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Abstract: The industrial production of microalgae is a process as sustainable as it is interesting in
terms of its diverse applications, especially for wastewater treatment. Its optimization requires an
exhaustive knowledge of the system, which is commonly achieved through models that describe
its dynamics. Although not widely used in this field, artificial neural networks are presented as an
appropriate technique to develop this type of model, having the ability to adapt to complex and
nonlinear problems solely from the process data. In this work, neural network models have been
developed to characterize the pH dynamics in two different raceway reactors, one with freshwater
and the other with wastewater. The models are able to predict pH profiles with a prediction horizon
of up to eleven hours and only using available measurable process data, such as medimum level, CO2

injection, and solar radiation. The results demonstrate the potential of artificial neural networks in
the modeling of continuous dynamic systems in the field of industry, obtaining accurate, fast-running
models that can adapt to different circumstances. Moreover, these models open the field to the
design of data-driven model-based control algorithms to account for the nonlinear dynamics of this
biological system.
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1. Introduction

The sustainability of our current lifestyle is one of the leading issues in recent years.
Society is looking for measures to guarantee the supply of essential resources such as food,
water and energy while reducing environmental impact and maximizing economic yield.
As a result, new technologies are emerging as an answer to the traditional alternatives to
address these problems. One of these is the industrial production of microalgae [1].

The industrial production of microalgae is a technology with growing impact in recent
decades. Microalgae are photosynthetic microorganisms with the ability to grow and
reproduce without the need for freshwater or fertile soil [2]. They have high growth rates
and are tolerant to wide temperature ranges, and the composition of their biomass is very
interesting for applications in the fields of human or animal nutrition, cosmetics, production
of fertilizers or biostimulants, among others [3]. Their ability to grow also makes them a
potential source of biofuel [4]. However, their main application and the field in which they
are particularly promising is in wastewater treatment [5].

Microalgae require at least three elements for their development: water, light and
nutrients [6,7]. Water is always obtained in excess, since microalgae are normally grown
in an aqueous medium. Light can be obtained in different ways depending on the mode
of production. Microalgae can circulate through forced conduits, with no contact with
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the outside, preventing the insertion of external contaminants and being able to tightly
control the conditions in which they are found. These conduits are known as tubular
photobioreactors, and in these, the light source can be artificial (when used indoors) or
natural from the sunlight (when used outdoors). The alternative to to those is the open
reactors, called raceways, which always use the sun as a light source [8]. These reactors
are large open ponds in which the medium flows with the microalgae, being exposed
to external contaminants and with harder to control conditions. However, this mode
is the easiest to scale up and the most financially viable, making it the most extended
at the industrial level, limiting the use of tubular photobioreactors to the production
of high-value products that must guarantee their purity [9]. This paper will address
raceway photobioreactors.

In terms of nutrients, the three most important for culture growth are phosphorus,
nitrogen and carbon. The first two can be supplied externally according to the needs of
the culture; alternatively, wastewater can be used as a medium, with phosphorus and
nitrogen being two of the most common and dangerous nutrients in these, which can cause
environmental problems such as eutrophication (excessive growth of algae and aquatic
plants that deplete oxygen) in receiving water bodies. Hence, nutrients are usually available
in excess, guaranteeing microalgae supply, at the same time as wastewater treatment is
performed. Carbon is provided in the form of CO2, either pure or from other industrial
activity, helping to mitigate its environmental impact while simultaneously controlling
culture conditions [10].

However, for microalgae production to be competitive, it is crucial to maximize their
productivity. Productivity is not only dependent on the availability of light, water and
nutrients but also on the available radiation and the pH, dissolved oxygen (DO) and
temperature of the medium [11]. Among these variables, radiation is the only one that is
not usually regulated in raceway photobioreactors [12], as it depends on the environmental
conditions of the day, although it is important to be considered when selecting the location
of the system [13]. DO presents a threshold value at which productivity is drastically
reduced, and so the control problem is centered on maintaining it below this threshold,
regardless of its value as long as this condition is satisfied. This is accomplished through air
injection [14], which increases agitation and mixing of the water, leading to an increase in
the rate of oxygen transfer from the water to the air, thus reducing this value. Temperature
is not usually considered a control objective, although it has an influence on productivity,
maximizing it when it is around a specific value, depending on the species cultivated. It
can be controlled by modifying the culture depth [15,16].

The pH is often the most important variable in the control problem. Analogous to
temperature, when this variable is close to its optimum value, its influence on productivity
is positive, while moving away from this value reduces the productivity of the process,
thus making its control a critical issue. Its value can be controlled by injecting CO2, so that
the carbon supply and pH control problem can be solved simultaneously [17].

