 

the mean of the posteriors.  

 

Note. The solid and dashed lines represent the standard error of the mean (SEM) and the 

95% HDIs. 
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Cluster membership 

“D-Learners” (Cluster 1) showed a preference for Deck D from the beginning of 

the task when compared with the other clusters, which was maintained until the last 

block of the task. Starting on Block 3, this cluster showed a higher preference for Deck 

D than for the other decks. “B-exploiters” (Cluster 2) revealed a preference for Deck B 

starting in the first block and also maintained until the last block of the task. These 

participants showed a higher preference for this deck from the first block of the task 

onward. Lastly, “Scattering” (Cluster 3) was distinguished by showing no credible 

differences between any of the chosen decks in any of the blocks, suggesting they had 

no preferred strategy and responded randomly. This information is graphically depicted 

in Figure 18. 

Figure 18  

Real (solid points) and predicted (blank points) number of choices of each deck as a 

function of clusters and blocks, respectively representing the true means and the mean 

of the posteriors.  

 
Note. The solid and dashed lines represent the standard error of the mean (SEM) and the 

95% HDIs. 
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Resting-state functional connectivity differences  

Bayesian mean comparisons revealed no credible differences in the rsFC 

between any of the ROIs neither comparing Clusters nor diagnostic groups. Data 

regarding these values are exposed in Figure 19 and Figure 20. 

Figure 19  

Real (solid bars) and predicted (stripped bars) rsFC values between each ROI as a 

function of clusters, representing the true means and the mean of the posteriors.  
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Figure 20  

Real (solid bars) and predicted (stripped bars) rsFC values between each ROI as a 

function of diagnostic group, representing the true means and the mean of the 

posteriors.  

 

Note. The vertical bars represent the standard error of the mean (SEM) or the 95% 

HDIs. Abbreviations correspond to left orbitofrontal cortex (lOFC), right orbitofrontal 

cortex (rOFC), left dorsolateral prefrontal cortex (lDLPFC), right dorsolateral prefrontal 

cortex (rDLPFC), left parietal prefrontal cortex (lpPC) and right parietal prefrontal 

cortex (rpPC). 
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Resting-state functional connectivity as a predictor of deck choice behaviour 

Analyses showed no credible relationship between the rsFC between any of the 

ROIs and deck choice behaviour in any stage of the task, neither at the whole sample 

level nor in any diagnostic group or cluster.  

Discussion 

In this study, we employed hybrid clustering analyses to identify specific 

decision-making profiles among a sample of healthy adults and OCD, ADHD, and SUD 

patients during the IGT. We also applied a bayesian GLM to explore the role of rsFC 

between cortical areas of the FPN as a biomarker of deck choice behaviour in the IGT.  

Our first hypothesis is partially supported since two of the clusters show a 

notable preference for decks associated with infrequent losses. Concretely, cluster 

analyses revealed three different subpopulations. Importantly, all clusters presented no 

differences regarding sex distribution, annual income, or years of formal education, 

which have been proposed as critical variables for IGT performance (Evans et al., 2004; 

Ursache and Raver, 2015; van den Bos et al., 2013). The first cluster, “D-Learners”, 

developed a long-term advantageous decision-making strategy, characterized by a 

preference for advantageous choices that carried low-frequency but high-magnitude 

losses. The second cluster, “B-Exploiters”, was characterized by the exploitation, since 

the early stages of the task, of the disadvantageous deck that also offers low-frequency 

but high-magnitude losses. This could be understood as a long-term maladaptive 

strategy. Lastly, a fully scattering-based strategy profile was shown by the third cluster. 

These latter participants did not develop a preference for any deck at any stage of the 

task.  

Theoretically, developing a long-term advantageous strategy during the IGT 

requires, in the first place, exploring the different choices to learn the contingency rules 
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of each deck. After this, behaviour may be adapted in a goal-directed manner, exploiting 

the most profitable choice. “D-Learners” seem to show this exploration-exploitation 

strategy since at the beginning of the task they had a similar number of choices of each 

deck, and from the third block onwards, they show a high preference for Deck D. 

On the other hand, presenting a non-profitable behaviour in the IGT may be due 

to different reasons. Scarce early exploration could generate a lack of information about 

the possible decisions and their outcomes, which inevitably leads to a biased 

representation of the alternatives presented in the task. In our case, in pursuit of early 

exploitation, “B-Exploiters” revealed a notable preference for Deck B since the 

beginning of the task. Another explanation of this behaviour could be a negligent 

evaluation, driven by a high outcome sensitivity and a low loss aversion, of the 

expected utility of this deck considering the frequency and magnitude of gains and 

losses, which may be in accordance with models that aim to explain the way people 

evaluate decisions under risk (Kahneman and Tversky, 1979). This profile is also 

consistent with the so-called prominent Deck B phenomenon (Lin et al., 2007; Toplak et 

al., 2005) by which non-defective decision-makers would also tend to choose this deck 

over the rest. It has been used to claim a reformulation of the basic assumptions of the 

IGT (Lin et al., 2007).  

Contrarily, showing excessive exploration may also be undesirable in this 

paradigm, since the maximization of profits requires the exploitation of specific choices 

over the rest. The “Scattering” cluster does not present a preference for any deck in any 

stage of the task, which may suggest they do have not a clear representation of the 

different outcomes carried out by each deck, which may make them evaluate all choices 

similarly. Another possibility is that participants could have learned a fictitious do-not-

exploit-a-deck rule, which is consistent with a sequential exploration pattern (Ligneul, 
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2019), and would reflect an incorrect evaluation of the ratios and magnitudes of the 

gains and losses of each deck. In this sense, when asked, many participants (43.07% of 

asked participants) declared that the optimal strategy was to switch when a loss appears, 

or even when no penalties were given. 

The existence of such differential response styles also highlights the importance 

of studying decision-making processes at the individual level, especially when the IGT 

is employed, because it is a complex task that encompasses a wide variety of possible 

strategies to be followed (Verdejo-Garcia et al., 2022). Importantly, even our healthy 

individuals reflect this same variability of preferences, so we think more caution should 

be taken when drawing inferences from findings when assuming that either (i) healthy 

people will adapt a long-term advantageous behaviour or (ii) that maladaptive patterns 

detected in clinical populations are due to the key features of the clinical diagnoses.  

Regarding our second hypothesis, we predicted that these profiles would cut 

across diagnostic labels, which has also been supported by data. We observed that 

maladaptive decision-making in the IGT is not a core feature of patients with a 

diagnosis of ADHD, OCD, and SUD. Instead, participants from each diagnostic group, 

as well as healthy participants, showed not a different probability of being included in 

each of the abovementioned clusters. When we explored the number of choices of each 

deck in each of the blocks we did not find any credible differences between diagnostic 

groups and healthy participants either. So, according to our data, variability in deck 

choice behaviour during the IGT seems to be similarly distributed among individuals 

with and without diagnoses. These findings are in line with studies reporting no 

differences in IGT performance between ADHD and OCD and healthy people (Groen et 

al., 2013; Norman et al., 2018). However, it has been widely reported that SUD patients 

underperform healthy controls in the IGT (Bartzokis et al., 2000; Bechara and Martin, 
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2004; Kovács et al., 2017; Verdejo-Garcia et al., 2007), which is inconsistent with our 

results. 

These studies usually report the net score as a measure of decision-making, 

which may lead to the loss of valuable information. We suggest that deck preferences 

develop as individuals experience the contingencies associated with each deck and that 

this process will be mediated by individual differences in factors such as loss aversion, 

risk aversion, reward sensitivity, or error processing, which are not possible to address 

paying attention only to the net score. Global outcomes such as the net score hide the 

genuine behavioural pattern of the participants and may contribute to contradictory 

results in the literature. Instead, focusing on how each individual develops a certain 

deck preference during the task may provide insightful information about the underlying 

mechanisms of decision-making that may drive the formation of an optimal or 

suboptimal choice strategy. In this sense, following Steingroever et al. (2013), healthy 

participants would prefer decks offering infrequent losses instead of those which offer a 

long-term profit, which is also supported by Kumar et al. (2019) and would present an 

idiosyncratic choice behaviour. We consider that our results are in line with this 

research, and to some extent, extend it to impulsive-compulsive spectrum diagnosed 

patients’ behaviour. 

Regarding clinical implications, our results may shed light on disentangling 

symptoms heterogeneity and guiding novel conceptualizations of psychiatric 

dimensions. Here we show that not all individuals belonging to clinical groups 

commonly attributed with a defective decision-making process manifest this deficit, and 

if they do, they do not manifest it in the same way. Understanding these individual 

differences may be important to identify relevant psychological traits across the 

spectrum of psychopathology, and, therefore, to design effective and personalized 
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interventions. Future research could try to further investigate this issue since the 

replication of the obtained decision-making profiles may suggest a need for a paradigm 

shift in the way performance in the IGT is conceptualized.  

Concerning our third and last hypothesis, rsFC between ROIs has not shown any 

relationship with the behaviour of the participants at any level. In contrast to other 

research (Hobkirk et al., 2019; Li et al., 2013; Wei et al., 2016), we found no evidence 

to support rsFC as a biomarker of decision-making processes in the IGT, as has been 

suggested by the absence of credible differences in connectivity patterns between 

different clusters, as well as by the lack of influence of the rsFC between ROIs on the 

number of choices of any deck in any block. A possible explanation for this result 

would be in line with the hypothesis of the FPN as a flexible cognitive control node. 

Following this, the FPN would be functionally connected to other specialized networks, 

such as salience or default mode networks, which have been not assessed in the present 

study, and it would be especially implicated in rapidly adapting the connectivity across 

widespread brain regions according to task demands (Cole et al., 2013; Zanto and 

Gazzaley, 2013). Following this hypothesis, further research could investigate the 

between-networks functional connectivity (instead of only within-network functional 

connectivity) and its potential role in uncertain decision-making. Another explanation 

could be derived from the imbalance between the DMN and the FPN in resting- and 

task-induced states. While the DMN connectivity usually decreases under challenging 

tasks, so it could be a reflect of spontaneous brain activity during resting-state (Raichle, 

2015; Smallwood et al., 2021), FPN seems to be recruited in contexts where executive 

functioning is needed (Niendam et al., 2012). In relation to this, functional changes in 

FPN connectivity from rest to IGT context have been reported. However, no 

relationship between those changes and IGT performance was found (Bolt et al., 2016). 
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Some limitations of this study should be noted. First, most patients were on 

medication without a wash-out period, so we could not control its influence on IGT 

performance and rsFC recording. Second, the absence of a real monetary reward in a 

gambling paradigm as the IGT might have a negative impact on participants’ motivation 

(Bowman and Turnbull, 2003). Third, IGT performance seems to recruit subcortical 

brain areas (Li et al., 2010), but, as a limitation of the fNIRS technique, they could not 

be measured in this study. Fourth, other variables such as risk aversion or reward 

sensitivity, which may be at the basis of individual differences driving the development 

of different decision-making strategies (Capa and Bouquet, 2018; Penolazzi et al., 2012; 

Tom et al., 2007), have not been directly assessed in the present study. In this sense, 

further research could focus directly on these variables, applying an event-related 

design, to investigate the individual differences in neural reward/punishment processing 

driving deck choice preferences during the IGT. Finally, some authors have suggested 

that larger sample sizes could be required to extract more reliable conclusions from 

brain and behaviour studies (Marek et al., 2022; Turner et al., 2018), so it could also be 

desirable to increase the sample size to diminish the standard error of the employed 

measurements.
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CHAPTER 6. STUDY IV: Frontal-Midline Theta and Iowa 

Gambling Task: A Transcranial Alternating Current 

Stimulation Preliminary Study 

This Study was carried out during an international research stay in the Charité – 

Universitätsmedizin Berlin (Berlin, Germany). Bearing in mind everything learned 

during the development of the present Doctoral Thesis, this experimental procedure is 

designed to combine tACS and EEG to investigate the role of the frontal-midline theta 

oscillation activities in the performance and learning on the IGT, which will be 

understood from a probabilistic approach. We administered frontolateral in-phase tACS 

at theta frequency (6-Hz) for eight minutes before the task. We applied a Bayesian 

logistic regression model to explore the relationship between theta power and frequency 

mismatch and behavioural parameters. We found a positive relationship between theta 

power and final performance in the sham group. No evidence of effect of theta-tACS 

was found. Please note that the presented results of this Study are preliminary. 

This experiment is part of a larger research project that corresponds to Leon, J.J., 

Fernández-Martin, P., Haslacher D., Soekadar, S., and Flores P. (2023). Frontal-Midline 

Theta and Iowa Gambling Task: A Transcranial Alternating Current Stimulation 

Preliminary Study. In preparation. 
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Rationale 

Frontal-midline theta (FMT; 4-8 Hz) has been proposed as a neural 

communication signal by which top-down control mechanisms would be recruited in 

highly cognitively demanding environments (Cavanagh and Frank, 2014). In other 

words, it is understood as an electrophysiological brain signal of “need-for-control” that 

drives behavioural adaptations in uncertain contexts (Cavanagh and Frank, 2014). FMT 

is supposed to be generated by prefrontal regions such as the anterior cingulate cortex 

(ACC) and medial prefrontal cortex (mPFC) (Cavanagh and Frank, 2014) and to 

synchronize as task cognitive demands increase (Klimesch, 1999). In this sense, theta 

power (the number of neurons firing synchronously at theta frequency) has been 

proposed as a mediating variable for working-memory, attention, conflictive choice 

behaviour, outcome processing and reward-based learning (Cavanagh et al., 2010, 2012; 

Cavanagh and Frank, 2014; Cohen, 2014; Marco-Pallares et al., 2008; Mas-Herrero and 

Marco-Pallarés, 2014; Rajan et al., 2019; Sauseng et al., 2005, 2008; van de Vijver et 

al., 2011). In addition, previous studies have linked an increased theta power to worse 

IGT performance, proposing a relationship between theta power and reward sensitivity 

(Massar et al., 2014; Schutter and van Honk, 2005), and to risk-taking behaviour during 

a Balloon Analogue Risk Task (Sela et al., 2012).  

The application of tACS at theta frequency has been widely used to modulate 

executive functions (for a review, see Klink et al., 2020) as visuospatial and working 

memory (Jaušovec et al., 2014; Jaušovec and Jaušovec, 2014; Kleinert et al., 2017; 

Meng et al., 2021; Pahor and Jaušovec, 2018), and fluid intelligence and reasoning 

(Jaušovec et al., 2014; Pahor and Jaušovec, 2014). However, conflictive, and opposite 

findings have been also found by other researchers when applying theta-tACS to 
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modulate theta band oscillatory activities (Dantas et al., 2021; Feurra et al., 2012; 

Soutschek et al., 2021; Wischnewski et al., 2021; Wischnewski and Compen, 2022).   

One possible explanation for the inconsistencies of the effect of tACS is the 

mismatch between the stimulation frequency and the endogenous peak frequency of 

each individual (Lorenz et al., 2019; Stecher et al., 2021; Kasten et al., 2019). In this 

sense, the effect of tACS has been proposed to be highly dependent on pre-stimulation 

brain states (Herrmann et al., 2013). Therefore, individual differences should be taken 

into account to deeply understand the potential tACS effects on neurophysiology and 

behaviour (Stecher and Herrmann, 2018).  Two different approaches have been 

proposed to overcome this potential limitation of the combination of tACS and EEG 

recordings. One the one hand, closed-loops stimulation protocols use to be designed to 

tune the stimulation parameters based on the current brain state, instead of pre-tuning 

them, showing promising results (Jones et al., 2018; Ketz et al., 2018; Lorenz et al., 

2019; Stecher et al., 2021). On the other hand, frequency mismatch could be understood 

as the absolute distance between endogenous and stimulation frequency and some 

research has shown effects of tACS at different frequencies only when the frequency of 

the stimulation closely targets the individual endogenous frequency (i.e., when the 

mismatch is close to zero) (Javadi et al., 2017; Krause, 2022). 

Despite FMT oscillatory activities are crucial for reinforcement learning and 

cognitive control in uncertain situations, its implications in reward-based decision-

making under ambiguous conditions, such as those recreated during the IGT, remain 

unclear. Additionally, the capability of theta-tACS to modulate decision-making 

processes during the IGT through the entrainment of theta activity remains unexplored. 

Thus, this study aimed to clarify the role of theta power on IGT performance and the 

capability of theta-tACS to modulate the decision-making process. We hypothesized 
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that (i) theta power will predict the performance on the IGT and, (ii) frequency 

mismatch between theta-tACS and endogenous theta peak frequency will modulate the 

relationship between theta power and the performance on the IGT in a frequency-

specific manner. 

