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Abstract: Academic burnout is a psychological problem characterized by three dimensions: emo-
tional exhaustion, depersonalization, and personal accomplishment. This paper studies the internal
structure of the MBI-SS, the most widely used instrument to assess burnout in students. The bifactor
model and the ESEM approach have been proposed as alternatives, capable of overcoming the classi-
cal techniques of CFA to address this issue. Our study considers the internal structure of the MBI-SS
by testing the models most frequently referenced in the literature, along with the bifactor model
and the ESEM. After determining which model best fits the data, we calculate the most appropriate
reliability index. In addition, we examined the validity evidence using other variables, namely
the concurrent relationships with depression, anxiety, neuroticism, and conscientiousness, and the
discriminant relationships with the dimensions of engagement, extraversion, and agreeableness. The
results obtained indicate that the internal structure of the MBI-SS is well reflected by the three-factor
congeneric oblique model, reaching good values of reliability and convergent and discriminant
validity. Therefore, when the scale is used in applied contexts, we recommend considering the total
scores obtained for each of the dimensions. Finally, we recommend using the omega coefficient and
not the alpha coefficient as an estimator of reliability.

Keywords: academic burnout syndrome; MBI-SS; internal structure; reliability and validity; ESSEM
and bifactor model

MSC: 62-11

1. Introduction

Academic burnout has traditionally been defined as a psychological problem arising
from continual exposure to stressors related to the educational institution and to study
activities. The syndrome is usually characterized by three dimensions: emotional exhaus-
tion, depersonalization, and low personal accomplishment [1–3]. In the academic context,
emotional exhaustion (EE) refers to feelings of stress related to the educational center,
particularly chronic fatigue. Depersonalization (D) is manifested as an indifferent or distant
attitude towards academic tasks and a view of studies as meaningless. Low personal
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accomplishment (PA) alludes to perceived inefficacy when studying, lack of academic
success, and scant benefit obtained from the study course [4].

Academic burnout can have serious physical and psychological consequences for
students’ health [5], for example, provoking sleeplessness, depression, low self-esteem,
poor academic performance, absenteeism, and dropout. With a prevalence of 2–41% [5,6],
the syndrome continues to be a significant social problem, calling for further study and
better understanding.

1.1. The Maslach Burnout Inventory: Internal Structure Validity Evidence and Reliability

Various measurement instruments have been developed to assess burnout syndrome
among the working population, among which the Maslach Burnout Inventory (MBI) [7] is
the most widely used [8–10]. Currently, three versions are available: MBI-Human Services
Survey (HSS), MBI-Educators Survey (ES), and MBI-General Survey (GS). However, few
such instruments specifically target the university population. To our knowledge, only
the MBI-Student Survey [4], the Granada Burnout Questionnaire for university students
(CBG-US) [5,11], and the Student Burnout Inventory [12] have been developed. The MBI-SS
was created as an adaptation of the MBI-GS [13], and measures the three dimensions of
burnout established for the MBI (EE, D, and PA). This instrument is the most widely used
to assess burnout in students [14,15], and has been adapted for use in numerous other
linguistic populations, namely Portuguese, Dutch, Spanish [4], Brazilian [14], Italian [16],
French [17], Chinese [18], Iranian [19], Turkish [20], Colombian-Spanish [21], Serbian [22],
Hungarian [23], and Sri Lankan [15].

Most studies of the psychometric properties of the MBI-SS have focused on its internal
structure and reliability. However, those seeking evidence of internal structure validity
have obtained mixed results. In some cases, the three-dimensional structure of the original
scale has been replicated [14,20,22], but in others, the solution obtained is unsatisfactory [17]
and/or different from the original due to modifications in the specification of the model,
for example, changes in the number of factors, the elimination of items with psychometric
problems, or the specification of correlations between item error variances in order to
improve the overall fit, and specification of orthogonal factors [15,16,18,19].

In addition to the three-dimensional model, other models have been proposed, based
on the results of empirical investigations, mainly performed on the MBI-HSS and the
MBI-GS. Thus, [10] presented a hierarchical model with three first-order factors (EE, D, and
PA) and a second-order general factor (burnout). This model, motivated especially by the
strong correlation observed between the three factors, can be integrated into the original
theoretical proposal of [2]. In addition, a two-factor model has been proposed, excluding
PA, which is viewed as a non-nuclear component of the syndrome [14,24,25]. In another
two-factor model, EE and D form a single factor (the burnout core component), with PA
as the second factor [26–28]. Finally, models with four [29] and even five factors [30] have
been proposed for the MBI-HSS, but not for the MBI-GS or the MBI-SS, since these have
different numbers of questionnaire items.

As concerns reliability evidence for the MBI-SS, the vast majority of studies use the
alpha coefficient [31], which requires compliance with assumptions such as unidimension-
ality, tau (τ)-equivalence, and normality of the distribution of the items. These assumptions
are rarely verified and, when they are, seldom satisfied [32–34]. When the alpha coeffi-
cient assumptions are not met, this index tends to underestimate the true reliability of the
scale. For this reason, to deal with congeneric scales (which do not satisfy the assumption
of τ-equivalence), the omega coefficient is usually recommended [35]. Furthermore, the
correct coefficient must be calculated since there are different types of omega coefficients
(total, hierarchical, and subscale, among others), the choice of which depends on the type of
model proposed (e.g., single or multi-factor). In this context, none of the studies previously
conducted to estimate the validity of the MBI-SS have tested τ-equivalent models or have
used omega as a reliability estimator.
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1.2. The Bifactor Model

The bifactor model was proposed by [36] and has been discussed in detail in various
papers [37,38]. In this model, each item depends on two or more orthogonal factors: a
general factor and one or more group factors that characterize a specific subset of items.