Nevertheless, the biological nature of the system makes the problem far from trivial.
The pH dynamics are highly nonlinear and very changing not only between seasons
but also over the duration of a day due to the variable capability of the microalgae to
photosynthesize. This makes it extremely difficult to characterize the process, being a
critical issue when developing control strategies [18,19].

Traditional models developed for this system can be sorted into two types. On one side
are the first principles-based models, oriented to a more chemical approach and focused
on reflecting the interactions between the different elements of the system. These models
provide a high degree of understanding of the process, but they are not very useful for
achieving the control objectives given their high complexity and long execution time [20].
The alternative to these models is low-order experimental models, which are simple and
quick to obtain but very limited in terms of their representation of the system, quickly
becoming obsolete due to the aforementioned variability [21,22]. This means that they must
be constantly recalibrated, which is not always possible.
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Regarding the state of art, in [23], a dynamic model for the pH in tubular photo-
bioreactors was developed based on fluid-dynamics, mass tranfer and biological phe-
nomena. The model is accurate and useful for many purposes, but it is limited to closed
photobioreactors. Fernández et al. [24] present a similar model, based on first prin-
ciples, for a raceway reactor calibrated and validated with real data. The model is
useful for analyzing the system’s productivity, but its running time is relatively long,
and its periodic recalibration is mandatory. Rodríguez-Miranda et al. [25] developed a
temperature model for raceway reactors, allowing researchers to model and study this
variable, which is crucial to the productivity of the system. In [26], a first-principle-
based dynamic model for pH prediction was presented for a torus photobioreactor and
validated with experimental data, but it is only valid for this type of reactor. On the
other hand, more control-oriented works favor simpler and more experimental mod-
els. Pawlowski et al. [27] present an event-based pH control based on Global Predic-
tive Control (GPC) using an experimental first-order lineal model. Rodríguez-Miranda
et al. [28] developed diurnal and nocturnal pH controllers oriented to the different dynam-
ics of each period, all of them based on first-order models.

Machine learning techniques, and more specifically artificial neural networks (ANN),
are experiencing a notable increase in popularity in recent years as an alternative to these
models due to the increase in the computational capacity of computers as well as the sheer
volume of data available [29]. Data acquisition and processing is an increasingly demanded
task in all fields due to these types of technique, which are characterized by their ability
to adapt to a wide variety of problems based solely on the data without the need to be
explicitly programmed for it. They have the capacity to infer patterns in the data beyond
human comprehension, being especially useful in image or text processing tasks, speech
recognition, and recommendation management.

However, these techniques still have not found much use in the field of dynamic
systems modeling, and they have even less use in the field of microalgae production,
despite being presented as an excellent option in theory. The models obtained, despite not
providing any understanding of the system, as they behave as black-box models, are very
fast running, easy to adapt to new data and capable of incorporating the nonlinearities of
the system [30]. This makes them a very interesting option for sensor error detection tasks
or as the core of Model Predictive Control (MPC) strategies [31,32].

In the specific field of microalgae production, these techniques have found the most
use in culture classification. Correa et al. [33] present a neural-network based models for
microalgae classification able to distinguish between 19 different classes. Otálora et al. [34]
developed a neural network model, which was validated with pure and mixed samples.
Regarding the system dynamics, [35] presents a neural network dynamic model for the pH
for a raceway reactor with promising results, but it is only valid for freshwater reactors.
Caparroz et al. [36] combined first-order models with regression trees in order to keep
an easy and transparent formulation combined with the nonlinearity provided from the
machine learning technique.

The aim of this work is to develop two neural network models for pH prediction
in freshwater and wastewater raceway photobioreactors to analyze the viability of using
this data-driven approach for modeling purposes in this kind of plants. The goal of the
model is to be able to estimate the pH profile over several hours of a day given a set of
predictable or controllable system variables. The model will be trained and validated with
real raceway reactor data. The results justify the use of this type of technique in the field of
microalgae production and dynamic systems modeling, achieving accurate pH forecasts
with prediction horizons of up to 11 h. The proposed models provide relevant potential for
the development of model-based control algorithms for this type of process.

The paper is structured as follows: Section 2 describes the modeled system as well
as the techniques used and the toolboxes employed. Section 3 details the complete de-
velopment of the models from data acquisition and processing to training and validation.
Finally, Section 4 presents the implications of the research as well as potential future lines
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of work, and Section 5 states the main conclusions drawn during the development of
the work.

