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Abstract

The MTE (mixture of truncated exponentials) model allows to deal with Bayesian net-
works containing discrete and continuous variables simultaneously. One of the features
of this model is that standard propagation algorithms can be applied. In this paper, we
study the problem of estimating these models from data. We propose an iterative algo-
rithm based on least squares approximation. The performance of the algorithm is tested

both with artificial and actual data.
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1 Introduction

MTE (Rumi et al., 2001) were introduced as a
way of dealing with mixed networks (Bayesian
networks containing discrete and continuous
variables simultaneously). This problem was
deeply studied before, but the only general solu-
tion is the discretisation of the continuous vari-
ables (Christofides et al., 1999; Dougherty et al.,
1995; Koller and Kozlov, 1997) which are then
treated as if they were discrete, and therefore
the results obtained are not exact. Exact prop-
agation can be carried out over mixed networks
when the model is a conditional Gaussian distri-
bution (Lauritzen, 1992; Olesen, 1993), but in
this case, discrete variables are not allowed to
have continuous parents. This restriction was
overcome in Koller et al. (1999) using a mix-
ture of exponentials to represent the distribu-
tion of discrete nodes with continuous parents,
but the price to pay is that propagation cannot
be carried out using exact algorithms: Monte
Carlo methods are used instead.

MTE models provide the advantages of the
traditional methods and the added feature that
discrete variables with continuous parents are
allowed. Exact standard propagation algorithm
can be performed over them, as well as Monte

Carlo algorithms, but its real power shows as
an alternative to discretisation. Discretisation
can be seen as approximating an arbitrary den-
sity by a mixture of uniforms; more accurate
approximations can be obtained using exponen-
tials instead of uniforms (the uniform distribu-
tion is a particular case of the MTE).

In this paper we propose an iterative algo-
rithm, based on least squares approximation, to
estimate MTE models from a database. The
method described here is valid for univariate
MTE distributions, but can be extended to es-
timate conditional distributions as well.

The paper is organised as follows: In section
2 we describe the MTE model, and the notation
used throughout the paper. The estimation al-
gorithm is presented in section 3, and examples
of its performance are shown in section 4. Sec-
tion 5 is devoted to the extension of the algo-
rithm to estimate conditional distributions, and
the paper ends with conclusions in section 6.

2 Preliminaries

Random variables will be denoted by capital let-
ters, and their values by lowercase letters. In
the multi-dimensional case, boldfaced charac-
ters will be used. The set of possible values
of a variable X is denoted by Qx. The MTE
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model is defined as follows:

Definition 1 (MTE density) Let X be a mized
n-dimensional random wvariable. Let Y =
(Y1,....Yq) and Z = (Zy,. .., Z.) be the discrete
and continuous parts of X, respectively, with
c+d =mn. We say that a function f : Qx — IR(')"
s a mixture of truncated exponentials density
(MTE density) if one of the next two conditions
holds:

i. f can be written as

f(x) = f(y,Z) = ao+

% SN N (drk (1)
Zai exp Zbgj)yj +Zb£ + )zk
i=1 j=1 k=1
for all x € Qx, where a;, i =0,...,m and
bEJ), 1 =1,...,m, 7 = 1,...,n are real
numbers.
ii. There is a partition Q1,...,Q of Qx ver-

ifying that the domain of the continuous
variables, Qz, is divided into hypercubes
and such that f is defined as

f(X) = fz(x) if xeQ,; ,

where each f;, i = 1,...,k can be written
in the form of equation (1).

and Z

yEQy

fy,z)dz =1 .
Qz

Three basic operations can be performed,
restriction, marginalisation and product, over
MTE potentials, and the result will be another
MTE potential, this is, the class of MTE
potentials is closed under these operations
(Rumi et al., 2001), and therefore closed for
Shenoy-Shafer propagation (Shenoy and Shafer,
1990).

3 Estimation Algorithm

In this section we will focus on estimating
marginal (univariate) MTE distributions (corre-
sponding to root nodes in a Bayesian network),

as a previous step for defining conditional dis-
tributions associate with non-root nodes in a
Bayesian Network.