Formally, the factor analysis model (whether exploratory or confirmatory) can be
represented with the generic matrix expression [39]:

Y = ΛX + ΨE (1)

where Y is an n × 1 random vector of observed random variables (responses to items); Λ
is an n × r factor-pattern matrix (factor loadings); X is an r × 1 random vector of latent
common factors (factor scores); Ψ is an n × n diagonal matrix of unique-factor-pattern
loadings (residual variances or uniquenesses); and E is an n × 1 random vector of latent
unique-factor variables (residual scores). In confirmatory factor analysis (CFA), not all
items are forced to load on all factors; residual variances may be correlated, and restrictions
can be made for items, for example, all items may be forced to load equally on the same
factor. Equation 1 can also be expressed as follows [40]:

Y = Λyη + ε (2)

where Y is an observed variable, Λy are the coefficients describing the effects of the latent
variables on the observed variables, η is a latent factor score, and ε is the measurement
error (uniqueness) that can be decomposed into two terms, such as ε = s + e, where
s represents the specific variance associated with each variable and e is the remaining
random component in Y.

From Equation (2), specific models such as the three oblique factors and the bifactor
can be represented. Thus, in the case of the MBI factors (EE, D, and PA), the first of these
would be expressed as:

Y = λEEηEE + λDηD + λPAηPA + ε (3)

in which COV(ηj, ηj) = ψ, and where the bifactor model (with the addition of a general
factor, G) is expressed as follows [38]:

Y = λGηG + λEEηEE + λDηD + λPAηPA + ε (4)

where COV(ηj, ηj) = 0. For Equations (3) and (4), η are latent factor scores, and λ are
standard factor loadings.

With the bifactor model, we can determine whether the responses obtained by a mea-
surement instrument are essentially unidimensional. The term essential unidimensionality
refers to structures in which the general factor (i.e., the variance element that is common to
all items) dominates in the presence of a certain degree of multidimensionality reflected by
the group factors [38]. This is a great advantage in contexts in which it is unlikely to find
models that are purely unidimensional or strictly multidimensional, that is, where there
are no correlations between the factors.

The bifactor model is a suitable means of representing multidimensionality due to
the construct-relevant multidimensionality of instruments that measure general constructs
where different content domains coexist [38]. According to [41], there are at least two
sources of construct-relevant psychometric multidimensionality: one refers to the hierar-
chical nature of the construct and the other reflects the fallible nature of the indicators. In
consequence, the bifactor model is appropriate for assessing the hierarchical nature of the
constructs [41].

In other words, the value of the bifactor model lies in its ability to determine uni-
dimensionality in the presence of multidimensionality and, moreover, to detect relevant
(or irrelevant) group factors in the presence of essential unidimensionality. These two
potentialities cannot be addressed through classical CFA models, such as unifactorial or
correlated factor models [42]. For example, the CFA correlated factor model is subject to
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significant cross-loads, which reflects the fact that, to a certain extent, multidimensionality
is not perfect or unequivocal, and, therefore, cannot be directly evaluated by interpreting
the correlation between factors. Although these questions can be addressed via modifica-
tion indices, these do not allow us to consider essential unidimensionality; furthermore,
the danger exists that atheoretical re-specifications may be introduced into the models to
improve the fit [43].

1.3. Exploratory Structural Equation Modelling

The exploratory structural equation modelling (ESEM) technique, proposed by [44]
as an alternative to classical CFA, specifies that all items load on all factors (unrestricted
model), as would be done in an exploratory factor analysis (EFA), but with a confirmatory
technique as in CFA. Formally, ESEM can be represented with the following equations [44]:

Y = ν + Λη + KX + ε (5)

η = α + Bη + ΓX + ζ (6)

in which there are p dependent variables Y = (Y1, . . . , Yp), q independent variables X = (X1,
. . . , Xq), and m latent variables η = (η1, . . . , ηm). The standard assumptions of this model
are that the ε and ζ residuals are normally distributed with mean 0 and variance covariance
matrix θ and ψ, respectively. Equation (5) represents the measurement model where ν
is a vector of intercepts, Λ is a factor loading matrix, η is a vector of continuous latent
variables, K is a matrix of Y on X regression coefficients, and ε is a vector of residuals for Y.
Equation (6) represents the latent variable model where α is a vector of latent intercepts, B is
a matrix of η times η regression coefficients, Γ is a matrix of η times X regression coefficients,
and ζ is a vector of latent variable residuals.

ESEM was proposed as a means of overcoming the problems encountered with classi-
cal CFA models, which often fit the data poorly [44], meaning that models generated with
EFA cannot be confirmed using CFA [45]. This problem is partly due to the fact that the
classical CFA specification, in which all cross-loadings are set to zero, is unrealistic [44,45].
In general, the measurement instruments used in this context do not have pure items
with a single construct [41,45], but present cross-loadings with other constructs or latent
variables [44,45]. When zero loadings are misspecified by classical CFA, this can produce
distorted factors, and often leads to overestimated factor correlations [44].

ESEM provides a modelling framework that can be considered a generalization of
EFA. Both approaches specify unrestricted factor models that can test whether an item
loads on the hypothesized factor, using target rotation, and can check the fit of the model
to the data, using the chi-square test and fit indices [44]. However, in addition, ESEM has
greater modelling flexibility because, among other attributes, it provides local measures of
parameter fit, characterizes correlated residuals and enables structural and measurement
invariance to be tested. Moreover, it can be incorporated into larger structural models, or
into models with method factors, covariates and direct effects, among other features [44,45].

ESEM can also be considered a generalization of CFA in that it specifies an unrestricted
model in which all cross-loads are estimated, while the latter specifies a restricted model
in which all or most cross-loads are set to zero. In fact, formal tests can be performed to
compare the two models [44,45]. Furthermore, despite the loss of parsimony (presenting
fewer degrees of freedom and with more parameters to be estimated), ESEM is capable of
accurately recovering the factorial structure of population models made up of independent
clusters, such as the oblique multifactorial solutions that are typical of classical CFAs [41].