2. Materials and Methods
2.1. Modelled Photobioreactors

The models obtained in this work correspond to two raceway photobioreactors located
at the IFAPA center of the University of Almería (36º50′ N, 2º24′ W), as shown in Figure
1. Both reactors have a similar configuration, consisting of two 40 m long, 1 m wide, and
0.3 m deep channels, although the typical culture height is 15 cm. The channels are joined
at their ends by 180o bends, constituting a total surface of 80 m2 per reactor. Both feature a
paddle wheel driven by an electric motor, which makes the water flow through the entire
reactor at a speed of approximately 0.23 m/s. A 1 m deep sump is located 1.8 m away from
the paddle wheel in the flow direction through which the injection of CO2 and air takes
place, which is used for pH and DO control, respectively. The main difference between
the two reactors is in the medium in which the microalgae are found. The first reactor
uses freshwater as its medium with the following composition: 0.9 g/L NaNO3, 0.14 g/L
KH2PO4, 0.18 g/L mgSO4 and 0.03 g/L Kerantol. The second reactor uses wastewater
obtained directly from the University of Almería or from a wastewater treatment plant
located in Almería.

Figure 1. Raceway photobiorreactors modeled in this work.

The microalgae strain cultivated in both reactors is from the species Scenedesmus
almeriensis (CCAP 276/24). This is characterized by its high growth rate (0.08 h−1) as well
as its tolerance to wide condition ranges. They are able to tolerate pH from 3 to 10, its opti-
mum value being 8, as well as temperatures between 12 and 46 ºC, the optimum value being
27 ºC, which makes it ideal for its production in an area such as Almería. For this reason, it
is one of the most used species for cultivation in open reactors and wastewater treatment.
It also serves as a source of lutein in the field of human nutrition [37].

The system is fully sensorized, recording pH, DO and water temperature measure-
ments at two different points: the sump where the injection takes place and the farthest
point from it, which is considered the most unfavorable and most challenging to control,
the latter being the one usually considered in the control problem. The system also has
flowmeters that register the air and CO2 flow rates injected, a water level sensor, and
sensors for environmental variables such as ambient temperature, relative humidity and
solar radiation: all of this with a sampling time of one second. The sensors used are shown
in Table 1.
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Table 1. Sensors integrated in the reactors.

Measurement Model Range Precision

pH Crison 5342T [0–14] 0.01
Medium temperature Crison 5342T [0–80] ºC 0.1 ºC

Dissolved oxygen Mettler Toledo InPro 6050 [30–Sat.] ppb 30 ppb
Medium level Wenglor UMD402U035 [0–30] cm 0.1 mm
CO2 injection SMC PFM725S-C8-F [0.5–25] L/min 0.1 L/min
Air injection SMC PFMB7501-F04-F [5–500] L/min 1 L/min

Ambient temperature ONSET S-THB-M008 [−40–75] oC 0.21 ºC
Humidity ONSET S-THB-M008 [10–90] % 0.1%

Solar radiation ONSET S-LIB-M003 [0–1280] W/m2 10 W/m2

2.2. Artificial Neural Networks

Machine learning algorithms are a set of modeling techniques that have the particu-
larity of not being explicitly programmed to solve a problem but instead have the ability
to learn from the data provided during their training to learn and adapt to it. There are
many machine learning algorithms, and one of the most popular in recent years is artificial
neural networks (ANNs).

ANNs owe their name to their resemblance to biological neural networks, since they
consist of a set of nodes interconnected with each other in a similar way. Any ANN model
has one or more input variables, known as predictors, and one or more output variables,
known as predictions. The model is organized in layers; each layer is composed of nodes.
Each node of a layer receives as inputs the outputs of the nodes of the previous layer,
operates with these, and calculates its own output, which will then be used as input for the
nodes of the subsequent layer. The nodes of the first layer receive as inputs the predictors
of the model, and those of the last layer return as output the model predictions.