The starting point of the algorithm is a den-
sity f(z) for which we want to get the MTE den-
sity that best approximates it. Learning from
data is a particular case of this, since the em-
pirical histogram can be considered as target
density.

As we can see in Def. 1, an MTE density can
be defined in several parts and in each of these
we can have an arbitrary number of exponential
terms.

3.1 Splitting the domain

The way in which the domain is split is deter-
mined by the properties of the exponential func-
tion, which is the core of the MTE model. Since
the exponential function exp {z} is concave and
increases all over its domain, the partition must
be such that in each one of the sub-intervals,
the density f(z) that we want to approximate
(or the empirical histogram of the data) does
not show changes from concavity to convexity or
increase/decrease. In any case, an upper limit
must be imposed to the number of sub-intervals,
to avoid an excessive increase in the complexity
of the learnt model.

3.2 Determining the number of
exponential terms

The learning scheme we have designed allows
to incorporate new exponential terms in each
sub-intervals as long as the accuracy of the esti-
mated model is increased. However, we have im-
posed an upper limit of two exponential terms
(plus a constant) for each sub-interval.

The reason for using just two exponentials is
the way in which the domain is split: If in each
sub-interval there are not changes in terms of
increase/decrease or concavity/convexity, usu-
ally two terms can accurately fit almost any
curve.  Of course the accuracy would in-
crease using more terms, but the rate diffi-
culty /improvement may not be worthy.

Therefore, on each interval we will estimate
an independent term and no more than two ex-
ponentials, that is, the learnt MTE will be like
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this:

[ (z) = K + aexp {bz} + cexp {dz} .

3.3 Fitting the model in each
sub-interval

Let’s see now how to estimate this MTE on a
given interval D;. We start off with two vectors,
x and y. In x we have a set of points within in-
terval D;, and in y the value of density f (or
the empirical histogram) on each point of x, i.e.,
x = (z1,...,x,) and y = (f(z1),..., f(zn)).
We organise the information in this way to ap-
proach the problem just as if it were a problem
of exponential regression. In an exponential re-
gression we have a vector of points (x,y), and
we try to fit to these points a function of the
form

y = f"(z) = aexp {bz}
minimising the mean square error. To achieve
this we take logarithms, so that

In{y} =In{a}exp{bzr} =In{a} + bz .
Therefore, we can write

y* =a* + bz ,

with ¢* = In{a} and y* = In{y}, that is, just a
linear regression whose solution is

But we said before that our MTE has an inde-
pendent term, which we calculate as follows. We
have y = f*(z) = aexp {bzr} + cexp{dz} + K
and we want to get the K € IR that minimises
the error function

n

B i (i = ["(:)*
=1

Substituting f*(x) by its value we obtain

F = i (yi — aexp {bz;} — cexp{dz;} — K)2 .
n
=1

In order to find the minimum we derive

o _
0K
i —2(y; — aexp {bz;} — cexp {dz;} — K)
n

)
=1

and after solving the equation g—[E( =0 we get:

K = 23" (i aexp {bai} —coxp {dri}) , (2
=1

and to be sure that it is a minimum,

0’E
OK2

We will follow an iterative algorithm to esti-
mate the parameters of the MTE. First we learn
one exponential, and afterwards the other, so
that we will introduce the second exponential
term only if the error decreases.

We need some initial values of a,b, and
K (later we will consider how to initialise
these parameters), and we take as
values for ¢ and d; ¢ = d = 0, so we begin just
with one exponential and the independent term.

(K)=2>0.

initial

Algorithm MTE-learn(a,b,K)
l.c=d=0.
2. w=y—aexp{bx} — K.

3. Obtain ¢ and d making an exponential re-
gression w = cexp {dx}.

4. Compute the mean squared error F. If it
is lower than the last one computed keep ¢
and d as calculated, otherwise leave them
as they were before step 3.

5. w =y —cexp {dx} — K.

6. Obtain a and b making an exponential re-
gression w = a exp {bx}.

7. Compute the mean squared error . If it is
lower than the last one computed we keep
a and b as calculated, otherwise leave them
as they were before step 6.
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8. Compute the independent term K, as
shown in Eq. (2).

9. Compute the mean squared error E. If it is
lower than the last one computed, keep K
as calculated, otherwise leave it as it was
before step 8.