The advantage of ESEM is that it can model one of the two sources of construct-
relevant psychometric multidimensionality, namely that which is due to the fallible nature
of the items [41], i.e., the fact that the items are rarely pure indicators of the construct to
be measured. On the one hand, they contain a degree of measurement error, which is
modelled by the error variances in classical CFA models. On the other hand, they present
a systematic association with other constructs, which is usually apparent in the form of
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cross-loadings. ESEM incorporates these cross-loadings, thus making the model constraints
more realistic and achieving unbiased factor loadings and factor correlations.

1.4. Limitations of Classical CFA Applied to the MBI and Advantages of Bifactor and ESEM
Models

Since the MBI was first presented, numerous studies have examined the internal
structure of its different versions, mainly using EFA and CFA to do so. In their systematic
review, [10] identified 35 applications of EFA and 28 of CFA. Given the current popularity
of structural equation modelling, there are now probably many more applications of CFA
than of EFA. Regardless of the technique used, studies have yielded conflicting solutions.
According to [10], most EFA applications obtain a three-factor solution, but 25% do not.
Regarding CFA applications, 90% replicate the three-factor oblique model. However, of
these, 58% introduce some form of re-specification into the model, seeking to improve
the global fit indices (for example, by eliminating items or by specifying correlated error
variances and cross-loadings). An important consideration is that using modification
indices and other ad hoc strategies to respecify the model can produce results that are
misleading (for example, confirming a structure that had not previously been hypothesized)
or simply incorrect (for example, removing items that are necessary to properly represent
the construct) [46]. Furthermore, in some studies, models are retained in accordance with
criteria that fail to meet the minimum requirements for deeming the fit to be acceptable [47];
this shortcoming was again observed in a later study focused on the MBI-SS [17]. In short,
many studies fail to replicate the original structure of the MBI when classical CFA is applied.

These results are in line with the conclusions drawn in previous reviews of the litera-
ture on factor analysis, which have observed that it is fairly common to find factor structures
that are not repeated in a subsequent CFA, because the specification of these models is
usually unrealistic, especially when multidimensional instruments are involved [41,48].
Furthermore, many studies conclude that the tested model fits the data well (and is there-
fore retained), despite the fact that its global fit indices do not meet the minimum criteria
established for an acceptable fit [45,48].

In view of the debates that have arisen on the structure of the MBI and acknowledg-
ing the difficulties encountered with classical CFA models in achieving an acceptable fit,
especially with multidimensional instruments, we believe that both the bifactor model and
the ESEM can be considered useful methodological tools with which to clarify some of
the questions posed regarding the internal structure of the MBI. The authors of [49] were
among the first to apply the bifactor model to the MBI-HSS, finding it to obtain the best fit
of the options considered. Subsequently, other researchers have tested the bifactor model,
either with the MBI-HSS [50,51] or with the MBI-ES [52,53]. However, to our knowledge,
none have used the bifactor model to address the MBI-SS. Neither have any such studies
used ESEM to study the internal structure of any version of the MBI. To date, the only
analysis conducted in this area has been that of Biachi et al., who used ESEM to study the
overlap between burnout, depression, and anxiety [54–56].

1.5. Objectives

Due to the above-mentioned disparities in empirical results, no consensus has yet
been reached on the internal structure of the MBI-SS. The techniques commonly used to
address this question, which in many cases is that of classical CFA, are subject to limitations
in determining the possible reasons for a repeated failure to obtain a good fit (such as
cross-loadings or the importance of a general factor). The bifactor model and the ESEM
approach have been proposed as alternatives, capable of overcoming these limitations.
For example, the bifactor method has helped clarify the internal structure of both the
MBI-HSS and the MBI-ES. However, neither of these models has yet been used to target the
MBI-SS. Our study, therefore, considers the internal structure of the MBI-SS in a sample of
Spanish undergraduates by testing the models most frequently referenced in the literature,
together with the bifactor model and ESEM. After determining which model best fits the
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data, we then calculate the most appropriate index of reliability. In addition, we examine
the evidence of validity using other variables, specifically concurrent relationships with
depression, anxiety, neuroticism, and conscientiousness, and discriminant ones with the
dimensions of engagement, extraversion, and agreeableness.

2. Method
2.1. Participants

The study sample was composed of 1162 students recruited at various Spanish univer-
sities by non-probabilistic sampling. Of these participants, 64.7% were female and, overall,
their mean age was 20.9 years (SD = 1.92).

2.2. Procedure

The study data were collected, using the same procedure in every case, during the
second quarter of 2018. The process took place in the classroom and during academic
hours, with the approval of the university staff involved. All students gave prior informed
consent to participate and were assured confidentiality and anonymity.

2.3. Instruments

All participants completed an ad hoc sociodemographic data questionnaire, including
their age and sex. The following measuring instruments were administered.

• The Maslach Burnout Inventory-Student Survey (MBI-SS), adapted for Spanish speak-
ers [57]. This questionnaire contains 15 items scored on a seven-point response scale,
to measure the three dimensions of the syndrome stipulated in the original proposal
by [2]; emotional exhaustion (depletion of psychological and emotional resources);
depersonalization (feelings of cynicism and detachment); and scant personal accom-
plishment (feelings of ineffectiveness and inadequate performance).

• The Utrecht Work Engagement Scale (UWES) [4]: composed of 24 items scored on
a seven-point response scale, to measure the three dimensions of engagement: ab-
sorption (full concentration and placid immersion in one’s own tasks), dedication
(commitment to one’s own tasks, recognition of their importance, and enthusiasm)
and vigor (energy and mental resilience).

• Four of the five dimensions in the Spanish version of the NEO Five Factor Inventory
(NEO-FFI) [58]: neuroticism, extraversion, conscientiousness, and agreeableness. Each
scale consists of 12 items, scored on a five-point Likert response format.

• The depression and anxiety dimensions of the Educational-Clinical Questionnaire:
Anxiety and Depression (CECAD) [59]. This questionnaire consists of 50 items with
a five-point Likert-type response format. It produces a global evaluation of emo-
tional disorders, based on the scores obtained for six dimensions: depression, anxiety,
uselessness, irritability, problematic thoughts, and psychophysiological symptoms.