The way nodes operate is different depending on the type of layer they are in. The
most typical form is that expressed in Equation (1), where y corresponds to the output of
a particular node, xn corresponds to each of its k inputs, which at the same time are the
outputs of the nodes of the previous layer, Wn corresponds to the weights assigned to each
input, b corresponds to the node’s bias and φ corresponds to its activation function, which
is typically nonlinear. If this activation function was linear, the relationship between inputs
and outputs of this layer would also be so, which is the reason why this nonlinear feature
is important to grant such behavior to the model.

y = φ

(
k

∑
n=1

Wn · xn + b

)
(1)

Thus, the model is configured by four fundamental elements: the number of layers,
which is in charge of giving it depth and complexity, the number of nodes in each layer,
which is related to the model’s capacity to generalize or adapt to more specific situations,
the activation function of each layer, and the weights of each node, Wn and b. The first three
elements are considered before the model development and constitute its structure. Their
selection must take into account the type and complexity of the problem as well as the data
used and the desired characteristics of the model. On the other hand, the weights of the
nodes are calculated during the training process. In this process, a set of input and output
data is taken, known as the training dataset, and the algorithm iteratively calculates the
weights of each node to minimize the difference between the model predictions and the real
ouput data.

The development process of an ANN model therefore consists of three steps. First,
the predictors and variables to be predicted must be selected and the relevant analyses
must be performed. From these, the data set is prepared with the necessary processing.
Since these are data-based models, it is critical for the data to be realistic, adequate and
sufficient; otherwise, the model will not be acceptable. The second step is the selection
of the model structure. This involves the number of layers, the type of each layer, their



Mathematics 2023, 11, 1614 6 of 16

activation functions, and the connections between layers. Many of these parameters are
commonly obtained iteratively, since there is no way to know beforehand the optimal
structure to solve a problem. Finally, the third and last step is the training of the selected
model with the prepared data. This training will be dictated by a series of hyperparameters
related to training duration, data splitting, learning rate or the optimization function.

Classic ANNs are particularly appropriate for solving static problems, where the
model does not need to reflect time dependence. However, for the pH modeling problem
addressed, the system has a clearly dynamic character, making it necessary to adopt an
ANN structure able to capture such behavior. The most common models for this are Long
Short-Term Memory (LSTM), convolutional, or Nonlinear AutoRegressive with eXogenous
inputs (NARX) ANNs. Among these, NARX are the simplest as well as the ones that offer
a description most similar to a classical dynamic model [38].

The foundation of NARX-type models is the use of the n prior values of each predictor
to predict the next value of the output variable. The model also uses the prior values of the
output variable itself, which is similar to a difference equation. Equation (2) generically
describes the behavior of any NARX-type model, where y is the predicted variable, xi
is each of the predictors, ni is the number of tapped delay lines (TDLs) taken on each
predictor, ny is the TDLs taken on the predicted variable, and F is a nonlinear function. In
the specific case of neural networks, NARX models take the nonlinearity from the activation
functions of each layer, and instead of using a single value of each variable as input, they
use the ni prior values of each predictor and the ny of the predicted variable. An example
of NARX ANN can be seen in Figure 2, where the model predicts the output value from
the k previous input values and the j previous output values; then, it can feedback those
predictions as inputs, effectively increasing the prediction horizon and allowing for more
extended forecasts over time [39]. Some works have already proven its value in the field of
dynamic system modeling, making them a very interesting choice [40,41].

y(k) = F
(

x1(k− 1), x1(k− 2), ..., x1(k− n1), ..., xm(k− nm), y(k− 1), ..., y(k− ny)
)

(2)

Hidden layer Output layerInput layer

NARX ANN

In
pu

ts
 (1

:k
)

O
ut

pu
t (

1:
j)

Figure 2. NARX ANN sample diagram with k predictor TDLs and j output TDLs.

2.3. Deep Learning Toolbox

All the models in this work have been entirely developed in the MATLAB environment.
Model design and training were performed using the Deep Learning Toolbox [42]. This
allows the intuitive construction of neural network models, the use of a wide range of
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layers, the customization of the different aspects of the training process and the integration
of the models obtained with Simulink, among other functionalities.

2.4. Performance Metrics

In order to determine the goodness of a model, it is important to establish performance
metrics that help to compare them with each other. In a prediction model, these metrics
must necessarily be related to the error between the values predicted by the model and the
actual values of these variables.

The most common metrics for testing the performance of a model are the mean square
error (MSE), root mean square error (RMSE) and mean absolute error (MAE). The MSE
is described in Equation (3), where n is the number of samples, Yi the real value, and Ŷi
the predicted value. The measurement of this error over the prediction horizon is directly
related to the model fit, being smaller the better the fit. The RMSE is closely linked to this
metric, being essentially its square root, so that it penalizes small errors more and large
errors less. MAE (See Equation (4)) operates similarly to MSE, but it uses the absolute
error instead of the squared error, hence suppressing the biasing to smaller errors or
larger errors.