10. Repeat from step 2 to step 9 until a fixed
number of iterations is reached or until the
parameters remain unchanged.

Some remarks must be done on this algo-
rithm: When we have one exponential and esti-
mate the parameters of the other, for instance,
¢ and d, we get the exponential that best ap-
proximates this new pair (x,w), but we may
be over-estimating the data, that is, maybe the
best we can do is not to introduce this exponen-
tial, so, we calculate a coefficient, H, minimising
the error that multiplies this exponential in or-
der to obtain the actual influence of this term,
that is, we make

y =aexp{bx} + Hcexp{dx} + K .

The value of H that minimises the error is

i1 (yi — aexp {bz; — K})(exp {dz})
Yo, cexp {2dz;} ’

and so we make ¢ = H * ¢, and we do the same
with a.

Also, in steps 2 and 5 we create a new vec-
tor w. The vector y is always positive, but
this new vector may be negative, so we need
to transform the data before solving the expo-
nential regression on steps 3 and 6. What we
do is to add a constant to w in order to make
every w; > 0. After solving the regression we
should undo the transformation, but we do not
need to do so, since in step 8 we calculate the
independent term that minimises the error.

The initial values for ¢ and d are fixed to zero
so that we do not introduce a new exponential
term unless it causes a reduction in the error.
The initial values of a, b and K can be anyone,
but we suggest two different methods to calcu-
late them:

H=

Exponential regression, i.e., obtain a and b
from y = aexp{bx} and K as explained in
(2), or using a method that takes into account
the derivative of the function. We want to get
f(z) = aexp{br} + K, so the derivative of
both functions should be the same: f'(z) =
abexp {bz}. We do not work with the density,
but with the pairs (x,y), so f'(z) means the en-
velopes of the lines joining the points of (x,y).
The method is as follows:

1. Construct a line from (Z(;—1)um,Y(i=1)xm)
t0 (ZTjsm, Yixm) for i =1,...,n/m.

% _ T—DamTTixm
2. Take as x] = s

fori=1,...n/m.

3. Take as y; the envelope of the between
(x(ifl)*mv y(ifl)*m) and (Tism, Yism)-

4. Solve an exponential regression
y* = a*exp {bx*} where a* = ab, and ob-

tain the initial values for ¢ and b.
5. Obtain K as explained in (2).

This is the iterative algorithm we propose to
estimate an MTE density from data. In fact,
what we get doing this is not a density, but per-
haps up to a normalisation factor.

4 Experiments

In order to test the ability of the MTE distribu-
tion to model common situations, and in order
to check the accuracy of the algorithm, we have
carried out experiments to fit some known dis-
tributions as well as real-world data.

4.1 Known distributions

We will see how we can represent three different
distributions, very common in practice, with an
MTE density.

4.1.1 TUniform distribution

As we said before, one of the advantages
of using MTE is that is a generalisation of
discretisation, in the sense that we can see a
discretisation as a mixture of uniforms, so, if
an MTE can represent a uniform distribution,
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it can represent a discretisation as well.
The uniform density is
1

lo—1

0 otherwise .

T € (ll,lz) R

fz) =

This distribution is exactly obtained when
this method is applied. We do not have to
split the domain, and in the first iteration we
get the exact values for the parameters, that is,
a=b=c=d=0,and K = L

lo—101°

4.1.2 Exponential distribution

The exponential density is :

f(z)=AXexp{-Az} =x>0.

The first thing we have to do before applying
algorithm MTE-learn to this density is to define
the domain our MTE will have, since it must be
finite. We select an interval (0,/) where [ is such
that P(X > [) =~ 0. Therefore we have only
one interval in the domain, and the algorithm
obtains the exact value for the parameters.

4.1.3 Normal distribution

We will focus on the standard normal distri-
bution, A (0,1), since we can get any N (u,0)
from this one. In order to apply the algorithm,
we divide the domain of the normal density in
four intervals, (—4, —1),(—1,0), (0,1) and (1,4),
on which the density does not have changes of
concavity and increase/decrease. Applying the
algorithm to these intervals we get:

Interval (—4,—1):

= 2.67632782323753

= 2.0995654834596547

= —4.307200936472499E — 4
0.0022590818669798686

= 0.0013430276452163264

N&OO‘Q
Il

i — MTE

----Normal

Figure 1: Comparison of the actual density and
the learnt MTE density.