2.4. Data Analysis

All statistical analyses were performed with R 4.2.1. (R Core Team, Vienna, Austria,
2022), using the lavaan package [60] for factor analyses and based on the unbiased variance-
covariance matrix, since this sample statistic has better statistical properties than its biased
version. The parameter estimation method used was robust maximum likelihood (MLR),
in view of the number of response categories established, the multivariate normality test
performed and the asymmetry and kurtosis indices obtained. Target rotation was used
in ESEM. Missing values were dealt with by the full information maximum likelihood
(FIML) procedure.

The internal structure of the MBI-SS was assessed using the following models: (a) one
congeneric factor: a one-dimensional model in which all items freely load on a single
general burnout factor; (b) two congeneric factors: a model in which the items load freely
on a factor composed of EE and D, where PA is the other factor; (c) two congeneric factors
without PA: a model in which the items load freely in the EE and D dimensions, but from
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which the items of the PA dimension are excluded; (d) three congeneric factors: the model
proposed by Maslach et al. [7,13]; (e) a hierarchical model with three first-order factors (EE,
D and PA) plus a second-order general factor (burnout); (f) a bifactor model in which the
items load freely on each of the three group factors (EE, D and PA) and also on a general
factor (burnout); (g) ESEM: a model in which all the items load freely on the three factors,
using a Target rotation in accordance with the model proposed by Maslach et al. [7,13].

Additionally, a τ-equivalent specification was tested in the three-factor model, that is,
imposing the restriction that the items for each of the factors should have the same factor
loading. This requirement was made for two reasons: (a) the three-factor model is the
original form and the one most commonly employed; (b) the alpha coefficient is the index
that is normally used to estimate reliability, and this measure requires compliance with the
τ-equivalence assumption.

The measurement models were assessed using the χ2 statistic and the following global
fit indices [61,62]: Tucker–Lewis index (TLI), comparative fit index (CFI), root mean square
error of approximation (RMSEA) and standardized root mean squared residual (SRMR). For
CFI and TLI, values above 0.90 or 0.95 are considered adequate, whereas for SRMR, values
below 0.08 are acceptable [63]. RMSEA values below 0.06 are reasonable [63] while those
below 0.05 are considered evidence of a satisfactory fit [64]. For all the measurement models
that produced adequate fit indices, likelihood-ratio tests were performed to determine
whether the difference between the log-likelihoods was statistically significant, and to
calculate the difference between these and the Akaike Information Criteria (AIC). When
the fit of a more complex model was significantly better than that of a simpler model and,
at the same time, the estimated factor loadings were high enough (above 0.30, according
to [61]), the more complex model was considered to better represent the internal structure
of the MBI-SS. In contrast, when the difference in fit was not statistically significant, the
simpler factor structure was retained.

Once it was decided which measurement model best represented the internal structure
of the MBI-SS, an appropriate reliability index was chosen and computed. Formulas and
references for the reliability indices considered are detailed in Table S2 of the supplementary
material. The alpha coefficient was considered for the one-factor τ-equivalent model, and
appropriate versions of the omega coefficient for the other measurement models. In the
one-factor congeneric model, the total omega, ωt, was used for the whole scale, while each
of the corresponding subscales was used with the three-factor model. When a bifactor
model was fitted, the hierarchical omega,ωh, was the reliability index that best accounted
for the general factor, while the omega subscale, ωs, was used to account for the group
factors (EE, D and PA).

In order to assume essential unidimensionality (i.e., the presence of a strong gen-
eral factor) or essential multidimensionality (the presence of a strong group factor), ex-
plained common variance (ECV) values greater than 0.60–0.70 andωh values greater than
0.70 [65–67] are recommended.

A correlation analysis was performed between the mean scores for each factor (and the
total), the depression and anxiety scales (CECAD) and the personality factors (NEO-FFI).
To estimate the sample size required for this study, an a priori analysis was performed
using online software [68]. In this calculation, the minimum expected effect size was
r = 0.15, with α = 0.05 and a level of statistical power 1 − β = 0.9, and with a maximum of
4 latent variables and 15 observed variables. The minimum sample size needed to detect
the proposed effect was N = 799, which is smaller than the sample size used.

3. Results
3.1. Validity Evidence Based on Internal Structure

Descriptive statistics for the MBI-SS items, together with the inter-item correlations,
are shown in Table S1 of the Supplementary Material. Separately, Table 1 shows the
results of the fit obtained for each congeneric model tested. The only models that achieved
acceptable fits were the bifactor and the ESEM. Except for the SRMR index, the three-factor
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and hierarchical models did not produce acceptable fit indices. Neither the one- nor the
two-factor models (EE + D and PA) achieved an acceptable fit to the data. However, the
two-factor model without PA achieved an acceptable fit for all indices except RMSEA.
Although the three-factor congeneric model did not achieve an acceptable fit, that of the
τ-equivalent version of the model is presented. This model did not achieve acceptable
fit indices (see Table 1) and the comparison with the congeneric model showed that the
latter fitted the data better (χ2diff(12) = 151.28, p < 0.001). In the chi-square difference tests,
the three-factor model was compared with the bifactor and the latter with the ESEM. In
this comparison, the bifactor was better than the three-factor model (χ2diff(12) = 217.26,
p < 0.001) while the ESEM outperformed the bifactor (χ2diff(12) = 69.68, p < 0.001).

Table 1. Factor analysis results.