Method 

Participants 

Forty-four volunteers were recruited through mailing lists, advertisements, and 

word of mouth. Participants must be at least 18 years old and met the following 

inclusion criteria: (a) naïve to the Iowa Gambling Task, (b) no neurological or genetic 

disease, (c) no history of psychiatric disorders, and (d) no contraindications to 

transcranial electrical stimulation described by safety and regulatory application 

guidelines (Screening questionnaire for Transcranial Electrical Stimulation, University 

of Göttingen). Demographic information about the sample can be consulted in Table 8. 

Participants were informed about the objectives and procedure of the study and 

provided verbal and written informed consent before starting the session. Participants 

were paid 10€ per hour and, as they were informed, got an extra payment depending on 

task performance (proportionally to IGT net score). The entire experimental procedure 

lasted for approximately two hours. 
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Table 8 

Demographics of the sample. 

Group Active (n=22) Sham (n=20) 

Demographics   

Age 27.91 ± 5.31 27.70 ± 6.53 

% Women 40.91 40 

Years of formal education 17.95 ± 3.64 17.15 ± 3.45 

Clinical measures   

UPPS-P 41.32 ± 7.69  43.15 ± 7.77 

DAST-10 .95 ± 1.76 1.30 ± 2.00 

STAI-Trait 40.00 ± 8.31 39.10 ± 8.24 

STAI-State 44.77 ± 8.61 43.20 ± 6.35 

AUDIT 5.32 ± 6.03 5.25 ± 5.89 

SOGS .18 ± .59 .95 ± 2.11 

Note. Mean ± SD is represented. UPPS-P: UPPS-P Impulsive Behaviour Scale; DAST-

10: Drug Abuse Screening Test; STAI: State-Trait Anxiety Inventory; AUDIT: Alcohol 

Use Disorders Identification Test; SOGS: South Oaks Gambling Screening. 

Materials 

Iowa Gambling Task. 

The IGT was applied following the same contingency rules as in the previous 

Study. We modified the inter-trial interval (ITI) and the duration of the feedback display 

to make the task suitable as an event-related design for neuroimaging (haemodynamic 

fNIRS data) measures, which will be used for other research purposes. Each trial began 

with the appearance of a fixation cross for a variable ITI ranging from six to nine 

seconds. After that, the four decks appeared on the screen. Participants were able to 

respond after 5 seconds of the decks presentation. After each choice, a screen showing 

the selected deck was displayed for one second. Finally, a six seconds duration feedback 

screen was shown. A graphical depiction of the task can be observed in Figure 21.  



108 

 

Figure 21  

Graphical summary of the experimental task used.  

 

Transcranial Alternating Current Stimulation 

Amplitude-Modulated Transcranial Alternating Current Stimulation (AM-tACS) 

was administered by a neuroConn Magstim DC-STIMULATOR PLUS (neuroCare 

Group GmbH, Ilmenau, Germany). Two circular rubber electrodes (34 mm diameter, 

2mm thickness) were placed over C1 and FTT10h, following the 10-5 International 

EEG System. Electrodes were attached to the scalp using conductive ten20 paste 

(Weaver and Co, Aurora, CO, USA). Stimulation was applied using a carrier frequency 

of 40 Hz, an envelope frequency of 6 Hz, and a current amplitude of 1mA peak-to-peak. 

In the sham condition, alternating current was administered only for the first minute and 

was preceded by 30 seconds of ramp-up and followed by 30 seconds of ramp-out. The 

impedance of the electrodes was kept below 10 kΩ. A simulation of the generated 

electrical field is represented in Figure 22.  

At the end of the session, the Questionnaire of sensations related to transcranial 

electrical stimulation from the University of Göttingen (http://www.neurologie.uni-

goettingen.de/downloads.html) was administered to all participants.  

http://www.neurologie.uni-goettingen.de/downloads.html
http://www.neurologie.uni-goettingen.de/downloads.html
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Figure 22  

Simulated electrical field. 

 

EEG data acquisition 

32-channel electroencephalography (EEG) was recorded using actiCAP slim 

active electrodes attached to a LiveAmp wireless amplifier (Brain Products GmbH, 

Germany). Impedances were kept below 20 kOhm. EEG was recorded at a sampling 

rate of 500 Hz. 

Procedure 

This study followed a single-session, single-blind, sham-controlled, and mixed 

design with frontolateral theta-tACS as the experimental manipulation (see Figure 23). 

After a detailed explanation of the entire procedure and after the participants had signed 

the informed consent form, first, we screened our participants in clinical outcomes 

through the Alcohol Use Disorders Identification Test (AUDIT) (Saunders et al., 1993), 

Drug Abuse Screening Test (DAST-10) (Skinner, 1982), Short Impulsive Behaviour 

Scale (UPPS-P) (Cyders et al., 2014), South Oaks Gambling Screen (SOGS) (Lesieur 

and Blume, 1987) and the State-Trait Anxiety Inventory (STAI) (Spielberger et al., 

1983). Then, we recorded 8 minutes of resting-state functional connectivity from each 

participant through EEG approach. After that, we began with the stimulation period 

(without stopping the recording), which lasted until the end of the task. Participants 
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were stimulated during 8 minutes before the start of the task. Participants were 

sequentially assigned to the active or sham condition trying to ensure the same number 

of participants belonging each group. Additionally, we controlled for sex and age 

distribution in the assignment process. Finally, participants performed the IGT. Brain 

activity was recorded during the whole session, which lasted approximately two hours. 

This procedure was approved by the local Ethical Committee.  

Figure 23  

Graphical summary of the experimental procedure.  

 

Statistical analysis 

EEG analysis 

EEG was analysed using MNE-Python (Gramfort et al., 2013). First, data in 

absence of AM-tACS and during AM-tACS were bandpass-filtered between 4 – 8 Hz 

using a zero-phase finite impulse response filter. To obtain the individual peak theta 

frequency, a Welch power spectral estimate was performed on the data in absence of 

AM-tACS. Subsequently, the FOOOF method (Donoghue et al., 2020) was used to 

parametrize the resulting power spectra averaged across frontocentral EEG channels 

(Fz, FCz, FC1, and FC2 of the international 10-10 system), and the frequency of the 

largest peak in between 4 and 8 Hz was extracted. To suppress stimulation artifacts 

during AM-tACS, covariance matrices of the bandpass-filtered data in absence of and in 

the presence of AM-tACS were computed, and stimulation artifact source separation 

(Haslacher et al., 2021) was applied to the data in the presence of AM-tACS. To 
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compute theta power, a Welch power spectral estimate was used, and the resulting 

power values were averaged between 4 and 8 Hz. 

Bayesian Logistic Regression Model 

We were interested in the frequency-specific effect of tACS, as well as in the 

role of theta power on performance on the IGT. We followed a fully probabilistic 

approach to the understanding of the performance on the task for several reasons. First, 

we think that this approach could be useful to avoid misunderstandings when 

interpreting the participant’s performance during the task. Second, this approach allows 

us to observe the performance of the participants on a trial-by-trial basis, which, in our 

view, may provide meaningful insights about how participants make choices along the 

whole task. Third, this approach allows us to establish precise definitions of the 

processes in which we are interested. We considered choices of Deck C and Deck D 

(long-term advantageous decks) as correct responses, while choices of Deck A and 

Deck B (long-term disadvantageous decks) were considered as incorrect responses, so 

choices will follow a binomial distribution between 0 (incorrect responses) and 1 

(correct responses). Three main behavioural parameters were then defined. First, we 

defined “final accuracy” (α) as the probability to make an advantageous choice in the 

last trial of the task. “Learning” (βTrial) was defined as a credible change between the 

probability to make an advantageous choice in the first trial and the last trial, that is, the 

difference between the first and the last trial. “Learning speed” (γ) was understood as 

the velocity at which a certain participant progresses from its initial to its optimal state.  

We decided to design a Bayesian Logistic Regression Model for several reasons. 

First, we aimed to estimate the probability to make an advantageous choice at the end of 

each block of the task depending on the type of stimulation (active- vs. sham-tACS). 

Second, we also were interested in the role that theta power and tACS after may exert 
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over the performance on the task. Third, we wanted to explore the relationship between 

theta power and other parameters related to learning, such as learning speed. 

Standardized theta power and frequency mismatch were used as predictors of the 

probability of choosing an advantageous deck in the last trial of the task and as 

moderators of the learning speed parameter. Frequency mismatch was calculated as 

| 6 − 𝐸𝑃𝐹 | 

Where EPF would be the endogenous theta peak frequency of each participant 

and 6 accounts for the stimulation frequency. We then transformed this value as 

follows:  

1 − ( 
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ

2
 ) 

After applying the transformation, we got values ranges from 0 to 1, where 0 

would mean maximum distance within theta frequency range (4 Hz or 8 Hz) and 1 

would mean no mismatch (i.e., the stimulation frequency is equal to endogenous peak 

frequency). Estimation for participants who presented missing data in the predictors was 

performed considering only the behavioural parameters. FMT data from active group 

were discarded due to the presence of artifacts derived from stimulation in most of the 

participants. The model was defined as follows. As explained in the Method section of 

the previous chapter, in all the equations, the symbol “~” means “distributed as”, and 

N(x, y) indicates a normal distribution with mean = x and SD = y. Binomial(x, y) 

indicates a binominal distribution with probability of success (x) = y. 

Choice[i] ~ Binomial(1 , p[i] )        (1) 

p[i] = α[Group[i]] + βMismatch [Group[i]] * Mismatch[i] -  

βtheta_power [Group[i]] * Theta_power[i] + 

(βTrial[Group[i]] * (((100-ntrial[i])/99.0) ^ (γ[Group[i]] * (1 + (modγ)))))   (2) 

modγ  = βmismatch_γ[Group[i]] * Mismatch[i]  + βtheta_power_γ[Group[i]] *                     (3)   
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Theta_power[i]    

α[Group[i]] ~ N(0, 2)        (4) 

βmismatch[Group[i]] ~ N(0, .1)       (5) 

βtheta_power [Group[i]] ~ N(0, .2)       (6) 

βTrial[Group[i]] ~ N(0, 1)        (7) 

0 > γ[Group[i]] ~ N(2, .5)        (8) 

βmismatch_γ[Group[i]] ~ N(0, .1)       (9) 

βtheta_power_γ[Group[i]] ~ N(0, .2)                 (10) 

The number of cases [i] was equal to the number of trials (100) times the number 

of number of participants (n = 38) so the total number of cases was 3800. The variable 

Group[i] may present a number of different values equal to the levels of the grouping 

variable (Active tACS or Sham tACS). Variable ntrial represents the number of trials of 

the task, so it is ranging between 1 and 10.  

Equation (1) represents the likelihood of the model, which targets the probability 

to make an advantageous choice in each case [i]. In equation (2), p[i] aims to provide 

the estimated probability (in logit) to make an advantageous choice in each case [i]. 

Parameter α represents the intercept of the model, which may present different values 

depending on the group of the participant, indicated by Group[i]. Following the 

equation, α would account for the probability to make an advantageous choice in the last 

trial for each Group. Regression coefficients βMismatch and βtheta_power represent the effect 

that the frequency mismatch and theta power, respectively, may exert on that mentioned 

probability for each Group. βTrial accounts for the difference in the probability to make a 

correct response between the first and the last trial of the task for each Group. βTrial is 

moderated by a value resulting from the exponential of γ over a number that represents 

the number of the trial [i]. The task is composed by 100 trials, so we substract the ntrial[i] 
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from 100 and then it is divided by 99. This number will range from 1 (first trial) to 0 

(last trial) based on the number of trial (ntrial) of each case [i]. This allow us to test the 

impact of each trial in the subsequent decision. The exponential γ would take values 

depending on the Group [i] and will be moderated by modγ. As exposed in equation (3), 

modγ is a generated variable that accounts for the moderation of the frequency mismatch 

and theta power over the exponential γ. Then, this exponential would account for the 

speed of each Group [i] to change from their initial state to their optimal state. 

Equations (4) to (10) represent the priors of each parameter. The prior for the 

intercept of the model (Equation 4) is set to follow a normal distribution with mean 

equals to zero and standard deviation equals to two, because we consider plausible high 

and low probabilities of making advantageous choices in each block and in each group. 

Prior for frequency mismatch related regression coefficients were to follow a normal 

distribution centred in 0 with .1 SD, while priors related to theta power were centred in 

0 with .2, considering plausible only small size effects. We would expect the impact of 

the trial on p[i] to be greater than the frequency mismatch and theta power so its 

respective prior is centred at 0 considering as plausible SDs equals to 1. We restricted 

the possible values of γ to be positive to avoid mathematically irresolvable exponentials. 

We centred it at 2 assuming a quadratic learning progression. In this case, we would 

consider plausible variations of .5 standard deviations from the centre. 

As in the previous Study, the model was applied using the RStan package (Stan 

Development Team, 2022). Statistical inferences were made based on the 95% HDIs 

and ROPEs. In this case, we established a ROPE (-.05, .05) so we only considered as 

credible the effects that imply a variation of more than 5% chance of probability of a 

correct response. We extracted 12000 samples using Markov Chain Monte Carlo 

(MCMC) sampling, each of the 4 chains having 1000 warmup samples and saving 3000 
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samples. Traceplots for all chains and parameters, as well as the Gelman-Rubin test 

(Gelman and Rubin, 1992) showed an appropriate convergence with all �̂� values below 

1.05.  

Results 

EEG-tACS montage acceptability 

 From the Active group, 18.8% of the participants reported no influence of tACS 

on their general state. 54.55%, 22.73%, and 4.55% of the participants informed about a 

slight, considerable, and much influence of tACS on their general state, respectively. 

Regarding the sham group, no influence was reported by 35% of the participants, while 

slight, considerable, and much influence was reported by 50%, 10%, and 5% of the 

participants, respectively. Fisher’s exact test showed no significant differences in the 

proportion of participants reporting different tACS sensations between groups.   

Integrity of blinding 

 From the active group, 31.82% of participants were not sure about the 

experimental condition they were under, 59.09% manifested that it was active condition 

and 9.09% thought they were under sham stimulation. From the sham group, 40%, 45% 

and 15% of participants reported that they were not sure about the experimental 

condition, that they were in the active condition and that they were in the sham 

condition, respectively. Then, we suggest that our blinding procedure was successful (χ² 

= .90, df = 2, p = .637). 

Bayesian Logistic Regression Model  

 Mean of the posterior distribution for each parameter can be seen in Table 9. 

Active and sham group showed no different probability to make an advantageous choice 

in the last trial of the task (α: mean of the differences = .140, 95% HDI from -.473 to 

.206). The difference between the first and the last trial seems to be credibly higher in 
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the active than in the sham group (βTrial: mean of the differences = .605, 95% HDI from 

.151 to 1.061). A positive relationship between theta power and the probability to make 

an advantageous (see Figure 24) choice in the last trial was found in the sham group 

(standardized βtheta_power, mean of posterior = .295, 95% HDI from .186 to .407). No 

credible differences between groups in the learning progression parameter were found 

(γ: mean of the differences = -.654, 95% HDI from -1.741 to .415). No credible 

relationship between frequency mismatch and performance in the las trial was found 

(βmismatch: Mean of posterior = -.078, 95% HDI from -.236 to .084). Also, no moderation 

effects of theta power nor frequency mismatch over the learning speed parameter were 

found (βmismatch_γ: Mean of posterior = -.057, 95% HDI from -.239 to .123; standardized 

βthtea_power_γ: Mean of posterior = .191, 95% HDI from -.118 to .510). Real and simulated 

probability of making an advantageous choice in each trial as a function of group and in 

the whole sample is depicted in Figure 25 and Figure 26, respectively.  

Table 9 

Mean of the posterior distribution (and 95% HDIs) in active and sham groups, and 

mean of the differences (and 95% HDIs) of the estimated parameters. 

Parameter Active Group Sham Group Mean of the differences 

α 
.632 

(.394, .886) 
.772 

(.558, 1.006) 
-.144 

(-.473, .206) 

βTrial 
1.660 

(1.346, 1.965) 

1.055 

(.715, 1.395) 

.605 

(.151, 1.061) 

Γ 
1.277 

(.832, 1.746) 
1.931 

(.937, 2.909) 
-.654 

(-1.741, .416) 

βthtea_power_γ — 
.191 

(-.118, .510) 
— 

βtheta_power — 
.295 

(.186, .407) 
— 

βmismatch_γ 
1.931 

(.937, 2.909) 
— — 

βmismatch 
-.078 

(-.236, .084) 
— — 

Total Net Score 
-6.646 

(-5.839, -7.512) 

2.474 

(19.570, 21.358) 

-27.120 

(-28.287, -25.867) 
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Note. (—): Missing data due to the reduced number of observations to estimate 

parameters. 