Interval (—1,0):

= —0.025332983750353668
= —1.9593439331969362
=0

0

0.4201166819186963

N&O@‘Q
Il

Interval (0,1):

= —0.013883101566178647
2.618433856043035

0

0

= 0.4087927677026328

Interval (1,4):

N&O@‘Q
Il

a = 2.2257931326098874

b = —2.04177256076009

¢ = —0.0018154157845694822
d = 0.004952177870949646
K = 0.007669343990692532

As we can see in Figure 1, the differences be-
tween the N(0,1) and this MTE density defined
in four pieces are minimal. In order to prove
that it is a good approximation, we simulated
100 values from the standard normal distribu-
tion and other 100 values from the learnt MTE
distribution, and we performed a Kolmogorov-
Smirnov test for two samples with the hypoth-
esis that both samples come from the same dis-
tribution.
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The test reported a p-Value of 0.6994 with
two-sided alternative hypotheses, which sup-
ports the hypothesis that both samples come
from the same distribution.

We next describe the method used to obtain
the sample from the learnt MTE density.

Simulating a sample from an MTE den-
sity: If the coefficients of the exponentials are
positive, i.e., a > 0, ¢ > 0 and K > 0, in (Rumi
et al., 2001) it was explained how to simulate
values from an MTE density. If any of the co-
efficients is negative, we have to use another
method, (Bignami and Matteis, 1971). To sim-
ulate a value from

[*(z) = aexp{bzr} + cexp {dz} + K ,

where a, ¢ or K are negative, we transform
f*(z) into a sum of densities

(@) = w1 fi(z) + wafo(z) + wsfs(z) ,

where some of the w; are negative. Let’s sup-
pose it is we. We can write

wy
w1 + w3

F4(2) = (w1 + ws) ( o

w3
w1 + w3

f3(36)> + w3 f3(x) =

(w1 +ws3)g(z) +ws f3(z)

To simulate a value we have to repeat these
three steps until the acceptance condition in
step 3 is met.

1. Simulate a value z, from the density g(x):
This value will come from f(z) with prob-

ability n and from f3(z) with prob-
wy + w3
w3

ability ———.
w1 + w3

2. Generate a random number, 7.

[ (@)
w1 f1(7) + w3 f3(74)
value from f*(z). Otherwise, repeat from
step 1.

3. Ifr <

accept z, as a

4.2 Real-world data

When learning a Bayesian Network from data,
we do not have the explicit density of the con-
tinuous variables, but a sample of values of the
variable. In this section we will see how algo-
rithm MTE-learn can deal with this situation.

Let (z1,...,2,) be a sample from a continu-
ous variable Z. We saw in Section 3 that the al-
gorithm requires two vectors, x = (z1,...,Zn)
andy = (y1,...,Ym), where x are values of the
variable, and each y; represents the value of the
density of the variable in z;. Therefore, be-
fore applying the algorithm, we must transform
the data in order to obtain these two vectors to
which apply it. We do it as follows:

1. Divide the domain in m sub-intervals,

n
Qx = UI; .
i=1

2. Compute the frequency for each interval I},
nj,j=1...,m.

3. Take as z; the midpoint of the interval I;.

4. Tak = ————
areasy length(I;)

Doing this, we get two vectors z and y from
x, as required by the algorithm. We have used
it to estimate a density for two continuous vari-
ables extracted from an agricultural survey per-
formed about the greenhouses in the province
of Almerfa (Spain): consumption and harvest.
To test the accuracy of estimation, we used a
x? test instead of a Kolmogorov-Smirnov test
since some values are repeated due to rounding
the data when answering to the questions in the
survey.