χ2 df p CFI TLI RMSEA 90% CI SRMR AIC

One-factor 1677.12 90 <0.001 0.640 0.580 0.135 [0.130–0.141] 0.109 61,810.51
Two factors

(EE and D), PA 941.42 89 <0.001 0.809 0.775 0.099 [0.093–0.105] 0.075 60,909.10
EE, D 214.21 26 <0.001 0.928 0.901 0.088 [0.077–0.099] 0.053 38,103.89

Three factors
Congeneric 551.29 87 <0.001 0.896 0.875 0.074 [0.068–0.080] 0.062 60,447.20
τ-equivalent 701.25 99 <0.001 0.866 0.858 0.079 [0.073–0.084] 0.079 60,598.93
Hierarchic 551.29 87 <0.001 0.896 0.875 0.074 [0.068–0.080] 0.062 60,447.20

Bifactor 264.50 75 <0.001 0.958 0.941 0.051 [0.044–0.057] 0.037 60,127.88
ESEM 198.95 63 <0.001 0.969 0.949 0.047 [0.040–0.055] 0.023 60,080.58

df—Degrees of freedom; CFI—Comparative fit index; TLI—Tucker-Lewis index; RMSEA—Root mean square
error of approximation; SRMR—Standardised root mean squared residual; AIC—Akaike information criteria;
EE—Emotional exhaustion; D—Depersonalisation; PA—Personal accomplishment; ESEM—Exploratory structural
equation modelling.

Table 2 details the results obtained by the three-factor oblique congeneric, the three-
factor oblique τ-equivalent, the bifactor, and the ESEM models. The path diagrams for these
models are shown in Figures 1–4. In the three-factor congeneric, three-factor τ-equivalent
and ESEM models, the factor loadings were adequate, i.e., above 0.30 [61]. This finding is
especially significant for the ESEM, since the items can load on any factor. In fact, in this
model, the factor loading for item RP6 was higher in D than in PA. In the bifactor model,
adequate loadings were obtained in all the EE items (although those for EE1 and EE5 were
higher on the general factor) and for PA (although the loading of PA6 was higher on the
general factor). In D, the loadings of three of the four items were low. In the general factor,
low loads were obtained on EE2 and on PA1, PA2, PA3, and PA5.

Evaluation of essential unidimensionality showed that the ECV and the hierarchical
omega indices, ωh, were below the recommended values for the general factor. Regarding
dimensionality, the EE and PA factors obtained satisfactory indices of ECV but not ofωs.
For D, none of the indices obtained a good value. In both the three-factor congeneric and the
τ-equivalent models, factor correlations were high between D and EE and between D and
PA, and moderate between PA and EE. Correlations were lower (low-moderate), however,
in ESEM. In the bifactor model, the correlations were set to zero in the specification.

3.2. Reliability

The reliability estimates for all the factors in the three-factor oblique congeneric, three-
factor oblique τ-equivalent, bifactor, and ESEM models are shown in Table 2. Different
estimators were considered according to the model selected. For example, the alpha
coefficient, α, was used for the three-factor τ-equivalent model, but not for the others,
since they are congeneric. Total omega, ωt, was calculated for all models, including the
τ-equivalent model, since α and ωt are equivalent if the assumptions of the former are
met [32,35]. Hierarchical omega, ωh, was used with the bifactor model as an index to
estimate the internal consistency of the total test score that is exclusive of the overall factor;
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the omega subscale,ωs, was applied to the subscales for the same purpose. The formulas
for each estimator are listed in Table S2 of the Supplementary Material.

Table 2. Factor loadings, correlations between factors, and reliability indices.

Item Three Congeneric Factors Three τ-Equivalent Factors Bifactor ESEM

EE D PA EE D PA EE D PA General EE D PA

EE1 0.648 0.000 0.00 0.661 0.000 0.000 0.382 0.000 0.00 0.503 0.472 0.248 0.070
EE2 0.593 0.000 0.00 0.613 0.000 0.000 0.480 0.000 0.00 0.373 0.588 0.057 0.058
EE3 0.579 0.000 0.00 0.618 0.000 0.000 0.491 0.000 0.00 0.343 0.580 0.011 0.125
EE4 0.560 0.000 0.00 0.623 0.000 0.000 0.662 0.000 0.00 0.201 0.701 0.069 0.078
EE5 0.770 0.000 0.00 0.676 0.000 0.000 0.503 0.000 0.00 0.550 0.591 0.239 0.096
D1 0.000 0.566 0.00 0.000 0.679 0.000 0.000 0.465 0.00 0.663 0.262 0.402 0.068
D2 0.000 0.551 0.00 0.000 0.653 0.000 0.000 0.083 0.00 0.561 0.157 0.476 0.004
D3 0.000 0.800 0.00 0.000 0.743 0.000 0.000 0.001 0.00 0.783 0.002 0.822 0.022
D4 0.000 0.840 0.00 0.000 0.742 0.000 0.000 0.001 0.00 0.830 0.068 0.759 0.085

PA1 0.000 0.000 0.528 0.000 0.000 0.586 0.000 0.000 0.475 0.247 0.051 0.031 0.547
PA2 0.000 0.000 0.574 0.000 0.000 0.528 0.000 0.000 0.581 0.206 0.032 0.134 0.667
PA3 0.000 0.000 0.687 0.000 0.000 0.656 0.000 0.000 0.640 0.294 0.030 0.035 0.717
PA4 0.000 0.000 0.722 0.000 0.000 0.688 0.000 0.000 0.574 0.401 0.072 0.142 0.637
PA5 0.000 0.000 0.579 0.000 0.000 0.596 0.000 0.000 0.566 0.235 0.097 0.144 0.673
PA6 0.000 0.000 0.578 0.000 0.000 0.622 0.000 0.000 0.319 0.523 0.080 0.419 0.355
α - - - 0.772 0.781 0.778 - - - - - - -
ωh - - - - - - 0.485 0.001 0.579 0.649 - - -
ωt 0.768 0.790 0.777 0.772 0.794 0.777 0.632 0.074 0.701 0.767 0.725 0.719 0.775

ECV - - - - - - 0.605 0.138 0.717 0.516 - - -
rCE 1 - - 1 - - 1 - - 0.000 1 - -
rD 0.651 1 - 0.669 1 - 0.000 1 - 0.000 0.376 1 -

rPA −0.287 −0.528 1 −0.277 −0.538 1 0.000 0.000 1 0.000 −0.094 −0.438 1

Note. ωh refers toωs when it is applied to the subscales (EE, D and PA). ECV—Explained common variance.