Figure 24  

Scatterplot representing the relationship between standardized theta power and the 

probability to make an advantageous choice in the last trial of the task (α) for the Sham 

group. 

 

Figure 25  

Posterior predictive checks for the active and the sham group. Mean of the real (red 

lines and points) and predicted (black line) probability of making an advantageous 

choice in each trial as a function of group, respectively.  
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Note. The dashed lines represent the standard error of the mean (SEM) and the 95% 

HDIs. 

Figure 26  

Posterior predictive checks for the whole sample. Mean of the real (red lines and 

points) and predicted (black line) probability of making an advantageous choice in each 

trial as a function of group, respectively. 

 

Note. The dashed lines represent the standard error of the mean (SEM) and the 95% 

HDIs. 

Discussion 

This study proposed a combined tACS-EEG approach to explore the role of 

theta power on the IGT performance and the potential of tACS to modulate decision-

making processes. We hypothesized, firstly, a predictive role of theta power in the 

performance on the IGT mediated by theta-tACS application, and, secondly, a 

frequency-specific effect of tACS on theta power and, therefore, in behaviour.  

Our first hypothesis was only partially supported by the obtained results. We 

found a positive relationship between theta power and the probability to make an 

advantageous choice in the last trial in the sham group. This result seems to be not in 
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consonance with previous research showing a negative relationship between resting-

state theta power and learning scores (Massar et al., 2014) and, also, a positive 

relationship between the same variable and the percentage of disadvantageous choices 

during the IGT (Schutter and van Honk, 2005). However, we tested the predictive role 

of theta power recorded during the task. IGT is an uncertain context that requires 

learning from experience with the decks to adapt the behaviour in a long-term goal-

directed manner. In this sense, frontal-midline theta oscillations have been proposed as a 

signal for implementing cognitive control in an adaptive way when conflict appears in 

uncertain contexts (Cavanagh et al., 2012; Cavanagh and Frank, 2014) and has been 

related to feedback processing (Cohen et al., 2014), which may be more in line with our 

results.  

Other research has also found a positive relationship between theta power and 

unsigned prediction error and learning rate in a probabilistic reversal learning task 

(Mas-Herrero and Marco-Pallarés, 2014). In this latter investigation, researchers also 

studied the relationship between theta power and feedback related negativity (FRN). 

FRN is a relevant component of the event-related potentials (ERPs) for decision-making 

processes. FMT and FRN share several features such as the brain location where they 

are evoked, the time window in which they usually peak and both signals are supposed 

to by modulated by prediction error (Cavanagh and Frank, 2014; Marco-Pallares et al., 

2008; Mas-Herrero and Marco-Pallarés, 2014). Actually, FRN is supposed to reflect 

phase-locked FMT activity (Cavanagh et al., 2012), so they could be understood as 

“two sides of the same coin” (Wischnewski et al., 2021). Following the reinforcement 

learning theory of the FRN (Holroyd and Coles, 2002), this signal would be elicited by 

the activity of mesencephalic dopaminergic neurons of the ACC, which occurs when the 

consequence of an action is worse than expected. Although several studies have stated 
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that the FRN is related to negative feedback only (Miltner et al., 1997), other research 

support that FRN would represent the prediction error independently of the valence of 

the outcome (Alexander and Brown, 2011), so would be a surprise signal representation 

(Hauser et al., 2014).  

Therefore, our results may suggest that increased theta power could serve as a 

physiological encoding of conflict detection and subsequent behavioural adaptation in a 

long-term advantageous manner via outcome unsigned prediction error. This would be 

in line with the notion of FMT as a “need-for-control” signal (Cavanagh and Frank, 

2014). Previous research has shown that theta oscillatory activity would be sensitive to 

both negative and positive prediction errors, suggesting that it is a neurophysiological 

representation of surprise (Hauser et al., 2014; Talmi et al., 2013) and of need for 

adaptive control, so, consistent with our results, larger FMT signals would predict 

behavioural adaptation in uncertain conditions (Cavanagh and Shackman, 2015). 

However, this result should be interpreted cautiously for several reasons. Firstly, 

individual differences in theta power have been proposed as the main driver of its 

relationship with behavioural and physiological aspects (Massar et al., 2012; Pinner and 

Cavanagh, 2017), so the use of such a small sample size as in the present study may 

likely bias our results. Actually, we consider that visual inspection of Figure 24 should 

make us extremely cautious in this respect. As can be observed in mentioned Figure, 

our participants showed a big range of standardized theta power values, and relevant 

changes in the probability of making an advantageous choice in the last trial (at least 

one percent of change) are shown only by three subjects. The rest of participants 

showed an insignificant increase in α caused by an increase in standardized theta power.  

Secondly, theta power was computed regardless of the feedback valence, which 

may be conflicting with the argued dissociable impact of negative and positive feedback 
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in FMT signals (Andreou et al., 2017; Marco-Pallares et al., 2008). Therefore, we 

suggest that this result would be enriched by such approach since it would contribute to 

a better understanding of the neurophysiological basis of feedback processing and 

decision-making. Thirdly, the causal role of FMT remains unclear since FMT data from 

the active group could not be properly pre-processed due to artifacts derived from the 

stimulation. 

Regarding our second hypothesis, which was related to a frequency-specific 

effect of tACS on behavioural performance during the IGT, we found no credible 

relationship between the frequency mismatch and any behavioural parameter, so it is not 

supported by results. Despite active group seem to present a greater difference in the 

probability to make an advantageous choice between the first and the last trial than the 

sham group, which would reflect a stronger learning effect, this cannot be attributed to a 

frequency-specific effect of tACS. We consider worth to note that active group 

performed worse than sham group in the first trials of the task, and then reached the 

same endpoint. This could be due to differences in resting-state (pre-task) theta power 

induced by tACS. In other words, the application of theta tACS before the task might 

have decreased resting-state theta oscillatory activities generated by the ACC (Onoda et 

al., 2017), making it more difficult for participants in this group to identify 

advantageous decks at the beginning of the task. However, behavioural effects of tACS 

have been as widely reported as contradictory, following recent research. Thus, no 

effect of theta-tACS has been found in exploratory and risk-taking behaviour 

(Wischnewski and Compen, 2022), working memory (Jones et al., 2019; Pavlov et al., 

2021), response inhibition (Brauer et al., 2018), decision-making (Mansouri et al., 2019) 

and probabilistic learning (Zavecz et al., 2020). Taken together, this hypothesis is just 

speculative and further research should investigate this issue specifically.  
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Additionally, behavioural differences between groups must be considered with 

caution. Despite posterior predictive checks showed a relatively good fit of the model to 

the real observations for the whole sample, the reduced number of subjects per group 

could lead to over or underestimate probabilities in some trials, biasing the inference 

process. Further research could try to replicate this result using a larger sample size that 

allows to better infer performance from the model, as well as to include other variables 

as moderators and predictors of behaviour. We suggest that this may help to clarify the 

potential FMT-decision-making relationship. 
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CHAPTER 7. INTEGRATION OF RESEARCH FINDINGS 

The present Doctoral Thesis aimed to investigate the psychological and 

neurophysiological aspects driving different and particular decision-making strategies in 

uncertain conditions and to neuromodulate them through non-invasive transcranial 

electrical stimulation techniques. 

As exposed during this work, we consider the exploration of individual 

differences to be key to deeply understanding the underlying mechanisms of human 

decision-making. In Study I, we found a specific sex-dependent tDCS effect by which 

only anodal stimulated women showed a greater preference for advantageous decks, 

which is traduced as a higher total net score, after the stimulation was applied. This 

result was interpreted as a tDCS-induced boost of decision-making in that sample by a 

recruitment facilitation of the rOFC, which would enhance the evaluation of the stimuli-

reward association and, therefore, the identification of advantageous decks after the 

switch that we applied trying to mitigate the practice effect. Women decision-making 

strategy is supposed to be driven more by punishment impact and gain-loss frequency, 

changing, and scattering their response strategy after each loss and preferring decks 

with rare losses (for an extensive review see van den Bos et al., 2013). However, 

following other research (Kahneman and Tversky, 1979; for review see Steingroever et 

al., 2013), this characteristic would be present in the general population, not only in 

women. In fact, as revealed in Study II, only some within-subject deck preferences were 

found. Additionally, we found a similar proportion of women belonging to each 

particular decision-making profile, so sex differences may not be consistent among 

different samples.  

Contrarily to Study II, we did not explore the specific deck choice behaviour nor 

reinforcement learning models in Study I, so we cannot ensure what of many aspects 
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involving decision-making we modulated. It seems to be established that tDCS effect 

varies depending on individual differences, so assuming that revealed profiles are 

consistent among healthy population, the modulation effect could also be profile-

dependent. In other words, stimulation could have affected a specific profile of women 

characterized by a specific contingency valuation process. Additionally, the dependent 

variable we used to infer changes in performance after stimulation was the total net 

score, which may be not as accurate as desirable. One could reach the same total net 

score following completely different strategies or choice patterns. For instance, a total 

net score of zero would mean that participant has chosen the same number of 

advantageous and disadvantageous decks, which would be interpreted as a suboptimal 

performance. However, this interpretation will be totally dependent on when and why 

participant decided to pick a certain deck. In other words, a fully scattering strategy 

could result in a net score of zero as much as a participant that identifies the 

advantageous decks at the latter stages of the task.  

Studies II and III attempted to characterise healthy people and impulsive-

compulsive spectrum patients based on individual differences, which are conceptualised 

as the development of different deck choice preferences. We suggest that deck 

preferences develop as individuals experience the contingencies associated with each 

deck. That is, as individuals win or lose after choosing each of the decks, their 

expectations and, therefore, their preferences will change. It is in this process where 

individual differences play a fundamental role. Based on this, we identified five 

different profiles among healthy undergraduate students in the Study II and three of 

them (D-Learners, B-Exploiters and Scattering) were replicated in the Study III. 

Importantly, in Study III, we grounded in a transdiagnostic and dimensional approach, 

assuming that the factors that drive decision-making would rest on a continuum that 
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may cut across different individuals, including diagnosed patients. In this sense, we 

found the same proportion of healthy and clinical groups belonging to each revealed 

profile. As a note, the two remaining profiles (C-Learners and A-Choosers) were also 

revealed in the sample of the Study III after forcing a 5-cluster solution. However, a too 

small number of participants composed these resulting clusters, so the inference process 

would not be feasible. 

We also applied several computational RL models to try to identify the 

underlying psychological factors driving each idiosyncratic profile of Study II and 

Study III. Unfortunately, all RL models failed in simulating the specific behaviour of 

each profile and each diagnostic group in both Studies, showing poor predictive 

capacity. We found two main reasons for this. First, there are no parameters in any 

model accounting for the reference point of the participants when they make their 

choices, which would be the total amount they have when they make their following 

choice. The reference point changes with each choice and may affect the following 

decision in different ways by the interaction with several variables, such as risk 

aversion, loss aversion, or emotional states. Then, not considering a decision-makers’ 

reference point may lead to a misprediction of their subsequent decision, just as 

following the error of Bernoulli’s utility theory (Kahneman, 2011). Second, continually 

experiencing gains or losses with a deck could evoke different emotional strike-induced 

states that can influence decisions. For instance, repeatedly winning after choosing a 

long-term disadvantageous deck may situate the decision-maker in an emotional 

winning-strike-induced state that may attenuate the impact of a potential loss, and 

therefore, the changes in the utility of a certain deck by an underestimation of the loss’s 

odds. Contrarily, participants could also find themselves in a situation where they 

identify all decks as undesirables due to the exposure to continuous negative outcomes 
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after choices. This emotional losing-strike-induced state could lead to different response 

strategies motivated by indifference or frustration.  

This could be avoided by setting the consequence matrix of each deck in a fixed 

and deterministic way, as in the original task (Bechara et al., 1994). However, this 

procedure could negatively affect the construct validity and the ecological validity of 

the task, as it drastically reduces the uncertainty surrounding the decision-making 

situation that is intended to be simulated by this paradigm. Further investigation should 

explore the feasibility of an RL model that includes the parametrization of these factors, 

which might occur due to the uncertainty conditions proposed by the IGT, so they could 

provide important insights for targeting those specific behaviours that may be relevant 

from a clinical point of view (Adida et al., 2011; Clark et al., 2011). 

In the Study IV, since we could not perform a similar cluster analysis due to the 

reduced number of participants we were able to recruit, we tried to apply a novel 

approach to the understanding of the performance on the IGT. This approach is mainly 

based on a fully probabilistic consideration of the behaviour during the task. For that, 

we designed a customized Bayesian Logistic Regression Model, which included three 

main parameters accounting for behaviour. Importantly, this model allowed us to study 

the performance of the task focusing on the trial-by-trial probability to make a long-

term advantageous choices. 

Those parameters were “final performance”, “learning” and “learning speed”. 

Final accuracy (α) was an indicator of the probability to make an advantageous choice 

at the last trial of the task. The learning parameter (βTrial) reflected the difference in the 

accuracy between the first and the last trial of the task. In other words, learning was 

understood as a change in the probability to make an advantageous choice at the end of 

the task compared to the beginning. In addition, “learning speed” (γ) referred to the 
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speed with which participants change from their initial state to their final state. Despite 

sham group presented a higher net score compared to active group, we found that they 

had the same probability to make an advantageous choice at the end of the task and both 

groups did not differ in the learning speed parameters. Actually, the active group 

showed a higher difference between the early and late stages of the task, reflecting 

increased learning. So, we interpret this as a piece of evidence of the misunderstanding 

and the conflictive inferences that might be derived from the total net score as a 

measure of how good or how bad people make decisions and learn from their 

experience with different contingencies. And, also, about the effect of TES on these 

processes, which could occur at different levels during the task. In this sense, we found 

no evidence of the effect of tACS on the performance of the IGT. The increased 

learning showed by the active group in the Study IV cannot be causally linked with the 

stimulation protocol in a frequency-specific manner, since the frequency mismatch was 

not related to any behavioural parameters. We suggest that further research at the 

individual level is needed in this topic to clarify the specific effect of TES on specific 

neurophysiological factors of decision-making and their relationship with important 

behavioural processes.  

During the development of the present Doctoral Thesis, we tried to identify a 

biomarker of particular patterns of choices or optimal/suboptimal decision-making 

strategies. On the one hand, resting-state functional connectivity between important 

hubs of the FPN, such as OFC, DLPFC and pPC was recorded using fNIRS. On the 

other hand, FMT during the IGT was computed from EEG recordings. 

The World Health Organization (WHO) (2001), along with other organizations, 

defined biomarker as “any substance, structure, or process that can be measured in the 

body or its products and influence or predict the incidence of outcome or disease”. 
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Then, by definition, considering the rsFC as a biomarker implies looking for evidence 

about its predictive capacity. Although a possible involvement of the rOFC in the IGT 

seems to emerge from Study I, in the Study III we found no evidence supporting the 

role of the connectivity of this region and other important areas for the IGT performance 

such as DLPFC (or any established ROIs) as a biomarker of a certain type of behaviour. 

In this line, and contrary to our results, Li et al. (2013) proposed rsFC of the FPN as a 

biomarker of impulsivity and choice behaviour. However, the behavioural paradigm 

used in that study was a Delay Discounting Task and rsFC was obtained by fMRI. To 

the best of our knowledge, our experiment was the first attempt to establish a similar 

prediction between the rsFC of the FPN, obtained by fNIRS, and deck choice behaviour 

during the IGT. 

No credible differences in the strength of the connectivity between regions were 

found between diagnostic groups or clusters. This finding was not in line with previous 

research that supports the presence of abnormalities in resting-state FPN in ADHD 

(Mostert et al., 2016), OCD (Stern et al., 2012), and SUD (Taebi et al., 2022) patients. 

In this sense, it is relatively well-established that rsFC presents high variability across 

individuals. rsFC is sensitive to many potential confounding variables such as 

pharmacological treatment, early-stress, personality and behavioural traits and even 

different genotypes (Gordon et al., 2015; Marek and Dosenbach, 2018; Vaidya and 

Gordon, 2013). Additionally, the variability across employed methodologies in different 

studies, as well as the interpretation of results may hinder the clarity of inferences about 

the brain-behaviour relationship. Taken together, the study of the type of existent 

relationship between brain resting-state activity and behaviour would be greatly 

benefited from research carried out on a large enough sample size and from 
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methodological and conceptual homogenisation (Marek et al., 2022; Marek and 

Dosenbach, 2018). 