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (3)

MAE =
1
n

n

∑
i=1

∣∣Yi − Ŷi
∣∣ (4)

In the field of dynamic systems modeling, model fit is also a very interesting metric. It
is described in Equation (5), where Yi denotes the real value of the predicted variable, Ŷi
denotes its predicted value, and Y denotes its mean. The model fit gives us its goodness
as a percentage, so that it is much more intuitive to know the usefulness of a model
without the need to compare it with others. In this work, MSE and Model Fit have been
taken as the main performance metrics due to their wide use and their representability of
model performance.

Fit = 100 ·
(

1− ∑n
i=1
(
Yi − Ŷi

)2

∑n
i=1
(
Yi −Y

)2

)
(5)

3. Results
3.1. Model Development

As mentioned above, the model development process involves three steps: data
processing, model structure selection, and model training setup and execution. This section
will discuss each step independently.

3.1.1. Data Processing

Data processing will be split in two parts: model predictor selection and data filtering.
The predictors should be sufficient to ensure complete information on the state of the
system but not so many that the model size increases excessively, as this can lead to long
training times and inaccurate predictions.

The initial data set consists of 8 days between the months of April and June 2022.
Notice that the obtained results come from closed-loop operation, typically performed
using on–off control to avoid the pH reaching values dangerous for the culture. This type of
control seeks to maintain the pH close to a reference of 8, which is considered the optimum
of the cultivated species. In the absence of CO2 injection, the microalgae freely perform
photosynthesis, gradually increasing their pH. When this value is very high, a fixed CO2
flow rate is injected, so that it dissolves in the water, forming carbonic acid. Thus, in
normal operation, pH rises and falls are alternated, coinciding with low and high levels
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of CO2 injection, respectively. Although more data would be desirable, the aim of this
paper is to analyze the viability of using ANN models in this kind of plants. The available
measurements are those shown in Table 1. From these, the output variable will be the pH
at the farthest point of the sump since, as mentioned, it is the most interesting one from the
perspective of the control problem. DO is not a simple variable to predict, nor is it directly
controllable, so to ensure the usability of the model, it will not be considered. Humidity
and air injection are not variables that directly affect pH, so they will not be included in the
model, either. Ambient temperature and medium temperature have similar profiles, and
although they can influence the dynamics of the system through the dissolution of gases in
water, their variation range is so small that it is not justified to include these variables in
the model. Regarding the other variables, CO2 injection is the control signal, so it must be
incorporated in the model. Solar radiation and medium level have a direct influence on the
ability of the microalgae to photosynthesize, and therefore on their dynamics; consequently,
they will also be included. Figure 3 shows the profile of the selected variables for several
consecutive days covering different profiles of the involved variables.

7

8

9
pH

0

5

10

L
/m

in

CO
2
 injection

14.8

15

15.2

c
m

Medium level

Jun 01 Jun 02 Jun 03 Jun 04 Jun 05
0

500

1000

W
/m

2

Solar radiation

Figure 3. Sample data from four consecutive days from the freshwater reactor.

In the data filtering process, the aim is to ensure the data quality. This involves both
overcoming measurement errors caused by failures in the recording and deciding which
data will be seen by the model during its training in order to prevent the ANN from
investing too much effort in learning behaviors that it does not expect in the future, thus not
being interesting to predict. To achieve this, a methodology was developed consisting of a
series of steps that were followed to process the data from both reactors. This was performed
independently for each reactor, since the sensors do not necessarily fail at the same time,
or if a control that is not representative of the dynamics of the system was performed in
one reactor, it does not imply that the same took place in the other reactor. The following
steps are:
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1. Modification of the data sample time to 1 min.
2. Selection of valid spans for training.
3. Outlier filtering.

The first step of the methodology consists of modifying the data sample time from 1 s
to 1 min. To achieve long prediction horizons, the model predictions are fed back as inputs.
Each prediction will always have a certain error, albeit small, so the longer the prediction
horizon, the more times the predictions will be fed back, and therefore the more error can
be expected in the predictions. Similarly, if the sample time is too small, more iterations will
be needed, which also translates into a larger error. A too small sample time also implies a
larger number of TDLs in the inputs, which leads to a much larger model size with all that
this involves. Hence, it is important to select a sample time that is longer than the original
one but still sufficient to properly characterize the system. With this balance in mind, a
final sample time of 1 min was selected. The transformation was performed by taking the
average of each minute and adopting that value as the sensor measurement at that sample,
thus filtering the signal while performing this change.