4.2.1

We have a sample of 471 values of this vari-
able, ranging from 36.1 to 1583.79. In order
to obtain the empirical histogram, we trans-
formed it choosing intervals of length 40. The
fitted model is shown in Figure 2. We can
see two parts very well differentiated, as in-
crease/decrease and concavity/convexity is con-
cerned, resulting in a split of the domain into

Consumption
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Figure 2: Approximation of the empirical his-
togram of variable Consumption by an MTE
model

two intervals: (36.1,196.1) and (196.1, 1583.79),
and in each of them we estimate a MTE func-
tion:

Interval (36.1,196.1):

a = —1.00481152209664

b = —2.2123865768185145E — 5
¢ = —4.649576063595301E — 16
d = —3.414123099380927E — 10
K = 1.00406169448145

Interval (196.1,1583.79):

a = 0.008503182179895076

b = —0.004880418989153087
c = 7.840998789880702E — 8
d = —7.61875283797691E — 8
K = 2.8252423901716575E — 5

To prove that our MTE density is a good ap-
proximation of the actual density, we used a x>
test to determine whether the original sample
can be said to come from the learnt MTE den-
sity or not. At a significance level o = 0.05,
the rejecting region is (0,0.484) U (11.20, o0),
and the value of the test statistic obtained was
3.172402699364092, so we can conclude that the
test supports the hypothesis that the original
sample comes from the learnt MTE density.

It is interesting to point out that in the first
interval, the MTE density is almost a straight
line. That tells us that we can also approximate
this kind of functions with a MTE.

4.2.2 Harvest

Similarly to the previous one, from this vari-
able we have again a sample of 471 values, rang-
ing from 0.45 to 26. Again we have two intervals
very well defined in which to split the domain,
as we can see in Figure 3 :

Interval (0.45,4.45):

a = 0.010826612517872319

b = 0.6255472893484579

¢ = —5.416676195266647E — 4
d = 0.015687129036406677
K = 0.0053790556847500455

Interval (4.45,26):

a = 0.23314178683678177

b = —0.18400083794081074

¢ = 0.14954712040375723

d = —0.22459486950530835
K = -0.0031378040872907897

Performing the same test as in the case of con-
sumption, we get a value for the x? statistic of
5.704724703434343, supporting the hypothesis
that the original sample comes from the learnt
MTE density.

5 Conditional Distributions

We have seen how algorithm MTE-learn works in
the univariate case. However, in Bayesian Net-
works most of the probabilistic potentials that
appear in the factorisation of the joint distribu-
tion are conditional distributions. Therefore, it
is fundamental to solve the conditional case in
order to make the MTE model really appropri-
ate for Bayesian networks. In this section we
roughly describe how it is possible to tackle the
conditional case taking as basis the univariate
case.
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Figure 3: Approximation of the empirical his-
togram of variable Harvest by an MTE density

A way of defining a conditional distribution

is
f(X,Y)
FXTY) = ,
=)

but the MTE class is not closed under divisions,
so we cannot face the problem in this way.

Another way to think about it just consider

the conditional density as an MTE,

flaly) = a0+ _ aiexp {bix + ciy}
im1

and then estimate the parameters in a similar
way as in the univariate case. However, here the
number of parameters is higher, which makes
the task more difficult. Furthermore, restric-
tions about the values of the parameters should
be made to guarantee that the function is actu-
ally a conditional density.

If all the parents of a continuous node are dis-
crete, the problem is rahter easy: it is enough to
estimate an MTE density for each configuration
of the parents. If the parents are continuous,
discretising them we could estimate a density
for each configuration, and so the whole distri-
bution would be a conditional distribution.

The question of how the continuous parents of
a continuous node should be discretised is not
trivial, and deserves a deep study. We think
that a way of approaching the problem is to
construct a mized probability tree (Rumi et al.,

2001) to represent each conditional distribution.
A mixed probability tree is similar to a classifi-
cation tree (Breiman et al., 1984), but instead of
classes, each leaf contains an MTE density, that
can be learnt using algorithm MTE-learn. Each
internal node represents a parent node and the
branches are splits of the domain.

6 Conclusions

We have presented in this paper a way to learn
MTE densities from data, and we have checked
its accuracy with both known distributions and
real-world data. Finally we have outlined how
we could learn a complete MTE network (in-
cluding conditional distributions) from data.

In future works we plan to continue with the
study of the MTE distributions, looking for a
satisfactory discretization of the parents in a
conditional distribution, so that we can define
them properly, and trying to find out the condi-
tions that must hold an MTE to be considered
a conditional MTE.
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