Regarding EEG measures, FMT power was the only possible candidate we 

directly observed to be related to IGT performance, although, as mentioned in the 

Discussion section of the Study IV, this result has to be considered cautiously. FMT has 

been proposed to be implicated in the synchronization of disperse brain regions when 

the organism realizes the need to implement adaptive control when habitual behaviour is 

not adequate to resolve a conflict. In other words, when the consequence of an action is 

unexpected, or surprising, FMT would react leading to the entrainment of other brain 

networks to implement cognitive control and behavioural outcome-based adjustment 

(Cavanagh and Frank, 2014), which are critical to the IGT performance. Due to the lack 

of spatial resolution of the EEG and the lack of temporal resolution of the fNIRS, we 

consider that a multimodal EEG-fNIRS approach may be useful to locate spatially and 

temporally the generation of the FMT implicated in decision-making and uncertain 

valuation in cortical areas, which may shed some light on the complex brain-behaviour 

interaction underlying decision-making processes in both clinical and healthy 

population.   

In general, the development of the present Doctoral Thesis has faced to several 

limitations. Firstly, the sample of the first two Studies was composed of psychology 

undergraduate students, a particular population group that is likely to share many socio-

demographic characteristics such as age, socio-economic status, and years of formal 

education received. This fact may difficult the generalization of our results to the 

general population. We suggest that further investigation could try to replicate those 

findings, especially those of Study II, in the general population. If any of these profiles, 

especially those characterised by negligent outcome valuation, could be consistently 
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identified in the general population, it may serve as a basis for developing 

individualized intervention strategies in the clinical field.  

Secondly, the Studies would have been greatly enriched by the use of self-

reported measurements about relevant personality variables for decision-making, such 

as impulsivity or mood states. The application of such measurements could have 

improved the external validity of our clustering solutions and could have provided more 

specific information about the TES-modulated processes. In addition, it would have 

been interesting to apply other related behavioural tasks such as DDT or Probabilistic 

Reversal Learning with the same objective of validating our clustering solutions. If the 

composition of each cluster is mainly driven by idiosyncratic characteristics, such as 

loss aversion, risk aversion, or reward sensitivity, then they should show similar 

behaviour, related with the same characteristics, in different contexts. In other words, 

those factors should be steadily driving the choice process of different decision-makers 

in diverse environments, and maybe they could be proposed as transdiagnostic targets. 

Lastly, the medication status and comorbidities of clinical sample were nearly 

impossible to control during the Study III, especially of SUD participants, due to the 

internal rules of the relapse-prevention centre in which they were inpatients. As 

abovementioned, medication status may influence both rsFC and behavioural 

measurements, so further research may try to homogenise it among clinical samples.  
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CHAPTER 8. CONCLUSIONS 

Following the results obtained from experimental work, the conclusions of 

the present Doctoral Thesis are:  

→ In the first Study, sex related differences in IGT performance were revealed. Anodal 

tDCS at 1.5mA over the right orbitofrontal cortex resulted in a higher total net score 

only in women. Right orbitofrontal cortex seems to be implicated in the IGT 

performance. No effect of tDCS was found in the SST.  

→ In the second Study, sex related differences in IGT performance were not replicated. 

Five differential idiosyncratic decision-making profiles were found. First, A-

Choosers were characterized by early exploration and late exploitation of low-

frequency and high-magnitude losses of a long-term disadvantageous deck (usually 

Deck B, Deck A in this study). Second, C-Learners were characterized by the 

exploitation, since early stages of the task, of high-frequency and low-magnitude 

losses of a long-term advantageous deck (Deck C). Third, D-Learners developed a 

preference for a low-frequency and high-magnitude losses of a long-term 

advantageous deck (Deck D). Fourth, Scattering cluster did not develop a remarked 

preference for any deck during the whole task, nor during reversal phases. Lastly, B-

Exploiters showed a lack of early exploration in pursuit of an early exploitation of a 

low-frequency and high-magnitude losses of a long-term disadvantageous deck 

(usually Deck B, Deck A in this study). 

→ Individual differences lead to the appearing of particular decision-making profiles 

that must be taken into account when describing how people make decisions during 

IGT. 
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→ Applied computational reinforcement learning models were not useful to predict 

optimal or suboptimal decision-making strategies during the IGT.  

→ A definition of a new computational reinforcement-learning model is needed to 

identify the psychological mechanisms that underlie particular decision-making 

strategies under uncertain contexts.  

→ Three of five profiles (D-Learners, B-Exploiters, Scattering) were replicated in the 

third Study. These profiles cut across impulsive-compulsive spectrum diagnoses, so 

impulsive-compulsive spectrum patients and healthy controls seem to share some 

underlying mechanisms driving their decision-making strategy during the task. This 

could suggest that deck choice behaviour during the IGT is not a core feature of our 

diagnostic labelled patients. But it also could mean that the IGT is not such an 

appropriate paradigm to detect the alleged decision-making deficits that are assumed 

in those populations. 

→ We found no evidence to support the role of frontoparietal rsFC as a biomarker of 

defective or adaptive decision-making processes regarding any diagnostic group or 

any behavioural cluster. Further research is needed in this sense in order to clarify 

the core features of decision-making under uncertainty of healthy people and 

impulsive-compulsive spectrum disorder patients and its neurofunctional basis. 

→ No evidence of the effect of amplitude modulated theta tACS in the IGT 

performance was found. The application of TES to modulate the performance on the 

IGT must be guided by individual differences. 

→ FMT is a possible candidate as a biomarker of IGT performance. The reduced 

number of participants in Study IV and the individual variability in FMT power 

values makes further research needed to try to replicate this preliminary result. 
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→ The interpretation of the net score as an index of how good or how bad people make 

decisions under uncertainty may lead to a misunderstanding and conflictive 

inferences about the outcome-based decision-making processes.
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i. Study II. Detailed results 

Table 10 

Bayesian mean comparisons between groups (and 95% HDI) in the number of Deck A 

choices in each of the blocks. 

 Block 1 Block 2 Block 3 Block 4 Block 5 Reversal 1 Reversal 2 Reversal 3 

Men vs. Women 
-1.15 

(-2.06, -.15) 

-1.47 

(-2.35, -.57) 

-1.39 

(-2.26, -.45) 

-1.79 

(-2.77, -.91) 

-1.87 

(-2.85, -.96) 

1.87 

(.72, 3.01) 

.72 

(-.36, 1.75) 

.17 

(-.94, 1.30) 

C1 vs. C2 
2.76 

(.77, 4.68) 
3.64 

(1.72, 5.56) 
6.99 

(5.16, 8.90) 
7.45 

(5.57, 9.36) 
9.39 

(7.44, 11.34) 
-9.73 

(-11.53, -7.85) 
-11.63 

(-13.49, -9.78) 
-.20 

(-2.10, 1.66) 

C1 vs. C3 
1.68 

(.01, 3.39) 

2.26 

(.55, 3.91) 

5.80 

(4.17, 7.46) 

6.59 

(4.90, 8.25) 

7.05 

(5.37, 8.69) 

-.98 

(-2.53, .57) 

-.24 

(-1.84, 1.28) 

1.58 

(.00, 3.10) 

C1 vs. C4 
1.93 

(.57, 3.30) 

2.52 

(1.16, 3.86) 

3.52 

(2.16, 4.84) 

4.72 

(3.38, 6.10) 

5.85 

(4.48, 7.22) 

-1.50 

(-2.75, -.24) 

-.83 

(-2.08, .42) 

.23 

(-.98, 1.51) 

C1 vs. C5 
-3.75 

(-5.23, -2.24) 
-6.14 

(-7.64, -4.63) 
-4.06 

(-5.55, -2.59) 
-3.44 

(-4.92, -1.95) 
-1.91 

(-3.42, -.43) 
.11 

(-1.28, 1.51) 
1.33 

(-.06, 2.71) 
-.92 

(-2.35, .44) 

C2 vs. C3 
-1.07 

(-3.12, .99) 

-1.38 

(-3.45, .70) 

-1.19 

(-3.24, .90) 

-.86 

(-2.93, 1.19) 

-2.34 

(-4.51, -.33) 

8.75 

(6.70, 1.76) 

11.39 

(9.31, 13.43) 

1.79 

(-.29, 3.86) 

C2 vs. C4 
-.83 

(-2.75, 1.00) 

-1.12 

(-3.03, .72) 

-3.47 

(-3.47, -1.66) 

-2.74 

(-4.60, -.89) 

-3.54 

(-5.41, -1.66) 

8.23 

(6.37, 1.01) 

1.80 

(8.99, 12.66) 

.44 

(-1.42, 2.30) 

C2 vs. C5 
-6.51 

(-8.54, -4.45) 
-9.78 

(-11.74, -7.81) 
-11.05 

(-13.06, -9.14) 
-1.90 

(-12.93, -9.00) 
-11.30 

(-13.32, -9.37) 
9.84 

(7.97, 11.79) 
12.96 

(1.98, 14.87) 
-.72 

(-2.66, 1.27) 

C3 vs. C4 
.25 

(-1.39, 1.90) 

.26 

(-1.41, 1.84) 

-2.28 

(-3.92, -.67) 

-1.88 

(-3.54, -.27) 

-1.20 

(-2.86, .37) 

-.52 

(-2.06, 1.01) 

-.59 

(-2.11, .98) 

-1.35 

(-2.86, .19) 

C3 vs. C5 
-5.44 

(-7.22, -3.61) 

-8.40 

(-1.14, -6.69) 

-9.86 

(-11.60, -8.11) 

-1.04 

(-11.76, -8.26) 

-8.97 

(-1.71, -7.26) 

1.09 

(-.56, 2.73) 

1.57 

(-.12, 3.20) 

-2.50 

(-4.16, -.84) 

C4 vs. C5 
-5.68 

(-7.16, -4.21) 
-8.66 

(-1.10, -7.17) 
-.17 

(-1.49, 1.15) 
-8.16 

(-9.64, -6.72) 
-7.76 

(-9.20, -6.28) 
1.61 

(.25, 2.98) 
2.15 

(.81, 3.54) 
-1.16 

(-2.53, .19) 

Note. Pairwise comparisons that showed credible differences (HDI does not include the ROPE [-1,1]) are 

boldfaced. C1: A-Choosers; C2: C-Learners; C3: D-Learners; C4: Scattering; C5: A-Exploiters. 
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Table 11 

Bayesian mean comparisons between groups (and 95% HDI) in the number of Deck B 

choices in each of the blocks. 

 Block 1 Block 2 Block 3 Block 4 Block 5 Reversal 1 Reversal 2 Reversal 3 

Men vs. Women 
1.01 

(.54, 1.50) 
.93 

(.46, 1.39) 
1.08 

(.60, 1.60) 
.80 

(.27, 1.26) 
.88 

(.38, 1.34) 
-.03 

(-1.09, 1.00) 
.28 

(-.76, 1.27) 
1.18 

(.08, 2.28) 

C1 vs. C2 
.13 

(.84, 1.03) 
.78 

(-.09, 1.68) 
.11 

(-.81, .98) 
.91 

(.02, 1.87) 
.62 

(-.25, 1.50) 
1.45 

(-.40, 3.32) 
1.91 

(.03, 3.78) 
-6.43 

(-8.46, -4.36) 

C1 vs. C3 
-.19 

(-1.01, .58) 

.38 

(-.42, 1.19) 

-.34 

(-1.15, .47) 

.25 

(-.52, 1.06) 

.10 

(-.67, .89) 

.21 

(-1.37, 1.82) 

-.60 

(-2.17, 1.02) 

-2.85 

(-4.47, -1.26) 

C1 vs. C4 
-1.85 

(-2.57, -1.12) 

-2.23 

(-2.90, -1.56) 

-2.65 

(-3.36, -1.99) 

-2.40 

(-3.07, -1.73) 

-2.54 

(-3.23, -1.88) 

-.38 

(-1.67, .94) 

-.89 

(-2.14, .46) 

-2.57 

(-3.85, -1.23) 

C1 vs. C5 
.43 

(-.28, 1.18) 

.80 

(.02, 1.59) 

-.28 

(-1.09, .49) 

.17 

(-.57, .88) 

.22 

(-.52, .92) 

.55 

(-.88, 1.98) 

.45 

(-1.01, 1.86) 

-.85 

(-2.30, .57) 

C2 vs. C3 
-.31 

(-1.24, .67) 

-.39 

(-1.33, .56) 

-.46 

(-1.39, .49) 

-.66 

(-1.63, .29) 

-.52 

(-1.47, .41) 

-1.24 

(-3.25, .83) 

-2.51 

(-4.57, -.40) 

3.59 

(1.45, 5.73) 

C2 vs. C4 
-1.98 

(-3.03, -.90) 
-3.01 

(-3.87, -2.13) 
-2.76 

(-3.61, -1.88) 
-3.31 

(-4.29, -2.42) 
-3.16 

(-4.06, -2.29) 
-1.83 

(-3.67, .02) 
-2.81 

(-4.70, -.97) 
3.87 

(1.82, 5.78) 

C2 vs. C5 
.31 

(-.70, 1.31) 

.02 

(-.87, .97) 

-.39 

(-1.30, .52) 

-.74 

(-1.72, .22) 

-.40 

(-1.32, .50) 

-.91 

(-2.82, 1.05) 

-1.46 

(-3.40, .50) 

5.58 

(3.48, 7.68) 

C3 vs. C4 
-1.66 

(-2.54, -.77) 

-2.62 

(-3.41, -1.85) 

-2.30 

(-3.07, -1.52) 

-2.66 

(-3.48, -1.89) 

-2.64 

(-3.46, -1.88) 

-.59 

(-2.12, 1.04) 

-.30 

(-1.85, 1.27) 

.28 

(-1.32, 1.83) 

C3 vs. C5 
.62 

(-.22, 1.49) 

.42 

(-.39, 1.27) 

.06 

(-.77,.88) 

-.08 

(-.93,.75) 

.12 

(-.70, .93) 

.34 

(-1.37, 1.98) 

1.04 

(-.65, 2.72) 

2.00 

(.33, 3.71) 

C4 vs. C5 
2.28 

(1.54, 2.99) 

3.03 

(2.27, 3.78) 

2.36 

(1.61, 3.07) 

2.58 

(1.87, 3.30) 

2.76 

(2.05, 3.49) 

.92 

(-.51, 2.32) 

1.34 

(-.12, 2.73) 

1.72 

(.34, 3.14) 

Note. Pairwise comparisons that showed credible differences (HDI does not include the ROPE [-1,1]) are 

boldfaced. C1: A-Choosers; C2: C-Learners; C3: D-Learners; C4: Scattering; C5: A-Exploiters. 
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Table 12 

Bayesian mean comparisons between groups (and 95% HDI) in the number of Deck C 

choices in each of the blocks. 