After this, a manual analysis was performed in order to select from the set only those
sections that were valid for model training. First, the sections with too many sensor failures
were eliminated, as they were not easily recoverable. It is also important to mention that
only sensor measurements between 7 a.m. and 8 p.m. were considered, since these are the
hours during which pH control is usually performed and therefore those that reflect the
behaviors to be modeled.

Finally, outliers were filtered from the remaining valid sections, i.e., incorrect measure-
ments derived from occasional sensor failures, with a duration of one or a few samples,
and therefore, easily interpolated. The outliers were detected by a moving median filter,
and they were filled by linear interpolation between the previous and next non-erratic data.
This concludes the data processing work. The remaining data sets consist of sections with
durations between 487 and 781 samples without erratic measurements and with a sample
time of 1 min.

3.1.2. Model Structure

The next task is to design an appropriate model structure to address the problem.
The base structure to start from is a NARX-type ANN model, whereby the fundamental
parameters to be designed are the number of layers, the number of nodes in each layer,
their activation function, and the number of TDLs to be applied to the inputs.

The layer structure of the model will be relatively simple. Other works have described
the system as a first-order system with time delay, which is the reason why the inclusion
of an excessive number of layers should not be necessary. In any case, if the results of
future training are not satisfactory, the structure can be modified. Initially, the selected
configuration is composed of two layers: a deep layer and an output layer. The deep
layer will have a number of nodes to be determined experimentally, and the hyperbolic
tangent sigmoid will be imposed as the activation function, making it the layer in charge of
modeling the dynamics and giving them the nonlinear character. On the other hand, the
output layer will have a single node, with the aim that its output will be the predicted pH,
and with a linear activation function, meaning that its operation will only be a weighted
sum of the nodes of the previous layer.

The model will feature a min–max-type normalization that will rescale the values of
each variable to the range [−1, 1], thereby easing training and providing a better under-
standing of the influence of each variable on the prediction. Similarly, the output will be
’denormalized’ to the usual pH range. Table 2 shows the maximum and minimum values
of each variable by which the normalization was performed for each model.
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Table 2. Maximum and minimum values from each variable used to normalize the data.

Variable Maximum
(Freshwater)

Minimum
(Freshwater)

Maximum
(Wastewater)

Minimum
(Wastewater)

pH 11.33 7.13 8.07 7.11
Medium level 19.20 cm 13.16 cm 15.23 cm 13.29 cm
CO2 injection 13.49 L/min 0 L/min 12.00 L/min 0 L/min

Solar radiation 1080.94 W/m2 0 W/m2 1060.39 W/m2 0 W/m2

The TDLs applied to each predictor refer to which past values of each variable are
used to predict the next pH value. When selecting this, the dynamics of the system must be
taken into account. Since this system can be modeled as a first-order system with delay,
an excessive number of TDLs may not be necessary. Nevertheless, an issue to be taken
into account for this is the time delay of the system. As aforementioned, the objective
of the model is to predict the pH at the farthest point from the sump where the air and
CO2 injection is performed. This spatial distance between the injection and control points
translates into a continuous delay time in the CO2 injection, which is equivalent to the
time it takes for the fluid to go from the sump to the measurement point. This is directly
influenced by the medium velocity, which is virtually constant and approximately 0.23 m/s,
which is equivalent to a delay time of 5 min. Since the sample time of the system is 1 min,
the values of CO2 injection at the instants from (k-1) to (k-4) should have no influence on the
output; therefore, the most recent past value that can be taken will be the one at the instant
(k-5). Considering this, it was decided to apply only two TDLs to each of the predictors as
well as to the pH. Table 3 presents the TDLs used for the prediction of pH at an instant k.
The same TDLs were applied to both models.

Table 3. TDLs applied to each model input.

Variable TDL

pH (k−1):(k−2)
Medium level (k−1):(k−2)
CO2 injection (k−5):(k−6)

Solar radiation (k−1):(k−2)