In general, all of the models, except the bifactor, presented good reliability, above the
usual recommended value of 0.70 [69]. For EE and PA, the reliability estimates (whether
using alpha or omega) of the τ-equivalent model were practically the same as those of the
congeneric model. For D, the reliability estimate of the τ-equivalent model was somewhat
lower than that of the congeneric model. The ESEM solution produced slightly lower
coefficients. With the bifactor model, only PA and the general factor obtained anωt value
above 0.70. As mentioned above, the values for ωh andωs were below the recommended
minimum.

3.3. Validity Evidence Based on Relations to Other Variables

Table 3 shows the descriptive statistics for the total scores of the variables included
in the study, together with the Pearson bivariate correlation in each case. In accordance
with the results described above and with the theory, we expected to obtain evidence of
convergent and discriminant validity with different variables, depending on the burnout
dimension considered. Considering the EE and D dimensions, the correlations with de-
pression, anxiety, and neuroticism were positive, moderate, and statistically significant.
The correlations with the dimensions of engagement (vigor, dedication, and absorption),
conscientiousness, agreeableness, and extraversion were negative and of low or moderate
magnitude. The correlations between PA and the dimensions of engagement (vigor, dedica-
tion, and absorption), conscientiousness, agreeableness, and extraversion were positive,
strong, and statistically significant. In addition, low or moderate negative correlations were
obtained with depression, anxiety, and neuroticism.
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Table 3. Descriptive statistics and correlations between the study variables.

Item M SD 1 2 3 4 5 6 7 8 9 10 11 12

1. EE 13.74 6.25 0.77
2. D 7.19 5.50 0.52 *** 0.79

3. PA 26.98 5.72 −0.21 *** −0.41 *** 0.78
4. VI 31.95 7.81 −0.24 *** −0.32 *** 0.64 *** 0.73
5. DE 37.22 9.25 −0.27 *** −0.63 *** 0.73 *** 0.65 *** 0.92
6. AB 25.59 7.00 −0.12 *** −0.29 *** 0.65 *** 0.71 *** 0.63 *** 0.74
7. DP 46.39 13.70 0.43 *** 0.26 *** −0.29 *** −0.22 *** −0.19 *** −0.13 *** 0.94
8. AN 40.74 11.11 0.51 *** 0.30 *** −0.22 *** −0.16 *** −0.18 *** −0.06 ** 0.74 *** 0.89
9. NE 32.30 7.70 0.38 *** 0.20 *** −0.25 *** −0.22 *** −0.15 *** −0.12 *** 0.72 *** 0.60 *** 0.81

10. CO 43.00 5.52 −0.06 ** −0.24 *** 0.49 *** 0.39 *** 0.40 *** 0.45 *** −0.25 *** −0.13 *** −0.19 *** 0.80
11. AG 43.19 5.87 −0.17 *** −0.24 *** 0.27 *** 0.25 *** 0.27 *** 0.23 *** −0.24 *** −0.16 *** −0.25 *** 0.21 *** 0.69
12. EX 45.51 7.14 −0.19 *** −0.27 *** 0.40 *** 0.32 *** 0.36 *** 0.29 *** −0.40 *** −0.32 *** −0.33 *** 0.32 *** 0.29 *** 0.83

Note. EE = Emotional exhaustion; D = Depersonalisation; PA = Personal accomplishment; VI = Vigour;
DE = Dedication; AB = Absorption; DP = Depression; AN = Anxiety; NE = Neuroticism; CO = Conscientious-
ness; AG = Agreeableness; EX = Extraversion. The diagonal contains Omega Total coefficients. *** = p < 0.001;
** = p < 0.01.

4. Discussion

The Maslach Burnout Inventory-Student Survey (MBI-SS; [13]) is probably the in-
strument most widely used to assess academic burnout syndrome [44,45], and has been
adapted for use by numerous language groups (e.g., Spanish, Italian, Chinese, and Ger-
man). According to the original conceptual proposal [7,13], the MBI-SS evaluates three
dimensions of burnout: emotional exhaustion (EE), depersonalization (D), and personal
accomplishment (PA). The most commonly evaluated psychometric properties of the MBI-
SS are its internal structure and reliability. The evidence obtained for its validity, based on
the internal structure, has produced mixed results: while some studies have replicated the
original structure of three oblique factors [14,20,22], others have obtained different solu-
tions, due to model re-specification [15,16,18,19] or have not achieved an acceptable fit [17].
As concerns the reliability of the instrument, most studies report the alpha coefficient, but
this index can underestimate the true reliability when the assumptions of τ-equivalence,
unidimensionality and normality in the distribution of the items are not met, as it is often
the case with psychological assessment instruments [32–34]. A discussion on reliability can
be consulted elsewhere [70–74].

To date, evidence of validity has been obtained using EFA or classical CFA (e.g., one
factor, three factors or hierarchical), but these present various limitations. Firstly, EFA does
not allow the introduction of restrictions in the models, which means that τ-equivalent
solutions or those with correlated errors cannot be tested. Moreover, it does not pro-
vide local measures of parameter fit, nor can it be incorporated into larger structural
models [44]. The classical CFA specification, on the other hand, is often unrealistic in
multidimensional instruments since it sets the cross-loadings to zero [41,48]. This type of
specification error tends to result in distorted factors, and often produces overestimated
factor correlations [44].

Some new approaches to studying the internal structure of measurement instruments
have recently been proposed, such as the bifactor model and ESEM. Both of these methods
seek to overcome the limitations of classical CFA. The main advantage is that both can
explain more sources of variability in the item scores (psychometric multidimensional-
ity), and, therefore, are more realistic, generating less biased results. The authors of [41]
highlighted two sources of construct-relevant psychometric multidimensionality: the first
concerns the hierarchical nature of the construct, i.e., the expectation that all the items
considered will present a significant level of association with their own subscales (for
example, each of the items of which EE is composed with the factor as a whole), as well as
with hierarchically superior constructs (such as burnout). The second source arises from the
fallible nature of the indicators typically used to measure psychological constructs, most of
which assess conceptually related and partially overlapping constructs (e.g., burnout and
depression).