 
Block 1 Block 2 Block 3 Block 4 Block 5 Reversal 1 Reversal 2 Reversal 3 

Men vs. Women .75 
(.01, 1.46) 

.84 
(.13, 1.55) 

.67 
(-.08, 1.39) 

1.05 
(.35, 1.77) 

1.40 
(.62, 2.24) 

-1.23 
(-2.25, -.28) 

-1.14 
(-2.13, -.16) 

-1.03 
(-2.02, -.03) 

C1 vs. C2 -2.53 

(-3.97, -1.13) 

-6.73 

(-8.10, -5.35) 

-11.25 

(-12.63, -9.89) 

-14.10 

(-15.52, -12.76) 

-16.19 

(-17.54, -14.77) 

4.28 

(2.33, 6.18) 

6.19 

(4.10, 8.24) 

2.19 

(.13, 4.25) 

C1 vs. C3 -.17 

(-1.36, .98) 

-.32 

(-1.53, .82) 

-.56 

(-1.75, .61) 

-.98 

(-2.15, .18) 

-.95 

(-2.16, .20) 

2.37 

(.64, 4.03) 

1.67 

(-.02, 3.30) 

.37 

(-1.33, 2.05) 

C1 vs. C4 -1.05 
(-1.99, -.09) 

-2.04 
(-2.97, -1.08) 

-2.58 
(-3.54, -1.64) 

-3.92 
(-4.85, -2.96) 

-4.32 
(-5.26, -3.38) 

1.94 
(.53, 3.29) 

1.76 
(.36, 3.12) 

-.03 
(-1.42, 1.36) 

C1 vs. C5 .37 

(-.69, 1.40) 

1.11 

(.05, 2.14) 

.24 

(-.83, 1.26) 

-.38 

(-1.44, .65) 

-.82 

(-1.88, .22) 

-1.24 

(-2.77, .27) 

-2.19 

(-3.74, -.66) 

-.56 

(-2.10, .97) 

C2 vs. C3 2.35 
(.79, 3.89) 

6.41 
(4.87, 7.95) 

1.70 
(9.17, 12.24) 

13.12 
(11.61, 14.66) 

15.24 
(13.70, 16.77) 

-1.92 
(-4.05, .23) 

-4.52 
(-6.78, -2.33) 

-1.82 
(-3.97, .32) 

C2 vs. C4 1.48 
(.09, 2.87) 

4.69 
(3.32, 6.05) 

8.70 
(7.30, 1.04) 

1.18 
(8.79, 11.52) 

11.87 
(1.49, 13.23) 

-2.35 
(-4.19, -.37) 

-4.44 
(-6.50, -2.48) 

-2.22 
(-4.15, -.22) 

C2 vs. C5 2.90 

(1.40, 4.32) 

7.84 

(6.42, 9.28) 

11.49 

(1.07, 12.96) 

13.71 

(12.27, 15.14) 

15.37 

(13.92, 16.82) 

-5.52 

(-7.55, -3.49) 

-8.38 

(-1.70, -6.16) 

-2.75 

(-5.00, -.54) 

C3 vs. C4 -.88 
(-2.03, .28) 

-1.72 
(-2.89, -.56) 

-2.03 
(-3.17, -.86) 

-2.94 
(-4.11, -1.78) 

-3.37 
(-4.52, -2.19) 

-.43 
(-2.06, 1.23) 

.08 
(-1.56, 1.74) 

-.40 
(-2.04, 1.26) 

C3 vs. C5 .54 

(-.67, 1.81) 

1.43 

(.19, 2.68) 

.80 

(-.44, 2.07) 

.60 

(-.65, 1.84) 

.13 

(-1.14, 1.35) 

-3.60 

(-5.42, -1.85) 

-3.87 

(-5.66, -2.09) 

-.93 

(-2.73, .95) 

C4 vs. C5 1.42 

(.39, 2.44) 

3.15 

(2.11, 4.16) 

2.82 

(1.81, 3.86) 

3.54 

(2.51, 4.56) 

3.50 

(2.45, 4.53) 

-3.17 

(-4.69, -1.68) 

-3.95 

(-5.50, -2.42) 

-.53 

(-2.08, 1.08) 

Note. Pairwise comparisons that showed credible differences (HDI does not include the ROPE [-1,1]) are 

boldfaced. C1: A-Choosers; C2: C-Learners; C3: D-Learners; C4: Scattering; C5: A-Exploiters. 
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Table 13 

Bayesian mean comparisons between groups (and 95% HDI) in the number of Deck D 

choices in each of the blocks. 

 
Block 1 Block 2 Block 3 Block 4 Block 5 Reversal 1 Reversal 2 Reversal 3 

Men vs. Women -.60 
(-1.46, .18) 

-.31 
(-1.07, .46) 

-.41 
(-1.18, .35) 

-.05 
(-.83, .83) 

-.35 
(-1.14, .40) 

-.44 
(-1.43, .50) 

.05 
(-.92, 1.06) 

-.40 
(-1.36, .56) 

C1 vs. C2 1.39 

(-.32, 3.10) 

2.77 

(1.08, 4.47) 

4.11 

(2.45, 5.82) 

4.57 

(2.87, 6.25) 

4.86 

(3.16, 6.58) 

3.52 

(1.88, 5.20) 

3.02 

(1.19, 4.80) 

4.66 

(2.87, 6.52) 

C1 vs. C3 -.96 

(-2.44, .58) 

-2.41 

(-3.88, -.92) 

-4.74 

(-6.17, -3.24) 

-6.15 

(-7.62, -4.65) 

-6.36 

(-7.88, -4.90) 

-1.17 

(-2.77, .36) 

-.68 

(-2.12, .82) 

.53 

(-1.08, 2.18) 

C1 vs. C4 .92 

(-.26, 2.13) 

1.80 

(.58, 2.98) 

1.90 

(.71, 3.11) 

1.52 

(.32, 2.70) 

.93 

(-.28, 2.11) 

.18 

(-1.11, 1.44) 

.23 

(-1.05, 1.49) 

1.90 

(.47, 3.39) 

C1 vs. C5 2.77 
(1.48, 4.10) 

4.08 
(2.75, 5.40) 

4.46 
(3.11, 5.75) 

3.70 
(2.35, 5.00) 

2.41 
(1.04, 3.71) 

.76 
(-.57, 2.13) 

.78 
(-.58, 2.13) 

1.76 
(.39, 3.17) 

C2 vs. C3 -2.35 
(-4.34, -.31) 

-5.18 
(-7.04, -3.25) 

-8.85 
(-1.70, -6.96) 

-1.71 
(-12.64, -8.83) 

-11.21 
(-13.20, -9.31) 

-4.69 
(-6.63, -2.81) 

-3.70 
(-5.61, -1.77) 

-4.13 
(-5.97, -2.30) 

C2 vs. C4 -.47 

(-2.17, 1.22) 

-.97 

(-2.65, .71) 

-2.21 

(-3.87, -.54) 

-3.04 

(-4.74, -1.39) 

-3.92 

(-5.63, -2.22) 

-3.34 

(-5.03, -1.66) 

-2.79 

(-4.47, -1.11) 

-2.76 

(-4.41, -1.12) 

C2 vs. C5 1.38 

(-.37, 3.19) 

1.31 

(-.45, 3.08) 

.35 

(-1.42, 2.09) 

-.87 

(-2.62, .90) 

-2.45 

(-4.26, -.67) 

-2.76 

(-4.50, -1.02) 

-2.24 

(-3.99, -.43) 

-2.90 

(-4.69, -1.20) 

C3 vs. C4 1.88 

(.41, 3.43) 

4.21 

(2.77, 5.70) 

6.64 

(5.23, 8.13) 

7.67 

(6.22, 9.16) 

7.29 

(5.82, 8.76) 

1.35 

(-.06, 2.85) 

.91 

(-.60, 2.35) 

1.37 

(-.08, 2.78) 

C3 vs. C5 3.73 
(2.11, 5.34) 

6.49 
(4.92, 8.05) 

9.20 
(7.63, 1.76) 

9.85 
(8.25, 11.40) 

8.77 
(7.19, 1.34) 

1.93 
(.37, 3.52) 

1.46 
(-.07, 2.99) 

1.23 
(-.29, 2.80) 

C4 vs. C5 1.85 
(.57, 3.17) 

2.27 
(.95, 3.55) 

2.56 
(1.25, 3.86) 

2.17 
(.84, 3.44) 

1.47 
(.17, 2.78) 

.58 
(-.73, 1.90) 

.55 
(-.78, 1.87) 

-.14 
(-1.50, 1.17) 

Note. Pairwise comparisons that showed credible differences (HDI does not include the ROPE [-1,1]) are 

boldfaced. C1: A-Choosers; C2: C-Learners; C3: D-Learners; C4: Scattering; C5: A-Exploiters. 
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Table 14 

Bayesian mean comparisons of the net score (and 95% HDI) in each of the blocks. 

 Men Women C1 C2 C3 C4 C5 

Block 1 vs. 
Block 2 

-.74 
(-2.97, 1.46) 

.37 
(-1.59, 2.28) 

-.01 
(-2.73, 2.71) 

-4.50 
(-9.15, .04) 

-3.27 
(-7.01, .56) 

-.089 
(-2.71, 2.51) 

3.93 
(.75, 7.12) 

Block 1 vs. 

Block 3 

-2.28 

(-4.49, -.12) 

-1.84 

(-3.77, .05) 

-.37 

(-3.09, 2.40) 

-1.01 

(-14.80, -5.32) 

-8.84 

(-12.77, -5.11) 

-1.26 

(-3.86, 1.37) 

2.68 

(-.51, 5.94) 

Block 1 vs. 

Block 4 

-6.01 

(-8.38, -3.54) 

-3.54 

(-5.60, -1.52) 

-.56 

(-3.40, 2.15) 

-14.33 

(-19.07, -9.52) 

-12.76 

(-16.60, -8.85) 

-4.71 

(-7.35, -2.07) 

-.24 

(-3.48, 2.94) 

Block 1 vs. 
Block 5 

-5.80 
(-8.30, -3.43) 

-3.35 
(-5.40, -1.32) 

1.24 
(-1.50, 4.07) 

-15.55 
(-2.47,-1.73) 

-11.37 
(-15.2, -7.52) 

-4.87 
(-7.46, -2.21) 

-1.85 
(-4.99, 1.39) 

Block 2 vs. 

Block 3 

-1.54 

(-3.70, .72) 

-2.21 

(-4.13, -.32) 

-.36 

(-3.04, 2.39) 

-5.52 

(-1.05, -.92) 

-5.57 

(-9.22, -1.71) 

-1.17 

(-3.79, 1.48) 

-1.25 

(-4.30, 2.06) 

Block 2 vs. 

Block 4 

-5.27 

(-7.56, -3.01) 

-3.91 

(-5.88, -1.98) 

-.55 

(-3.33, 2.16) 

-9.83 

(-14.46, -5.25) 

-9.49 

(-13.36, -5.77) 

-4.62 

(-7.29, -2.01) 

-4.17 

(-7.32, -.97) 

Block 2 vs. 
Block 5 

-5.06 
(-7.33, -2.77) 

-3.72 
(-5.67, -1.77) 

1.25 
(-1.53, 4.01) 

-11.05 
(-15.65 -6.32) 

-8.11 
(-11.86, -4.35) 

-4.78 
(-7.40, -2.14) 

-5.79 
(-8.98, -2.64) 

Block 3 vs. 

Block 4 

-3.74 

(-6.12, -1.47) 

-1.70 

(-3.67, .28) 

-.19 

(-2.90, 2.54) 

-4.32 

(-8.88, .25) 

-3.92 

(-7.64, -.15) 

-3.45 

(-6.06, -.81) 

-2.92 

(-6.19, .17) 

Block 3 vs. 

Block 5 

-3.52 

(-5.91, -1.25) 

-1.51 

(-3.51, .44) 

1.61 

(-1.14, 4.37) 

-5.53 

(-1.24, -1.05) 

-2.54 

(-6.33, 1.23) 

-3.61 

(-6.25, -.97) 

-4.54 

(-7.79, -1.41) 

Block 4 vs. 
Block 5 

.22 
(-1.93, 2.41) 

.19 
(-1.68, 2.10) 

1.80 
(-.95, 4.50) 

-1.22 
(-5.83, 3.24) 

1.38 
(-2.32, 5.20) 

-.16 
(-2.75, 2.48) 

-1.61 
(-4.65, 1.64) 

Rev 1 vs. 

Rev 2 

2.43 

(.07, 4.88) 

1.70 

(-.34, 3.80) 

1.71 

(-1.20, 4.61) 

-1.82 

(-7.08, 3.17) 

4.04 

(.11, 8.14) 

1.66 

(-1.12, 4.42) 

3.24 

(-.03, 6.73) 

Rev 1 vs. 

Rev 3 

.10 

(-2.27, 2.56) 

-1.14 

(-3.27, .94) 

.43 

(-2.48, 3.35) 

.52 

(-3.72, 5.13) 

.31 

(-3.36, 4.19) 

-1.33 

(-4.21, 1.41) 

-2.20 

(-5.58, 1.17) 

Rev 2 vs. 
Rev 3 

-2.33 
(-4.69, .06) 

-2.84 
(-4.92, -.67) 

-1.28 
(-4.20, 1.70) 

2.34 
(-3.39, 7.90) 

-3.73 
(-7.69, .13) 

-2.99 
(-5.78, -.14) 

-5.43 
(-9.15, -1.64) 

Note. Pairwise comparisons that showed credible differences (HDI does not include the ROPE [-1,1]) are 

boldfaced. C1: A-Choosers; C2: C-Learners; C3: D-Learners; C4: Scattering; C5: A-Exploiters. 
 

 

 

 

 

 

 

 

 

 



178 

 

Table 15 

Bayesian mean comparisons within groups (and 95% HDI) in the number of Deck A 

choices between each of the blocks. 

 Men Women C1 C2 C3 C4 C5 

Block 1 vs. 
Block 2 

-.57 
(-1.58, .42) 

-.89 
(-1.82, .03) 

-.71 
(-2.07, .69) 

.17 
(-2.02, 2.38) 

-.13 
(-1.99, 1.68) 

-.12 
(-1.44, 1.19) 

-3.09 
(-4.70, -1.49) 

Block 1 vs. 

Block 3 

-.30 

(-1.29, .68) 

-.54 

(-1.42, .36) 

-1.89 

(-3.24, -.49) 

2.35 

(.11, 4.61) 

2.23 

(.36, 4.14) 

-.29 

(-1.59, 1.03) 

-2.19 

(-3.80, -.61) 

Block 1 vs. 

Block 4 

.74 

(-.29, 1.84) 

.10 

(-.82, 1.01) 

-1.61 

(-3.01, -.20) 

3.09 

(.81, 5.38) 

3.30 

(1.38, 5.22) 

1.18 

(-.13, 2.51) 

-1.30 

(-2.91, .28) 

Block 1 vs. 
Block 5 

.37 
(-.67, 1.47) 

-.35 
(-1.29, .56) 

-2.97 
(-4.40, -1.56) 

3.67 
(1.41, 6.07) 

2.41 
(.53, 4.27) 

.95 
(-.36, 2.29) 

-1.12 
(-2.73, .45) 

Block 2 vs. 

Block 3 

.27 

(-.71, 1.24) 

.36 

(-.54, 1.21) 

-1.18 

(-2.56, .22) 

2.18 

(.00, 4.45) 

2.36 

(.45, 4.20) 

-.17 

(-1.49, 1.15) 

.90 

(-.70, 2.43) 

Block 2 vs. 

Block 4 

1.31 

(.22, 2.42) 

.99 

(.06, 1.91) 

-.90 

(-2.33, .48) 

2.91 

(.64, 5.15) 

3.43 

(1.57, 5.38) 

1.30 

(-.03, 2.60) 

1.79 

(.19, 3.36) 

Block 2 vs. 
Block 5 

.94 
(-.07, 2.02) 

.54 
(-.35 1.45) 

-2.26 
(-3.71, -.87) 

3.50 
(1.14, .72) 

2.54 
(.66, 4.40) 

1.08 
(-.22, 2.42) 

1.97 
(.35, 3.52) 

Block 3 vs. 

Block 4 

1.04 

(-.02, 2.10) 

.63 

(-.27, 1.54) 

.27 

(-1.09, 1.64) 

.74 

(-1.49, 2.92) 

1.07 

(-.79, 2.92) 

1.47 

(.11, 2.74) 

.89 

(-.70, 2.45) 

Block 3 vs. 

Block 5 

.67 

(-.36 1.73) 

.19 

(-.70, 1.10) 

-1.08 

(-2.45, .30) 

1.32 

(-.84, 3.54) 

.17 

(-1.66, 2.03) 

1.25 

(-.04, 2.59) 

1.07 

(-.49, 2.66) 

Block 4 vs. 
Block 5 

-.37 
(-1.36, .61) 

-.45 
(-1.33, .41) 

-1.35 
(-2.71, .03) 

.58 
(-1.62, 2.73) 

-.89 
(-2.73, .95) 

-.22 
(-1.54, 1.08) 

.18 
(-1.37, 1.78) 

Rev 1 vs. 

Rev 2 

.14 

(-1.06, 1.31) 

-1.02 

(-2.01, .00) 

-.92 

(-2.21, .35) 

-2.83 

(-5.05, -.62) 

-.19 

(-1.94, 1.65) 

-.26 

(-1.46, .98) 

.29 

(-1.20, 1.80) 

Rev 1 vs. 

Rev 3 

2.29 

(1.08, 3.60) 

.59 

(-.44, 1.63) 

-.18 

(-1.42, 1.14) 

9.34 

(7.07, 11.64) 

2.38 

(.61, 4.19) 

1.55 

(.31, 2.77) 

-1.22 

(-2.72, .28) 

Rev 2 vs. 
Rev 3 

2.15 
(.97, 3.33) 

1.60 
(.64, 2.62) 

.74 
(-.54, 2.00) 

12.17 
(9.77, 14.44) 

2.56 
(.78, 4.37) 

1.80 
(.59, 3.03) 

-1.51 
(-3.00, .02) 

Note. Pairwise comparisons that showed credible differences (HDI does not include the ROPE [-1,1]) are 

boldfaced. C1: A-Choosers; C2: C-Learners; C3: D-Learners; C4: Scattering; C5: A-Exploiters. 
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Table 16 

Bayesian mean comparisons within groups (and 95% HDI) in the number of Deck B 

choices between each of the blocks. 