Thus, the model will have a two-layer configuration, with eight inputs and one output.
The only parameter of its structure to be set is the number of nodes, which is also known
as the size of its hidden layer. The optimal number of nodes is not a straightforward
estimation, being dependent on the number of patterns, inputs, noise in the data or the
complexity of the system. This factor will be determined experimentally, based on the
recommendation that the number of adjustable parameters (node weights) should be at
all times less than 1/30 of the number of usable examples in the training. Considering
each time step as an independent example, that number is 186 samples for both reactors.
Given the amount of the model layers and inputs, the total number of parameters will be
related to the number of nodes according to the expression Np = Nn · (Ni + 2) + 1, where
Np is the total number of parameters, Nn the first layer size, and Ni the number of model
inputs (8), so the expression can be reduced to Np = 10 · Nn + 1, considering the weights of
every node and their biases. Therefore, the number of nodes has to be less than 18. Each
model was then trained (see the next subsection) several times with a hidden layer size
from 5 to 15 nodes, and its performance was then evaluated with the test set, obtaining the
results shown in Table 4. From these, a hidden layer size of 7 for the freshwater model was
determined, as its performance with this size is close to the lowest one, corresponding to
15 nodes, as well as 8 for the wastewater model, concluding the configuration of the model
structure. Some performances are very close to each other, so one could argue that in this
case, it is preferable to adopt a reduced hidden layer size. However, considering the small
size of a model with a single layer, and the low number of total parameters in the model,
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choosing a larger number of neurons does not make a difference in terms of computational
time.

Table 4. Model test performance (MSE) for each hidden layer size.

Hidden Layer Size Freshwater Model Wastewater Model Number of Parameters

5 0.0208 0.0130 51
6 0.0341 0.0409 61
7 0.0195 0.0500 71
8 0.0429 0.0106 81
9 0.0367 0.0836 91
10 0.0291 0.0449 101
11 0.0404 0.0532 111
12 0.0417 0.0325 121
13 0.0384 0.0225 131
14 0.0383 0.0517 141
15 0.0192 0.0601 151

3.1.3. Model Training

Following data preparation and model structure selection, the last step in model
development is the model training. This process is determined by the optimization function,
model configuration during training, data splitting and performance metrics. The Deep
Learning Toolbox of MATLAB incorporates several optimization functions appropriate for
different types of problems and data. Levenbergt–Marquardt was used for these models,
since it presents a good trade-off between training speed and model performance.

NARX ANNs can be configured in two modes during training: open-loop or closed-
loop. The open-loop model considers each pH prediction entirely independent of the others,
dividing the dataset into samples and seeking to optimize accuracy on each individual
sample by comparing the predicted pH with the actual pH by using past true pH values
as inputs to the model. The closed-loop model divides the data set into time series, with
the objective of optimizing the prediction performance of the complete series, using the
true pH values for the first prediction, and then feeding back its own predictions, hence
its name. This last mode prioritizes the performance of the model over longer prediction
horizons, and it will be the one used in this work.

Generally, the available data set is divided into three subsets. The first one is the
training set, which is composed of the data that the model tries to fit, testing its performance
against them and trying to improve it as its main priority. This set is usually the largest and
most representative, since those system behaviors that are not in it will not be observed
by the model during its training and therefore will not be learned. The second set is the
validation set, which is usually used to determine the training stop. If a model is trained
for too long, it tends to memorize the data, which is known as overfitting. Since some
generalization capability is desired in the model in order to adapt well to situations beyond
those of the first set, during the training process, the performance of the model is constantly
checked with this second set, assuming that when it stops increasing, the model will be
losing its generalization capability, and therefore, training must cease. The third subset
is the test subset, which is composed of data that do not influence the training process in
any way: neither in learning nor in stopping. These data are used once the model has been
trained to test its performance against data that played no part in its training. Since the
training was configured in a closed loop, the data set was divided into time series, each time
series corresponding to only one set. This decision was taken in order to ensure that each
of the sets receives data from every day period, since the reactor behavior changes with
radiation, and therefore, with the time of day: 70% for training (5 spans for both reactors),
15% for validation (1 span for both reactors) and the remaining 15% for testing (2 spans for
both reactors).

Other training parameters were also established, such as a minimum gradient of
1 × 10−7, related to the performance variation below which training will stop; a validation
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patience of 50 epochs, which means that if the validation set performance does not increase
during that period, the training will stop; or a maximum Mu of 1 × 1010, which is related
to the maximum sum of the weights. Once the training was configured, the models were
developed with the optimal structures determined previously, and their validation was
then performed.