Despite the advantages offered by the bifactor model and ESEM, to our knowledge, no
studies have yet been conducted using either of these approaches to evaluate the internal
structure of the MBI-SS. To address this gap, the present study examines the internal
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structure of the MBI-SS in a sample of Spanish undergraduates by jointly testing the
models most frequently cited in the literature, together with the bifactor model and ESEM.
Specifically, we analyzed the results obtained by the following models: (a) one congeneric
factor: a one-dimensional model in which all items freely load on a single general burnout
factor; (b) two congeneric factors: a model in which the items load freely on a factor
composed of the EE and D items, with PA being the other factor; (c) two congeneric factors
without PA: a model in which the items load freely in the EE and D dimensions, but the
items of the PA dimension are excluded from the model specification; (d) three congeneric
factors: the model proposed by Maslach et al. [7,13]; (e) hierarchical: a model with three
first-order factors (EE, D, and PA) together with a second-order general factor (burnout);
(f) bifactor: a model in which the items load freely on each of the three group factors (EE, D,
and PA) and on a general factor (burnout); (g) ESEM: a model in which all the items load
freely on the three factors, using a Target rotation in accordance with the model presented
by Maslach et al. [7,13]. Since the alpha coefficient is the most widely used means of
estimating the reliability of the MBI-SS, we also tested the three-factor oblique τ-equivalent
model, which requires compliance with the assumption of τ-equivalence.

4.1. Internal Structure of the MBI-SS

According to the results obtained, the only models that achieved an acceptable fit in
all of the evaluation indices were the bifactor model and ESEM. In the chi-square difference
tests, ESEM was statistically better than the bifactor model. τ-equivalent models do not
usually fit the data well unless the congeneric model does so too [61]. However, we tested
the fit for the model with three oblique τ-equivalent factors, since this was the only one
that satisfied the assumptions for using the alpha coefficient. As expected, the model did
not achieve acceptable fit indices, and proved to be statistically worse than the three-factor
congeneric model. This result suggests that the alpha coefficient should not be used to
estimate the reliability of the MBI-SS.

Regarding the factor loadings of the items, in all models except a few cases with
the bifactor model, the recommended level was exceeded. The loadings of the oblique
three-factor model were higher than those of the bifactor model and ESEM. This result
was expected given that in the three-factor model, the only source of item variability is
its factor; however, in the bifactor model, the variability is divided between the general
factor and the group factors, while in ESEM, it is divided among the three factors. The fact
that acceptable factor loadings are obtained in ESEM indicates that this model adequately
explains the variability of cross-loadings while maintaining the structure of three oblique
factors. Nevertheless, future studies could further investigate the reasons for the high
fluctuations of the loadings in the D. The loadings of the τ-equivalent model were more
homogeneous than those of the other models due to the restriction imposed that all the
items of the same factor must have the same factor loading. With the bifactor model, the
EE and PA items achieved good factor loadings; however, in the general factor and in D,
the loadings of some items were less than 0.30 (see Table 2).

The factor loadings obtained with the bifactor model are in line with the results
from the evaluation of the essential unidimensionality. Except for PA, none of the factors
achieved a satisfactory ωh coefficient. As the ωh index uses factor loadings to estimate
reliability (and is interpreted as the percentage of item variance that is explained by the
factor, after eliminating the variance explained by the other factors), this result explains the
pattern of factor loadings obtained for the different factors. Thus, several items presented
significant cross-loadings in the general factor: specifically, four items (of five) in EE, all the
items in D, but only two (of six) in PA. Taking the general factor as a reference, 12 items (of
15) showed relevant cross-loadings in one or more of the three group factors. The results
for the ECV index are in line with these findings, from which we conclude that the values
obtained for EE and, above all, PA are acceptable.

The results obtained withωh and ECV show that the requirements for the MBI-SS to
present essential unidimensionality were not met. These results also show that the most
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important factors generating multidimensionality (i.e., those which explain a large part of
the variance of the items) are EE and PA, while D is incorporated within the general factor.

Regarding the factor correlations, in each of the three-factor models (congeneric and
τ-equivalent), the values obtained are in accordance with the theory and with previous
research findings [7,13]; specifically, there is a moderate positive correlation between EE
and D, while the correlations between PA, EE, and D are weak-moderate and negative. In
the bifactor model, the correlations were previously set to zero, that is, it was stipulated
that the factors should be orthogonal. In ESEM, the correlations are weaker than with the
three-factor oblique models. This result agrees with those obtained for other psychometric
evaluations with ESEM and suggests that the correlations obtained with classical CFA
models are overestimated [44]. Thus, according to the correlations obtained with this
model, EE and D present a positive correlation of intermediate size; EE and PA have a weak
negative correlation; and PA and D have a negative correlation of intermediate magnitude.
These results for factor correlations may explain the poor fit of the one- and two-factor
models (EE + D and PA).

4.2. Reliability of the MBI-SS

Psychometric studies of the MBI-SS have estimated its reliability using the alpha
coefficient. In the present research, the alpha value results for the three dimensions of
the MBI were above the recommended values [69]. However, this coefficient is not a
good estimator of reliability when conditions such as τ-equivalence between the items,
the unidimensionality of the scale, and the normal distribution of the item scores are not
met [32–34]. As discussed above, the tau-equivalent three-factor model did not achieve
an acceptable fit, which suggests that the alpha coefficient should not be used for MBI-SS
applications. Since this result is common in psychological scales, the omega coefficient is
normally recommended as a reliability estimator [35]. An additional advantage of omega
over alpha is that it is calculated from the model that achieves a good fit to the data. If alpha
was used instead, this measure could suggest a level of model reliability that, ultimately, is
not maintained.