 
Men Women C1 C2 C3 C4 C5 

Block 1 vs.  
Block 2 

1.00 
(.46, 1.57) 

.92 
(.43, 1.43) 

.86 
(.18, 1.56) 

1.51 
(.50, 2.60) 

1.43 
(.56, 2.36) 

.48 
(-.28, 1.17) 

1.22 
(.47, 2.02) 

Block 1 vs.  

Block 3 

1.51 

(.97, 2.07) 

1.58 

(1.10, 2.08) 

1.96 

(1.23, 2.66) 

1.95 

(.99, 3.01) 

1.80 

(.96, 2.70) 

1.16 

(.44, 1.85) 

1.25 

(.43, 2.01) 

Block 1 vs.  

Block 4 

2.00 

(1.45, 2.60) 

1.80 

(1.28, 2.30) 

1.98 

(1.27, 2.65) 

2.76 

(1.64, 3.98) 

2.42 

(1.54, 3.38) 

1.42 

(.69, 2.15) 

1.72 

(.94, 2.49) 

Block 1 vs.  
Block 5 

2.36 
(1.80, 2.94) 

2.22 
(1.71, 2.72) 

2.45 
(1.77, 3.15) 

2.95 
(1.92, 4.10) 

2.74 
(1.86, 3.66) 

1.76 
(1.02, 2.50) 

2.24 
(1.46, 3.00) 

Block 2 vs.  

Block 3 

.52 

(-.05, 1.06) 

.66 

(.15, 1.14) 

1.10 

(.36, 1.85) 

.44 

(-.56, 1.38) 

.37 

(-.51, 1.21) 

.67 

(.03, 1.35) 

.02 

(-.84, .84) 

Block 2 vs.  

Block 4 

1.01 

(.46, 1.58) 

.88 

(.38, 1.38) 

1.12 

(.44, 1.83) 

1.25 

(.28, 2.29) 

.99 

(.13, 1.84) 

.95 

(.29, 1.62) 

.49 

(-.32, 1.30) 

Block 2 vs.  
Block 5 

1.36 
(.81, 1.93) 

1.30 
(.80, 1.80) 

1.59 
(.90, 2.30) 

1.44 
(.49, 2.44) 

1.31 
(.45, 2.17) 

1.28 
(.62, 1.94) 

1.01 
(.21, 1.79) 

Block 3 vs.  

Block 4 

.49 

(-.08, 1.09) 

.22 

(-.30, .72) 

.02 

(-.69, .73) 

.82 

(-.15, 1.90) 

.62 

(-.24, 1.50) 

.26 

(-.41, .92) 

.47 

(-.30, 1.24) 

Block 3 vs.  

Block 5 

.84 

(.30, 1.44) 

.64 

(.13, 1.14) 

.49 

(-.22, 1.17) 

1.00 

(.06, 2.03) 

.94 

(.09, 1.82) 

.59 

(-.09, 1.25) 

.99 

(.23, 1.78) 

Block 4 vs.  
Block 5 

.35 
(-.21, .91) 

.42 
(-.09, .91) 

.47 
(-.20, 1.16) 

.18 
(-.84, 1.12) 

.32 
(-.53, 1.17) 

.33 
(-.35, .98) 

.52 
(-.25, 1.29) 

Rev 1 vs. 

Rev 2 

-.13 

(-1.23, .96) 

.19 

(-.76, 1.11) 

 .30 

(-1.01, 1.64) 

.76 

(-1.47, 2.99) 

-.50 

(-2.28, 1.33) 

-.21 

(-1.52, 1.01) 

.21 

(-1.29, 1.77) 

Rev 1 vs. 

Rev 3 

-1.94 

(-3.18, -.75) 

-.73 

(-1.74, .26) 

.80 

(-.55, 2.16) 

-7.09 

(-9.57, -4.65) 

-2.26 

(-4.06, -.43) 

-1.40 

(-2.69, -.12) 

-.60 

(-2.17, .90)  

Rev 2 vs. 
Rev 3 

-1.82 
(-3.01, -.68) 

-.92 
(-1.90, .03) 

.49 
(-.87, 1.84) 

-7.85 
(-1.39, -5.33) 

-1.76 
(-3.55, .09) 

-1.18 
(-2.44, .10) 

-.81 
(-2.32, .76) 

Note. Pairwise comparisons that showed credible differences (HDI does not include the ROPE [-1,1]) are 

boldfaced. C1: A-Choosers; C2: C-Learners; C3: D-Learners; C4: Scattering; C5: A-Exploiters. 
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Table 17  

Bayesian mean comparisons within groups (and 95% HDI) in the number of Deck C 

choices between each of the blocks. 

 
Men Women C1 C2 C3 C4 C5 

Block 1 vs.  
Block 2 

.17 
(-.60, .95) 

.27 
(-.43, .94) 

.80 
(-.14, 1.77) 

-3.40 
(-5.12, -1.76) 

.65 
(-.69, 1.99) 

-.19 
(-1.11, .73) 

1.55 
(.42, 2.66) 

Block 1 vs.  

Block 3 

-.03 

(-.80, .73) 

-.09 

(-.79, .58) 

1.23 

(.27, 2.19) 

-7.48 

(-9.22, -5.79) 

.85 

(-.49, 2.22) 

-.30 

(-1.21, .64) 

1.11 

(-.01, 2.25) 

Block 1 vs.  

Block 4 

-.73 

(-1.56, .05) 

-.42 

(-1.14, .28) 

1.52 

(.52, 2.46) 

-1.05 

(-11.78, -8.32) 

.71 

(-.63, 2.06) 

-1.35 

(-2.30, -.45) 

.77 

(-.37, 1.87) 

Block 1 vs.  
Block 5 

-1.08 
(-1.98, -.20) 

-.42 
(-1.17, .30) 

1.74 
(.76, 2.67) 

-11.93 
(-13.70, -1.19) 

.96 
(-.38, 2.32) 

-1.52 
(-2.46, -.61) 

.55 
(-.57, 1.68) 

Block 2 vs.  

Block 3 

-.20 

(-.99, .57) 

  -.36 

(-1.06, .32) 

.43 

(-.51, 1.40) 

-4.09 

(-5.74, -2.38) 

.20 

(-1.17, 1.53) 

-.11 

(-1.01, .85) 

-.44 

(-1.56, .69) 

Block 2 vs.  

Block 4 

-.90 

(-1.73, -.10) 

-.69 

(-1.40, .02) 

.72 

(-.23, 1.69) 

-6.65 

(-8.38, -4.97) 

.06 

(-1.28, 1.43) 

-1.16 

(-2.10, -.25) 

-.78 

(-1.89, .36) 

Block 2 vs.  
Block 5 

-1.25 
(-2.16, -.38) 

-.69 
(-1.42, .06) 

.94 
(-.02, 1.91) 

-8.53 
(-1.22, -6.82) 

.31 
(-1.09, 1.63) 

-1.34 
(-2.28, -.43) 

-.99 
(-2.12, .13) 

Block 3 vs.  

Block 4 

-.69 

(-1.53, .09) 

-.33 

(-1.02, .38) 

.28 

(-.69, 1.26) 

-2.56 

(-4.20, -.86) 

-.14 

(-1.46, 1.22) 

-1.05 

(-1.96, -.12) 

-.34 

(-1.47, .76) 

Block 3 vs.  

Block 5 

-1.04 

(-1.99. -.18) 

-.33 

(-1.09, .41) 

.50 

(-.46, 1.46) 

-4.43 

(-6.09, -2.72) 

.11 

(-1.20, 1.52) 

-1.23 

(-2.15, -.31) 

-.56 

(-1.70, .55) 

Block 4 vs.  
Block 5 

-.35 
(-1.17, .42) 

-.01 
(-.67, .73) 

.22 
(-.72, 1.20) 

-1.88 
(-3.54, -.19) 

.60 
(-.65, 1.84) 

-.18 
(-1.08, .76) 

-.22 
(-1.36, .89) 

Rev 1 vs. 

Rev 2 

-.86 

(-1.93, .24) 

-.76 

(-1.69, .21) 

-.64 

(-2.03, .77) 

1.27 

(-1.05, 3.66) 

-1.33 

(-3.22, .55) 

-.82 

(-2.17, .49) 

-1.60 

(-3.26, -.03) 

Rev 1 vs. 

Rev 3 

.96 

(-.10, 2.07) 

1.17 

(.23, 2.14) 

2.00 

(.58, 3.42) 

-.09 

(-2.31, 2.18) 

.01 

(-1.88, 1.90) 

.03 

(-1.35, 1.34) 

2.68 

(.99, 4.34) 

Rev 2 vs. 
Rev 3 

1.83 
(.74, 2.94) 

1.94 
(.98, 2.91) 

2.64 
(1.23, 4.04) 

-1.36 
(-3.87, 1.24) 

1.34 
(-.53, 3.18) 

.85 
(-.47, 2.23) 

4.27 
(2.51, 6.03) 

Note. Pairwise comparisons that showed credible differences (HDI does not include the ROPE [-1,1]) are 

boldfaced. C1: A-Choosers; C2: C-Learners; C3: D-Learners; C4: Scattering; C5: A-Exploiters. 
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Table 18 

Bayesian mean comparisons within groups (and 95% HDI) in the number of Deck D 

choices between each of the blocks. 

 
Men Women C1 C2 C3 C4 C5 

Block 1 vs.  
Block 2 

-.45 
(-1.37, .45) 

-.17 
(-.95, .64) 

-.74 
(-1.96, .48) 

.64 
(-1.40, 2.63) 

-2.19 
(-3.91, -.56) 

.14 
(-1.02, 1.30) 

.57 
(-.83, 2.00) 

Block 1 vs.  

Block 3 

-1.00 

(-1.91, -.10) 

-.82 

(-1.62, -.02) 

-1.27 

(-2.45, -.03) 

1.45 

(-.58, 3.49) 

-5.05 

(-6.76, -3.28) 

-.29 

(-1.45, .89) 

.42 

(-.97, 1.86) 

Block 1 vs.  

Block 4 

-1.91 

(-2.96, -.95) 

-1.37 

(-2.25, -.53) 

-1.58 

(-2.80, -.35) 

1.60 

(-.46, 3.66) 

-6.76 

(-8.58, -4.99) 

-.97 

(-2.18, .19) 

-.65 

(-2.06, .79) 

Block 1 vs.  
Block 5 

-1.48 
(-2.42, -.59) 

-1.24 
(-2.08, -.44) 

-.88 
(-2.10, .33) 

2.59 
(.53, 4.75) 

-6.27 
(-8.12, -4.53) 

-.86 
(-2.05, .29) 

-1.24 
(-2.63, .19) 

Block 2 vs.  

Block 3 

-.55 

(-1.43, .35) 

-.65 

(-1.46, .13) 

-.53 

(-1.75, .67) 

.81 

(-1.19, 2.84) 

-2.86 

(-4.57, -1.21) 

-.43 

(-1.64, .71) 

-.15 

(-1.53, 1.30) 

Block 2 vs.  

Block 4 

-1.46 

(-2.44, -.59) 

-1.21 

(-2.02, -.39) 

-.83 

(-2.05, .41) 

.96 

(-1.02, 3.07) 

-4.58 

(-6.31, -2.85) 

-1.11 

(-2.27, .04) 

-1.21 

(-2.66, .18) 

Block 2 vs.  
Block 5 

-1.03 
(-1.92, -.15) 

-1.07 
(-1.87, -.27) 

-.14 
(-1.33, 1.11) 

1.95 
(-.09, 4.05) 

-4.09 
(-5.80, -2.37) 

-1.00 
(-2.20, .16) 

-1.80 
(-3.21, -.39) 

Block 3 vs.  

Block 4 

-.91 

(-1.84, .00) 

-.55 

(-1.37, .26) 

-.31 

(-1.52, .91) 

.15 

(-1.87, 2.14) 

-1.71 

(-3.36, -.03) 

-.68 

(-1.83, .52) 

-1.07 

(-2.49, .34) 

Block 3 vs.  

Block 5 

-.48 

(-1.38, .38) 

-.42 

(-1.21, .37) 

.39 

(-.83, 1.59) 

1.14 

(-.89, 3.19) 

-1.22 

(-2.85, .49) 

-.57 

(-1.77, .57) 

-1.66 

(-3.07, -.24) 

Block 4 vs.  
Block 5 

.43 
(-.45, 1.34) 

.13 
(-.66, .94) 

.70 
(-.56, 1.93) 

.99 
(-1.03, 2.98) 

.49 
(-1.13, 2.17) 

.11 
(-1.03, 1.32) 

-.59 
(-1.97, .85) 

Rev 1 vs. 

Rev 2 

1.01 

(-.09, 2.06) 

1.50 

(.57, 2.45) 

1.25 

(.02, 2.46) 

.75 

(-1.20, 2.47) 

1.74 

(.24, 3.41) 

1.30 

(.13, 2.48) 

1.27 

(-.14, 2.59) 

Rev 1 vs. 

Rev 3 

-1.16 

(-2.23, -.11) 

-1.13 

(-2.05, -.22) 

-2.19 

(-3.65, -.78) 

-1.05 

(-2.79, .73) 

-.49 

(-2.05, 1.15) 

-.47 

(-1.71, .80) 

-1.20 

(-2.56, .15) 

Rev 2 vs. 
Rev 3 

-2.17 
(-3.27, -1.08) 

-2.63 
(-3.56, -1.66) 

-3.45 
(-4.87, -2.02) 

-1.80 
(-3.56, .18) 

-2.23 
(-3.78, -.67) 

-1.77 
(-3.03, -.49) 

-2.46 
(-3.84, -1.09) 

Note. Pairwise comparisons that showed credible differences (HDI does not include the ROPE [-1,1]) are 

boldfaced. C1: A-Choosers; C2: C-Learners; C3: D-Learners; C4: Scattering; C5: A-Exploiters. 
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ii. Study III. Detailed results 

Table 19 

Mean of the differences (and 95% HDIs) between clusters of the estimated number of 

choices of each deck in each block. 

 Cluster Block 1 Block 2 Block 3 Block 4 Block 5 

D
ec

k
 A

 

C1 vs. C2 
-.126 

(-1.830, 1.557) 

.021 

(-1.261, 1.257) 

-.027 

(-1.446, 1.416) 

-.226 

(-1.390, 1.012) 

-1.309 

(-2.770, .027) 

C1 vs. C3 
-.373 

(-1.503, .780) 

-1.545 

(-2.586, -.477) 

-2.014 

(-3.376, -.692) 

-2.163 

(-3.198, -1.139) 

-2.882 

(-3.825, -.633) 

C2 vs. C3 
-.247 

(-1.788, -1.166) 

-1.566 

(-2.654, -.482) 

-1.987 

(-2.856, -1.115) 

-1.937 

(-3.349, -.914) 

-1.572 

(-2.865, -.179) 

D
ec

k
 B

 

C1 vs. C2 
-4.826 

(-6.831, -3.004) 

-7.029 

(-9.192, -4.730) 

-8.851 

(-1.878, -6.885) 

-9.688 

(-11.737, -7.647) 

-9.550 

(-11.698, -7.475) 

C1 vs. C3 
-1.034 

(-2.269, .233) 

.077 

(-1.561, 1.757) 

-1.087 

(-2.507, .212) 

-1.583 

(-3.177, .036) 

-2.207 

(3.872, -.633) 

C2 vs. C3 
3.791 

(2.106, 5.783) 

7.105 

(5.270, 8.944) 

7.764 

(6.145, 9.395) 

8.105 

(6.590, 9.684) 

7.343 

(5.586, 9.153) 

D
ec

k
 C

 

C1 vs. C2 
.143 

(-1.127, 1.330) 

.337 

(-.933, 1.611) 

1.625 

(.555, 2.712) 

.882 

(-.287, 2.048) 

1.192 

(-.287, 2.443) 

C1 vs. C3 
-1.377 

(-2.478, -.324) 

-1.789 

(-3.000, -.547) 

-2.040 

(-3.104, -.986) 

-2.616 

(-3.769, -1.492) 

-2.407 

(-3.903, -.928) 

C2 vs. C3 
-1.519 

(-2.591, -.515) 

-2.125 

(-3.083, -1.157) 

-3.665 

(-4.563, -2.741) 

-3.498 

(-4.495, -2.546) 

-3.599 

(-4.445, -2.660) 

D
ec

k
 D

 

C1 vs. C2 
4.682 

(3.083, 6.297) 

6.383 

(4.462, 8.386) 

7.531 

(5.619, 9.556) 

8.976 

(6.889, 11.048) 

9.597 

(7.487, 11.796) 

C1 vs. C3 
2.620 

(1.161, 4.067) 

2.869 

(1.013, 4.786) 

5.391 

(3.377, 7.186) 

6.637 

(4.811, 8.464) 

7.562 

(5.779, 9.277) 

C2 vs. C3 
-2.063 

(-2.932, -1.128) 

-3.515 

(-4.462, -2.608) 

-2.140 

(-3.349, -.914) 

-2.339 

(-3.705, -.947) 

-2.035 

(-3.500, -.592) 

Note. Pairwise comparisons that showed credible differences (HDI does not include the ROPE [-1, 1]) are 

boldfaced.  