3.2. Model Performance Evaluation

Model performance evaluation was performed with data from the test set. The models
were configured in closed loop, taking as inputs the actual values of all predictors but only
the first 2 pH values. From these, the models started predicting and feeding back their
predictions for the full duration of each of the spans. The results of these tests for two
days of the test set are shown in Figure 4a,b for the freshwater and wastewater model,
respectively. It can be seen how in both cases, the predictions are remarkably accurate,
obtaining pH profiles closely resembling the real ones. Quantitatively, the freshwater model
achieves a fit of 71.34%, while the wastewater model reaches 73.75%. Some performance
metrics of each model are shown in Table 5. As can be seen, these results are quite promising,
and the objective of evaluating the viability of the use of the NARX model in this kind of
plant has been achieved. Additionally, some linear ARX models were developed for each
of the reactors in order to compare the results obtained with a linear model. The selected
structures for these models were [4-4-1] as a simple approach; [8-8-1] as a more complex
model; and the one that provided the best training fit in the range between [1-1-1] and
[10-10-10], which was provided by the System Identification Toolbox from MATLAB [43].
The first of the three indexes corresponds to the number of past samples from the output
used in the prediction, the second one is the number of past samples from the inputs used
in the prediction, and the third index is the delays of each of the inputs. In addition to
those, five delays were added to the CO2 input in order to model the transfer delay of the
system. For the freshwater model, the structure that provided the best fit with the training
dataset was [7-4-1], while for the wastewater model, this was [10-2-2]. Compared to linear
models, neural networks are not only more accurate in capturing the dynamics but also
show no drift whatsoever, which is the case with ARX models due to the nonlinearity
of the system. These models present very poor performance metrics compared to neural
networks, especially in the freshwater reactor. The best ARX model for the freshwater
reactor was the one with the best training fit [7-4-1], while for the wastewater reactor, it
was the simplest one [4-4-1].

Table 5. Performance metrics for each model.

Freshwater Model Wastewater Model

Test Model Fit (%) 71.34 73.75
General Model Fit (%) 63.91 62.76

Test MSE 0.0192 0.0106
[4-4-1] ARX Model Fit (%) −19.43 10.64

[4-4-1] ARX MSE 0.1531 0.0301
[8-8-1] ARX Model Fit (%) −2.32 −198.00

[8-8-1] ARX MSE 0.1102 0.3406
Best-fit ARX Model Fit (%) 41.76 −60.26

Best-fit ARX MSE 0.0357 0.0971
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Figure 4. Validation results for each of the models using two days of the test set. (a) Freshwater
model validation results, (b) Wastewater model validation results.

4. Discussion

In general, the developed models have proven to adapt well to the faced problem. The
models have their limitations, which are related to the volume of data necessary for their
training or the difficulty of interpreting the results obtained due to their black box character.
Likewise, the models will perform well in circumstances similar to those provided in the
training, generally having a poor extrapolation capacity. Despite this, the limited number of
input variables they use makes them easily deployable in real production systems, allowing
the obtaining of a model with simple formulation, fast execution and the ability to easily
adapt to new data.

Compared to first-principles models, they are faster to run and simpler to re-calibrate
on account of its smaller number of parameters and more straightforward formulation.
For instance, compared to the previous reactor pH reference model developed in [24], the
computation time for a full day’s simulation has been reduced from more than 4 min to
approximately 0.4 s. On the other hand, they present a more general description of the sys-
tem than any experimental linear modeldue to its nonlinear nature. The comparision with
ARX models demonstrates the need for using nonlinear models to capture the dynamics of
the system. Another interesting comparison may be in relation to LSTM networks. Such a
simple model as the one presented is simpler algebraically and remarkably smaller in terms
of the total number of parameters, being in any case able to fully capture the dynamics of
the system.

The achieved results open many possibilities in the field of microalgae production.
These models can be used as the basis of a nonlinear model-based predictive control
algorithm to optimize the operating conditions. They can also be used for sensor fault
detection, running concurrently with the plant. Regarding future works, it is interesting to
extend the model to more production-influencing variables, such as DO, or to incorporate
biomass concentration measurements that can make it more complete and adaptable. In a
further perspective, the model could also be extended to predict the biomass concentration
of the reactor itself in order to obtain a productivity model of the whole reactor. Moreover,
the design of MPC algorithms based on the proposed models will be explored for the pH
control in both types of reactors.

5. Conclusions

In this paper, two ANN models for pH prediction in microalgae photobioreactors
have been developed. The results achieved demonstrate the potential of this type of
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model to characterize biological systems, showing high accuracy with relatively long
prediction horizons. Specifically, the models obtained have been shown to provide accurate
predictions over more than 12 h based solely on controllable or easily predictable variables
as well as on their own predictions, which is more than enough not only for prediction
purposes but also for simulation.

In addition, they adapt succesfully to freshwater and wastewater reactors, notwith-
standing the differences on a dynamic level between them, which evidences its flexibility.
With a similar methodology, the models can adapt to both type of reactors, which makes
them easy to replicate in new facilities provided that a certain amount of historical data has
been collected. The results are not only promising in the field of microalgae production but
also in the field of biotechnology for modeling dynamic biological systems.
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