The present study is the first to focus on the psychometric properties of the MBI-SS,
using omega as a reliability estimator, after fitting by CFA. According to the results obtained,
the ESEM model best fitted the data. In this model, the MBI-SS achieved acceptable
reliability values for all three factors [69]. The bifactor model also achieved good global
indices of fit, but the reliability of the MBI dimensions in this model was not acceptable,
except for PA. This result is explained by the low factor loadings of some items on their
respective factors and by high ones on the general factor.

Of the oblique three-factor models, neither the congeneric nor the τ-equivalent achieved
an acceptable fit to the data. However, since psychometric theory suggests that the reliabil-
ity of a scale is underestimated by the alpha coefficient when the assumptions are not met,
we calculated the reliability of the factors in both models. In this respect, similar values
were obtained for EE and PA using the alpha coefficient for the τ-equivalent model and
omega for the congeneric model. However, for D, the alpha value was somewhat lower
than the omega result. These findings are consistent with the psychometric literature [33].
For PA, the factor loadings in all the models were high, except for item PA6 in the bifactor
model and ESEM. As these values are high and similar, the differences between the alpha
and omega coefficients are less. This is reflected in the fact that the value of the ECV
index for this factor suggested that PA was a relevant group factor. On the other hand,
the opposite case was observed for D; in this case, the items obtained very different factor
loadings in various models (for example, very low ones in the bifactor model) and the
factor obtained a very low ECV index, reflecting the slight relevance of this factor.

4.3. Relation between the MBI-SS and Other Constructs

According to the results obtained, the MBI-SS dimensions showed evidence of conver-
gent and discriminant validity with the constructs examined. Persons who scored more
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highly in the dimensions of EE and D tended to obtain higher scores, too, for depression,
anxiety, and neuroticism. An association was also observed between the MBI-SS and the
dimensions of engagement (vigor, dedication, and absorption), conscientiousness, agree-
ableness, and extraversion. Thus, at higher levels of EE and D, the scores in the latter
constructs were lower. As expected, an inverse pattern was obtained between PA and the
other variables.

5. Limitations and Future Research

This study presents some limitations. First, the sample selection was not probabilistic,
and students were not recruited from all regions of the country. Future studies should
confirm the results we present with those from a broader sample. Second, we did not test
the τ-equivalent versions for the bifactor and ESEM models. In future consideration of one
of these models, it would be interesting to perform these tests, too, to better characterize
the differences between the alpha and omega coefficients. Third, the factorial invariance
of the model has not been tested. Although the age variable is not relevant in this case
because the population considered is very homogeneous, variables such as the sex of the
participants should be included in a future analysis. Finally, in this study, the sources of
psychometric variability arising from relevant constructs were evaluated separately. On
the one hand, we used the bifactor model, which enabled us to determine when it is more
appropriate to use a single total score (assuming essential unidimensionality) or when
subscale scores should be preferred [42]. On the other hand, we used the ESEM approach
to model the cross-loadings that occur due to the fallible nature of the indicators. In future
studies, it would be advisable to adjust the ESEM bifactor model [41] to simultaneously
explore the two sources of construct-relevant psychometric multidimensionality, that is,
the hierarchical nature of the constructs and the fallible nature of the indicators.

6. Conclusions and Practical Recommendations

To our knowledge, the present study is the first to use both the bifactor model and the
ESEM approach to study the internal structure of the MBI-SS and to use a reliability esti-
mator consistent with the retained model. Furthermore, it is the first to test tau-equivalent
models and compare them with congeneric ones. To sum up, the results obtained indicate
that the internal structure of the MBI-SS in Spanish undergraduates is well reflected by the
three-factor oblique congeneric model, achieving good values for reliability and convergent
and discriminant validity.

Firstly, the results obtained from the bifactor model show that there is insufficient
evidence to suggest the essential unidimensionality of the MBI-SS. Therefore, we recom-
mend using the scores for all three dimensions and not a global burnout score. This
recommendation is in line with the proposal of [7].

Secondly, according to the ESEM results, the three-factor oblique model fits the data
well when cross-loadings are taken into account, that is, accounting for the variability that
occurs due to the fallible nature of the indicators. Hence, the results from both models
suggest that the measurement model that best represent the data is the three-factor oblique
congeneric model.

Therefore, when the scale is used in applied contexts, we recommend considering
the total scores obtained for each of the dimensions (emotional exhaustion, depersonaliza-
tion, and personal accomplishment), and not a global burnout score. Furthermore, when
using the MBI-SS for substantive research purposes, such as testing a hypothesis related
to the Job Demands-Resources theory [70], the analysis should be based on the ESEM
model since this facilitates control of the cross-loadings of the scale and provides unbiased
factorial correlations.

Thirdly, all three dimensions of the MBI-SS scored well for reliability. In this respect,
similar values were obtained with the alpha coefficient in the three-factor τ-equivalent
model and with the omega coefficient in the three-factor congeneric model. However, we
recommend reporting the omega values by default since this approach does not need to
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meet the assumptions of tau-equivalence, item normality, and unidimensionality in order
to function correctly.

Finally, the study results we describe provide a new perspective from which to consider
the problem of the overlap between the MBI dimensions, especially those of EE and D.
Some researchers have proposed a two-factor structure based on the strong correlation
between these two dimensions [10]. According to [44], the correlations between the factors
obtained with classical CFA tend to be overestimated due to the cross-loading problem.
Our study results corroborate this view, and also suggest that the correlation between EE
and D is not strong, but rather intermediate. Therefore, combining these two factors, as in
the two-factor model proposed by some authors [26–28], would not be justified.

In summary, taking all results together, we can conclude that the MBI-SS in Spanish
undergraduates is well reflected by the three-factor oblique congeneric model, achieving
good values for reliability and convergent and discriminant validity.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/math11061515/s1, Table S1: Descriptive statistics and correlations
for the MBI-SS items (N = 1162); Table S2: Formulas for the reliability indices [31,35,75].
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