 

 

 

 

 



183 

 

 

Table 20 

Mean of the differences (and 95% HDIs) within clusters of the estimated number of 

choices of each deck between each block. 

 Block D Learners B Exploiters Scattering 

D
ec

k
 A

 

Block 1 vs. Block 2 
1.665 

(.239, 2.927) 

1.792 

(.044, 3.339) 

.472 

(-.348, 1.213) 

Block 1 vs. Block 3 
1.797 

(.190, 3.394) 

1.896 

(.231, 3.355) 

.156 

(-.668, .881) 

Block 1 vs. Block 4 
2.758 

(1.451, 4.047) 

2.658 

(.933, 4.170) 

.968 

(.181, 1.731) 

Block 1 vs. Block 5 
3.084 

(1.789, 4.299) 

1.901 

(.059, 3.622) 

.575 

(-.218, 1.332) 

D
ec

k
 B

 

Block 1 vs. Block 2 
-.612 

(-2.488, 1.047) 

-2.815 

(-5.324, -.331) 

.499 

(-.588, 1.568) 

Block 1 vs. Block 3 
.755 

(-.729, 2.485) 

-3.270 

(-5.513, -.868) 

.703 

(-.191, 1.595) 

Block 1 vs. Block 4 
1.279 

(-.520, 3.094) 

-3.584 

(-5.733, -1.487) 

.730 

(-.244, 1.731) 

Block 1 vs. Block 5 
1.244 

(-.450, 3.016) 

-3.481 

(-5.680, -1.111) 

.072 

(-1.050, 1.060) 

D
ec

k
 C

 

Block 1 vs. Block 2 
.385 

(-1.031, 1.755) 

.579 

(-.553, 1.687) 

-.341 

(-1.228, .508) 

Block 1 vs. Block 3 
.322 

(-.953, 1.484) 

1.805 

(.690, 2.864) 

-.341 

(-1.228, .508) 

Block 1 vs. Block 4 
.844 

(-.496, 2.092) 

1.583 

(.527, 2.719) 

-.395 

(-1.292, .541) 

Block 1 vs. Block 5 
.826 

(-.589, 2.381) 

1.875 

(.822, 2.934) 

-.204 

(-1.101, .727) 

D
ec

k
 D

 

Block 1 vs. Block 2 
-1.074 

(-3.380, 1.218) 

.627 

(-.508, 1.696) 

--.825 

(-1.486, -.173) 

Block 1 vs. Block 3 
-3.224 

(-5.285, -1.092) 

-.375 

(-1.721, 1.009) 

-.453 

(-1.069, .218) 

Block 1 vs. Block 4 
-5.077 

(-7.281, -2.823) 

-.784 

(-2.161, .650) 

-1.060 

(-1.837, -.296) 

Block 1 vs. Block 5 
-5.410 

(-7.604, -3.174) 

-.492 

(-2.028, 1.131) 

-.468 

(-1.131, .227) 

Note. Pairwise comparisons that showed credible differences (HDI does not include the ROPE [-1, 1]) are 

boldfaced.  
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Table 21  

Mean of the differences (and 95% HDIs) within clusters between the estimated number 

of choices of each deck in each block. 

 Deck Block 1 Block 2 Block 3 Block 4 Block 5 

D
 L

ea
r
n

e
r
s 

A vs B -.585 

(-2.022, .834) 

-2.842 

(-4.565, -1.151) 

-1.627 

(-3.551, .367) 

-2.064 

(-3.672, -.325) 

-2.425 

(-3.999, -.861) 

A vs C 1.261 
(-.074, 2.626) 

.002 
(-1.385, 1.330) 

-.214 
(-1.869, 1.232) 

-.653 
(-1.827, .618) 

-.999 
(-2.374, .634) 

A vs D -2.415 

(-4.170, -.705) 

-5.134 

(-7.050, -3.014) 

-7.436 

(-9.677, -5.238) 

-1.251 

(-12.050, -8.253) 

-1.910 

(-12.784, -9.085) 

B vs C 1.846 
(.565, 3.228) 

2.844 

(1.091, 4.730) 
1.413 

(-.163, 2.874) 
1.411 

(-.331, 3.157) 
1.428 

(-.371, 3.235) 

B vs D -1.830 

(-3.484, -.061) 

-2.292 

(-4.565, .077) 

-5.809 

(-7.794, -3.731) 

-8.187 

(-1.460, -5.990) 

-8.485 

(-1.691, -6.308) 

C vs D -3.767 

(-5.322, -2.040) 

-5.136 

(-7.193, -3.017) 

-7.222 

(-8.963, -5.339) 

-9.598 

(-11.617, -7.733) 

-9.913 

(-11.986, -7.899) 

B
 E

x
p

lo
it

e
r
s 

A vs B -5.285 

(-7.406, -3.176) 

-9.891 

(-11.707, -7.971) 

-1.451 

(-12.213, -8.830) 

-11.527 

(-13.184, -9.920) 

-1.666 

(-12.676, --8.734) 

A vs C 1.530 
(-.122, 3.095) 

.318 
(-.804, 1.502) 

1.439 
(.457, 2.439) 

.455 
(-.641, 1.573) 

1.505 
(.130, 2.799) 

A vs D 2.393 

(.778, 3.900) 

1.229 

(.146, 2.489) 

.122 

(-1.206, 1.411) 

-1.049 

(-2.538, .367) 

-.003 

(-1.792, 1.689) 

B vs C 6.814 

(5.003, 8.724) 

1.209 

(8.369, 11.980) 

11.890 

(1.194, 13.549) 

11.982 

(1.435, 13.518) 

12.170 

(1.517, 13.907) 

B vs D 7.678 

(5.900, 9.564) 

11.120 

(9.292, 12.891) 

1.572 

(8.763, 12.527) 

1.478 

(8.588, 12.253) 

1.663 

(8.571, 12.762) 

C vs D .863 

(-.258, 2.039) 

.911 

(-.154, 1.967) 

-1.317 

(-2.649, -.048) 

-1.503 

(-2.957, -.177) 

-1.508 

(-2.973, -.050) 

S
c
a

tt
e
ri

n
g

 

A vs B -1.246 

(-2.144, -.448) 

-1.220 

(-2.211, -.194) 

-.700 

(-1.471, .072) 

-1.485 

(-2.376, -.591) 

-1.751 

(-2.761, -.744) 

A vs C .258 

(-.530, 1.044) 

-.241 

(-1.113, .628) 

-.239 

(-1.053, .544) 

-1.106 

(-2.004, -.174) 

-.522 

(-1.396, .406) 

A vs D .578 
(-.088, 1.190) 

-.720 
(-1.567, .065) 

-.031 
(-.758, .692) 

-1.450 
(-2.403, -.524) 

-.466 
(-1.396, .406) 

B vs C 1.504 

(.568, 2.481) 

.978 

(-.018, 2.008) 

.460 

(-.385, 1.314) 

.379 

(-.559, 1.348) 

1.228 

(.224, 2.293) 

B vs D 1.824 

(1.034, 2.633) 

.500 

(-.479, 1.466) 

.668 

(-.094, 1.428) 

.034 

(-.898, 1.047) 

1.284 

(.312, 2.238) 

C vs D .320 
(-.419, 1.034) 

-.479 
(-1.280, .345) 

.208 
(-.604, 1.033) 

-.344 
(-1.306, .624) 

.056 
(-.781, .966) 

Note. Pairwise comparisons that showed credible differences (95% HDI does not include the ROPE [-1, 

1]) are boldfaced.  
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Table 22  

Mean of the differences (and 95% HDIs) between diagnostic groups of the estimated 

number of choices of each deck in each block. 

 Group Block 1 Block 2 Block 3 Block 4 Block 5 

D
ec

k
 A

 

HC vs. OCD 
-.368 

(-1.787, 1.230) 

.416 

(-1.791, .826) 

1.105 

(-.154, 2.424) 

.045 

(-1.350, 1.336) 

2.026 

(.848, 3.340) 

HC vs. SUD 
-.466 

(-1.590, .613) 

-1.696 

(-2.839, .535) 

-.031 

(-1.201, 1.147) 

-.076 

(-1.258, 1.092) 

-.427 

(-1.746, .806) 

HC vs. ADHD 
.238 

(-1.233, 1.742) 

-.684 

(-2.158, .727) 

-1.195 

(-2.830, .450) 

.920 

(-.486, 2.288) 

-.207 

(-1.935, 1.607) 

OCD vs. SUD 
-.098 

(-1.559, 1.318) 

-1.280 

(-2.508, -.067) 

-1.136 

(-2.233, .052) 

-.120 

(-1.367, 1.123) 

-2.453 

(-3.691, -1.367) 

OCD vs. ADHD 
.606 

(-1.113, 2.486) 

-.268 

(-1.797, 1.358) 

-2.300 

(-4.029, -.668) 

.876 

(-.572, 2.341) 

-2.233 

(-3.762, -.596) 

SUD vs. ADHD 
.704 

(-.527, 2.095) 

1.012 

(-.437, 2.405) 

-1.164 

(-2.958, .216) 

.996 

(-.334, 2.307) 

.220 

(-1.253, 2.057) 

D
ec

k
 B

 

HC vs. OCD 
-.425 

(-2.070, 1.069) 

1.782 

(-.636, 3.989)  

.121 

(-2.263, 2.375) 

.503 

(-1.766, 2.668) 

.073 

(-2.476, 2.639) 

HC vs. SUD 
-1.041 

(-2.561, .444) 

1.745 

(-.207, 3.800) 

-.959 

(-2.848, .972) 

-.786 

(-2.928, 1.219) 

-.236 

(-2.276, 1.973) 

HC vs. ADHD 
-2.206 

(-4.449, .244) 

2.162 

(-.620, 4.545) 

-.725 

(-3.332, 2.078) 

-1.418 

(-4.276, 1.393) 

-.147 

(-2.747, 2.770) 

OCD vs. SUD 
-.616 

(-2.483, .996) 

-.037 

(-2.210, 2.032) 

1.080 

(-3.196, 1.401) 

-1.289 

(-3.544, 1.111) 

-.309 

(-2.954, 2.480) 

OCD vs. ADHD 
-1.781 

(-4.206, .838) 

.380 

(-2.532, 3.040) 

-.846 

(-3.902, 2.038) 

-1.921 

(-4.960, 1.168) 

-.220 

(-3.340, 3.016) 

SUD vs. ADHD 
-1.165 

(-3.611, 1.262) 

.417 

(-2.148, 2.965) 

.234 

(-2.440, 2.969) 

-.632 

(-3.554, 2.380) 

.089 

(-2.782, 2.889) 

D
ec

k
 C

 

HC vs. OCD 
.972 

(-.208, 2.180) 

-.671 

(-2.529, .880) 

1.103 

(-.301, 2.441) 

-.031 

(-1.777, 1.692) 

.790 

(-.938, 2.321) 

HC vs. SUD 
.325 

(-.850, 1.627) 

-.357 

(-1.693, 1.001) 

.114 

(-1.423, 1.506) 

-.070 

(-1.553, 1.484) 

.639 

(-.901, 2.190) 

HC vs. ADHD 
.342 

(-.895, 1.552) 

-.370 

(-2.142, 1.114) 

1.219 

(-.591, 2.918) 

.209 

(-1.805, 2.047) 

.707 

(-1.094, 2.557) 

OCD vs. SUD 
-.647 

(-2.005, .698) 

.315 

(-1.197, 1.815) 

-.989 

(-2.235, .369) 

-.039 

(-1.703, 1.652) 

-.151 

(-1.687, 1.380) 

OCD vs. ADHD 
-.630 

(-2.033, .638) 

.302 

(-1.366, 1.933) 

.117 

(-1.433, 1.762) 

.240 

(-1.904, 2.313) 

-.083 

(-1.969, 1.599) 
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 Group Block 1 Block 2 Block 3 Block 4 Block 5 

SUD vs. ADHD 
.017 

(-1.383, 1.405) 

-.013 

(-1.545, 1.488) 

1.105 

(-.638, 2.676) 

.279 

(-1.652, 2.148) 

.068 

(-1.708, 1.823) 

D
ec

k
 D

 

HC vs. OCD 
.043 

(-1.346, 1.478) 

-.476 

(-2.389, 1.139) 

-1.836 

(-4.044, .579) 

-.336 

(-2.854, 2.338) 

-2.192 

(-4.792, .427) 

HC vs. SUD 
1.131 

(.009, 2.405) 

.210 

(-.990, 1.404) 

.628 

(-.739, 2.091) 

.969 

(-1.017, 2.901) 

.026 

(-1.468, 1.619) 

HC vs. ADHD 
1.566 

(.121, 3.034) 

-.431 

(-2.541, 1.630) 

.876 

(-.879, 2.896) 

.750 

(-1.944, 3.231) 

-.111 

(-2.484, 2.106) 

OCD vs. SUD 
1.089 

(-.293, 2.567) 

.686 

(-.811, 2.414) 

2.464 

(.402, 4.520) 

1.306 

(-.997, 3.674) 

2.218 

(-.337, 4.606) 

OCD vs. ADHD 
1.523 

(-.173, 3.196) 

.046 

(-2.405, 2.378) 

2.712 

(.185, 5.472) 

1.086 

(-1.725, 3.985) 

2.081 

(-.880, 5.094)  

SUD vs. ADHD 
.435 

(-1.054, 1.943) 

-.640 

(-2.842, 1.307) 

.248 

(-1.234, 2.140) 

-.220 

(-2.556, 2.150) 

-.137 

(-2.538, 1.849) 

Note. Pairwise comparisons that showed credible differences (95% HDI does not include the ROPE [-1, 

1]) are boldfaced.  
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Table 23 

Mean of the differences (and 95% HDIs) within diagnostic groups of the estimated 

number of choices of each deck between each block. 

 Block HC OCD SUD ADHD 

D
ec

k
 A

 

Block 1 vs. Block 2 
1.518 

(-.196, 2.693) 

1.470 

(-.006, 3.192) 

.288 

(-.617, 1.330) 

.596 

(-1.211, 2.120) 

Block 1 vs. Block 3 
.673 

(-.615, 1.921) 

2.147 

(.500, 3.599) 

1.108 

(.086, 2.053) 

-.760 

(-2.663, .896) 

Block 1 vs. Block 4 
1.357 

(-.012, 2.625) 

1.770 

(.132, 3.343) 

1.748 

(.681, 2.754) 

2.039 

(.221, 3.533) 

Block 1 vs. Block 5 
.968 

(-.336, 2.314) 

3.362 

(1.799, 4.793) 

1.006 

(-.022, 1.980) 

.522 

(-1.331, 2.464) 

D
ec

k
 B

 

Block 1 vs. Block 2 
-2.434 

(-4.112, -.544) 

-.227 

(-2.379, 1.900) 

.352 

(-1.561, 2.191) 

1.933 

(-1.338, 4.776) 

Block 1 vs. Block 3 
-.314 

(-1.959, 1.333) 

.232 

(-2.115, 2.319) 

-.232 

(-2.141, 1.526) 

1.167 

(-1.981, 4.417) 

Block 1 vs. Block 4 
-.307 

(-1.938, 1.293) 

.621 

(-1.647, 2.807) 

-.052 

(-2.200, 1.952) 

.481 

(-2.780, 3.674) 

Block 1 vs. Block 5 
-.906 

(-2.668, .710) 

-.408 

(-2.774, 2.026) 

-.101 

(-2.025, 1.769) 

1.154 

(-1.936, 4.319) 

D
ec

k
 C

 

Block 1 vs. Block 2 
.902 

(-.449, 2.111) 

-.741 

(-2.193, .755) 

.220 

(-1.075, 1.556) 

.190 

(-1.463, 1.678) 

Block 1 vs. Block 3 
.076 

(-1.238, 1.334) 

.207 

(-1.041, 1.442) 

-.135 

(-1.436, 1.326) 

.954 

(-.787, 2.536) 

Block 1 vs. Block 4 
.579 

(-.748, 1.801) 

-.425 

(-1.977, 1.206) 

.184 

(-1.399, 1.760) 

.446 

(-1.425, 2.241) 

Block 1 vs. Block 5 
.347 

(-1.074, 1.700) 

.166 

(-1.214, 1.701) 

.662 

(-.776, 2.105) 

.713 

(-1.033, 2.412) 

D
ec

k
 D

 

Block 1 vs. Block 2 
.083 

(-1.232, 1.312) 

-.436 

(-2.264, 1.387) 

-.838 

(-1.863, .262) 

-1.913 

(-4.316, .191) 

Block 1 vs. Block 3 
-.250 

(-1.777, 1.173) 

-2.128 

(-4.236, .248) 

-.753 

(-1.814, .361) 

-.939 

(-2.749, 1.218) 

Block 1 vs. Block 4 
-1.332 

(-3.004, .571) 

-1.711 

(-3.946, .600) 

-1.494 

(-2.929, -.128) 

-2.148 

(-4.727, .049) 

Block 1 vs. Block 5 
1.081 

(-.385, 2.471) 

-2.454 

(-5.115, .022) 

-1.325 

(-2.616, -.089) 

-1.896 

(-4.251, .377) 

Note. Pairwise comparisons that showed credible differences (95% HDI does not include the ROPE [-1, 

1]) are boldfaced.  
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Table 24 

Mean of the differences (and 95% HDIs) within diagnostic groups between the 

estimated number of choices of each deck in each block. 

 Deck Block 1 Block 2 Block 3 Block 4 Block 5 

H
C

 

A vs B 
-1.291 

(-2.575, -.116) 

-3.864 

(-5.377, -2.402) 

-1.996 

(-3.438, -.634) 

-2.579 

(-3.960, -1.200) 

-2.571 

(-4.046, -1.150) 

A vs C 
.161 

(-.960, 1.265) 

-.488 

(-1.700, .735) 

-.370 

(-1.695, .869) 

-.539 

(-1.808, .715) 

-.428 

(-1.792, .853) 

A vs D 
-.626 

(-1.863, .596) 

-1.786 

(-2.997, -.447) 

-1.436 

(-2.778, .068) 

-2.651 

(-4.158, -1.191) 

-1.607 

(-3.029, -.121) 

B vs C 
1.452 

(.324, 2.540) 

3.376 

(1.680, 4.920) 

1.626 

(.082, 3.125) 

2.020 

(.597, 3.470) 

2.143 

(.676, 3.743) 

B vs D 
.665 

(-.568, 1.874) 

2.078 

(.431, 3.685) 

.560 

(-1.121, 2.138) 

-.072 

(-1.626, 1.600) 

.964 

(-.599, 2.696) 

C vs D 
-.787 

(-1.908, .324) 

-1.298 

(-2.658, .086) 

-1.066 

(-2.567, .499) 

-2.112 

(-3.665, -.588) 

-1.179 

(-2.705, .337) 

O
C

D
 

A vs B 
-1.667 

(-2.684, .439) 

-2.437 

(-4.004, -.930) 

-2.666 

(-4.305, -1.088) 

-2.087 

(-3.764, -.511) 

-4.012 

(-5.704, -2.373) 

A vs C 
1.296 

(-.118, 2.753) 

-.546 

(-1.905, .796) 

-.327 

(-1.461, .852) 

-.593 

(-2.008, .818) 

-1.564 

(-2.847, -.291) 

A vs D 
-.173 

(-1.850, 1.440) 

-1.763 

(-3.309, -.274) 

-3.207 

(-4.825, -1.610) 

-2.687 

(-4.322, -.982) 

-4.276 

(-6.047, -2.539) 

B vs C 
2.463 

(1.126, 3.796) 

1.891 

(.263, 3.516) 

2.339 

(.783, 3.912) 

1.494 

(-.283, 3.272) 

2.448 

(.732, 4.183) 

B vs D 
.993 

(-.555, 2.493) 

.674 

(-1.075, 2.446) 

-.541 

(-2.505, 1.347) 

-.600 

(-2.579, 1.347) 

-.263 

(-2.466, 1.775) 

C vs D 
-1.469 

(-2.851, -.097) 

-1.217 

(-2.843, .385) 

-2.880 

(-4.499, -1.311) 

-2.093 

(-3.933, .286) 

-2.712 

(-4.637, -.999) 

S
U

D
 

A vs B 
-1.516 

(-2.796, -.295) 

-1.555 

(-2.863, -.227) 

-2.634 

(-3.885, -1.349) 

-2.912 

(-4.334, -1.487) 

-2.388 

(-3.778, -.974) 

A vs C 
.887 

(-.243, 1.977) 

.724 

(-.354, 1.838) 

-.268 

(-1.349, .822) 

-.531 

(-1.727, .611) 

.399 

(-.825, 1.522) 

A vs D 
.975 

(-.031, 1.999) 

-.102 

(-1.159, 1.031) 

-.745 

(-1.717, .278) 

-2.033 

(-3.304, -.731) 

-1.308 

(-2.471, -.052) 

B vs C 
2.402 

(1.119, 3.729) 

2.279 

(.938, 3.602) 

2.365 

(.936, 3.739) 

2.381 

(.839, 3.866) 

2.788 

(1.246, 4.303) 
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 Deck Block 1 Block 2 Block 3 Block 4 Block 5 

B vs D 
2.491 

(1.235, 3.720) 

1.452 

(.116, 2.811) 

1.889 

(.545, 3.163) 

.879 

(-.742, 2.521) 

1.081 

(-.587, 2.593) 

C vs D 
.089 

(-1.011, 1.214) 

-.827 

(-1.900, .253) 

-.476 

(-1.598, .685) 

-1.502 

(-2.858, -.087) 

-1.707 

(-3.025, -.351) 

A
D

H
D

 

A vs B -2.140 

(-4.002, -.262) 

-1.779 

(-3.652, -.009) 

-.861 

(-2.835, 1.121) 

-3.410 

(-5.314, -1.561) 

-2.015 

(-3.832, -.029) 

A vs C 
.263 

(-1.102, 1.608) 

-.110 

(-1.497, 1.356) 

1.559 

(-.092, 3.298) 

-1.153 

(-2.659, .510) 

.285 

(-1.236, 1.958) 

A vs D 
.598 

(-.953, 2.022) 

-1.466 

(-3.244, .336) 

1.559 

(-.092, 3.298) 

-2.618 

(-4.472, -.767) 

-1.291 

(-3.145, .678) 

B vs C 
2.403 

(.608, 4.159) 

1.669 

(-.231, 3.451) 

2.421 

(.570, 4.351) 

2.257 

(.238, 4.248) 

2.300 

(.398, 4.219) 

B vs D 
2.737 

(.861, 4.534) 

.312 

(-1.755, 2.378) 

1.349 

(-.666, 3.349) 

.792 

(-1.409, 3.019) 

.724 

(-1.431, 2.987) 

C vs D 
.334 

(-1.025, 1.673) 

-1.357 

(-3.159, .399) 

-1.072 

(-.813, 2.236) 

-1.465 

(-3.387, .560) 

-1.575 

(-3.389, .375) 

Note. Pairwise comparisons that showed credible differences (95% HDI does not include the ROPE [-1, 

1]) are boldfaced.  
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Table 25 

Means of the posterior of rsFC between each ROI and mean of the differences in these 

values between each cluster. The values within parentheses represent the 95% HDIs. 

 D Learners Scattering B exploiters 
D Learners –  

Scattering 

D Learners – B 

exploiters 

Scattering – B 

exploiters 

lOFC-rOFC 
.559 

(.424, .697) 

.563 

(.480, .642) 

.490 

(.353, .631) 

-.003 

(-.157, .157) 

.069 

(-.122, .273) 

.072 

(-.087, .236) 

lOFC-lDLPFC 

.374 

(.243, .520) 

.420 

(.345, .495) 

.338 

(.215, .456) 

-.046 

(-.199, .116) 

.036 

(-.152, .218) 

.082 

(-.062, .219) 

lOFC-rDLPFC 

.393 

(.273, .517) 

.410 

(.334, .479) 

.439 

(.310, .572) 

-.018 

(-.152, .125) 

-.046 

(-.232, .126) 

-.028 

(-.176, .121) 

lOFC-lpPC 

.173 

(.110, .236) 

.187 

(.138, .235) 

.141 

(.071, .209) 

-.014 

(-.092, .069) 

.033 

(-.062, .126) 

.046 

(-.038, .128) 

lOFC-rpPC 

.188 

(.110, .266) 

.185 

(.141, .233) 

.147 

(.080, .209) 

.003 

(-.085, .095) 

.041 

(-.059, .141) 

.038 

(-.040, .117) 

rOFC-lDLPFC 
.339 

(.217, .462) 

.346 

(.289, .404) 

.280 

(.181, .377) 

-.006 

(-.135, .132 

.059 

(-.094, .214) 

.065 

(-.046, .179) 

rOFC-rDLPFC 

.407 

(.274, .545) 

.427 

(.352, .498) 

.409 

(.281, .539) 

-.019 

(-.181, .129) 

-.002 

(-.185, .198) 

.017 

(-.132, .164) 

rOFC-lpPC 

.150 

(.093, .207) 

.179 

(.132, .224) 

.111 

(.056, .168) 

-.029 

(-.101, .044) 

.039 

(-.039, .120) 

.068 

(-.007, .139) 

rOFC-rpPC 

.289 

(.186, .396) 

.248 

(.194, .307) 

.195 

(.125, .262) 

.040 

(-.078, .160) 

.094 

(-.030, .219) 

.054 

(-.034, .141) 

lDLPFC-rDLPFC 
.465 

(.400, .592) 

.499 

(.374, .522) 

.410 

(.284, .525) 

.016 

(-.131, .162) 

.055 

(-.123, .225) 

.039 

(-.098, .183) 

lDLPFC-lpPC 
.210 

(.126, .293) 

.241 

(.187, .294) 

.205 

(.126, .281) 

-.031 

(-.130, .069) 

.005 

(-.107, .121) 

.035 

(-.059, .127) 

lDLPFC-rpPC 

.230 

(.148, .309) 

.217 

(.169, .264) 

.182 

(.100, .263) 

.013 

(-.079, .106) 

.048 

(-.062, .159) 

.035 

(-.059, .131) 

rDLFPC-lpPC 

.179 

(.110, .245) 

.225 

(.168, .279) 

.171 

(.095, .247) 

-.046 

(-.136, .038) 

.007 

(-.102, .105) 

.053 

(-.038, .149) 

rDLPFC-rpPC 

.265 

(.169, .352) 

.289 

(.230, .347) 

.246 

(.163, .338) 

-.024 

(-.136, .085) 

.019 

(-.103, .148) 

.043 

(-.059, .152) 

lpPC-rpPC 
.307 

(.195, .420) 

.368 

(.300, .432) 

.265 

(.147, .380) 

-.060 

(-.185, .076) 

.043 

(-.113, .208) 

.103 

(-.029, .236) 

Note. Pairwise comparisons that showed credible differences (95% HDI does not include the ROPE [-1, 

1]) are boldfaced.  
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Table 26 

Means of the posterior of rsFC between each ROI and mean of the differences in these 

values between each diagnostic group. The values within parentheses represent the 

95% HDIs. 

 HC OCD SUD ADHD HC – OCD HC – SUD HC - ADHD 

lOFC-rOFC 
.610 

(.507, .714) 

.512 

(.365, .652) 

.496 

(.390, .598) 

.550 

(.303, .814) 

.098 

(-.072, .278) 

.114 

(-.033, .254) 

.060 

(-.222, .326) 

lOFC-lDLPFC 
.396 

(.292, .467) 

.359 

(.233, .485) 

.400 

(.299, .507) 

.365 

(.166, .570) 

.036 

(-.131, .195) 

-.004 

(-.154, .139) 

.031 

(-.199, .249) 

lOFC-rDLPFC 
.395 

(.299, .485) 

.337 

(.207, .465) 

.472 

(.378, .564) 

.381 

(.187, .585) 

.057 

(-.110, .211) 

-.076 

(-.204, .055) 

.015 

(-.207, .231) 

lOFC-lpPC 
.187 

(.121, .254) 

.143 

(.075, .209) 

.183 

(.126, .236) 

.148 

(.034, .262) 

.044 

(-.052, .139) 

.004 

(-.083, .091) 

.039 

(-.092, .171) 

lOFC-rpPC 
.185 

(.119, .249) 

.120 

(.063, .177) 

.210 

(.151, .270) 

.153 

(.038, .267) 

.065 

(-.023, .148) 

-.026 

(-.113, .062) 

.032 

(-.099, .162) 

rOFC-lDLPFC 
.342 

(.259, .429) 

.281 

(.182, .375) 

.325 

(.249, .400) 

.376 

(.187, .567) 

.061 

(-.073, .186) 

.017 

(-.098, .129) 

-.033 

(-.248, .196) 

rOFC-rDLPFC 
.408 

(.316, .497) 

.348 

(.217, .490) 

.451 

(.354, .549) 

.455 

(.228, .675) 

.059 

(-.109, .220) 

-.043 

(-.180, .081) 

-.047 

(-.281, .196) 

rOFC-lpPC 
.160 

(.100, .218) 

.143 

(.079, .209) 

.160 

(.105, .214) 

.145 

(.048, .246) 

.017 

(-.071, .102) 

-.001 

(-.083, .078) 

.015 

(-.102, .125) 

rOFC-rpPC 
.240 

(.167, .316) 

.203 

(.119, .284) 

.264 

(.192, .340) 

.264 

(.128, .406) 

.037 

(-.075, .148) 

-.024 

(-.024, -.130) 

-.024 

(-.188, .128) 

lDLPFC-rDLPFC 
.463 

(.363, .559) 

.406 

(.269, .541) 

.417 

(.327, .511) 

.519 

(.321, .711) 

.057 

(-.106, .227) 

.045 

(-.087, .179) 

-.056 

(-.281, .154) 

lDLPFC-lpPC 
.233 

(.159, .314) 

.225 

(.136, .313) 

.202 

(.145, .259) 

.256 

(.112, .406) 

.008 

(-.111, .124) 

.031 

(-.067, .124) 

-.023 

(-.187, .142) 

lDLPFC-rpPC 
.226 

(.160, .297) 

.185 

(.113, 258) 

.205 

(.149, .264) 

.237 

(.093, .374) 

.041 

(-.059, .140) 

.021 

(-.067, .124) 

-.011 

(-.165, .148) 

rDLFPC-lpPC 
.200 

(.121, .271) 

.190 

(.108, .270) 

.193 

(.136, .252) 

.232 

(.095, .368) 

.011 

(-.097, .123) 

.008 

(-.087, .099) 

-.031 

(-.184, .124) 

rDLPFC-rpPC 
.270 

(.192, .346) 

.216 

(.132, .297) 

.296 

(.226, .370) 

.302 

(.139, .463) 

.054 

(-.061, .165) 

-.026 

(-.131, .080) 

-.033 

(-.214, .141) 

lpPC-rpPC 
.343 

(.259, .431) 

.254 

(.141, .370) 

.334 

(.248, .422) 

.401 

(.210, .600) 

.089 

(-.051, .234) 

.009 

(-.107, .135) 

-.058 

(-.267, .155) 

Note. Pairwise comparisons that showed credible differences (95% HDI does not include the ROPE [-1, 

1]) are boldfaced. 
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iii. Studies II and III. Simulations of behaviour from 

reinforcement-learning models 

All simulations were performed in R Software. We generated 1000 simulations 

for each group (clusters or diagnostic groups) from the estimated values of each 

parameter obtained from each applied model. Using the same mathematical formulation 

of each model, we took 1000 random combinations of parameters that were given from 

each model for each subject and simulate 1000 probabilities of choice of each deck for 

each subject. In all graphics, solid lines represent the real probability of choices of each 

deck while dashed lines represent the simulated probabilities. Decks A, B, C and D are 

represented by red, orange, green and blue, respectively. None of the models showed an 

appropriate simulation of real data in any group. VPP and ORL models seem to 

overestimate the advantageous choices, while PVL-Delta and PVL-Decay models seem 

to overestimate the low loss-frequency decks. 
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Prospect Valence Learning (PVL) Decay Model 
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  Prospect Valence Learning (PVL) Delta Model 
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Outcome Representation Learning (ORL) Model  
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Study III 
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