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Abstract

In this paper we introduce the concept of accretive operator in lin-

ear 2-normed spaces, focusing on the relationships and the various as-
pects of aceretive, me-aceretive and maximal aceretive operators. We
prove the analogous of Banach-Alaoglu theorem in linear 2- normed
spaces. obtaiing an equivalent definition for accretive operators in

linear 2-normed spaces.
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1. Introduction

The concept of 2- metric spaces, linear 2- normed spaces and 2-inner prod-
uct spaces, introduced by 3. Gahler in 1963, paved the way for a number
of authors like, A. White, Y. J. Cho, R. Freese, C. R. Diminnie. for work-
ing on possible applications of Metric geometry, Functional Analysis and

Topology as a new tool. A systematic presentation of the recent results
related to the Geometry of lincar 2-normed spaces as well as an extensive
list of the related references can be found in the book 1]. In [4] S. Gahler

introduced the following definition of linear 2-normed spaces.

2. Preliminaries

Definition 2.1 (3). Let X be a real linear space of dimension greater
than 1 and ||., .|| be a real valued function on X x X satisfying the properties.
Al: ||,y
A2: |zl = |y, x

| = 0 iff x and y are linearly dependent

A3: ez, y|| = |o|lly, x|
AL ot g, 2] < s 2+ 2]

for every vy, € X and a € R
then the function ||.,.|| is called a 2-norni on X. The pair (X.|].,.

) is

called a linear 2- normed space.

Sonie of the basic properties of 2-norms, they are non-negative and

|z, y + ax|| = ||z, y|| for all z and y in X and for every o in R.
The most standard example for a linear 2-normed space is X = R”

equipped with the following 2-norm.

€11 W
|21, zo|| = absdet | xo; wan | where x; = (a1, x5) for i =1,2

)

[

Every linear 2-normed space is a locally convex TVS. In fact, for a
fixed b € X. Py(w) = ||w, b]] is a semi norm, where € X and the family
{Py:b € X} of semi norms generates a locally convex topology on X.

Definition 2.2 (3). Let (X, |.,.]|) be a linear 2-normed space. then a
map 1 X < X — R is called a 2- linear functional on N whenever for
every ri,r2,y1,y2 € X and o, 3 € R

(1) T(z1 + x2,y1 + y2) = Tz, y1) +T(x1,92) + T(z2, 1) + T(z2, 32)
(ii) T{cry, By = adT(xy,y1)
hold,
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A 2-lincar functional T: X x X — R i% said to be bounded if there exists
a real number M > 0 such that |T(z,y)| < M|z, y| for all 2,y in X.
The norm of the 2-linear functional 7" : f\ x X — R is defined for all @,y
in X by
|IT|| = inf{M > 0; |T(z,y)| < Mllz,yll}.
It can be seen that
1T = sup {|T(z,y)|: Iz, yl| < 1}
= sup {|T(x,y)|;llz,y|| = 1}
= wup{i—i |z, y|| # U}
Definition 2.3 (2). Let (X, ].,.]]) be a linear 2- normed space. £ be
a subset of X then the sequentially closure of E is E = {x € X : 1, C
E/x, — x}. We say. E is sequentially closed if E = E.

Definition 2.4 (3). Let X7 be the set of all bounded linear 2- func-
tional on X x V{z ) then the dualzty map is defined by I(z,z) = {F &
X2 F(a,2) = |l 2|* and |[F]| = |lz,=[]}

3. Main Results

Let (X, ], 1) be a linear 2- normed Spae and A : D( A) C X — X be
an operator with domain D(A) = {r € X:; Az # 0} and range R(A) =
U{Aw:ax € D(A)}. We may identify A with its graph and the closure of A

with the closure of its graph.

Definition 3.1. : An operator A : D(A) € X — X s said to be
accretive Iif, for every z € D(A)

e —y, 2| < |z —y) + AMAz — Ay), 2| for all v,y € D(A) and A > 0.
Throughout this article [z,y] € A means z,y € X such that y = Ax.

Definition 3.2. : An operator A : D(A) C X — X is said to be m-
accretive If R(I + ANA) = X for A > (.

An operator A D(A) € X — X and B : D(B) C X — X be two
operators then B is said to be an extension of A if D(A) C D(B) and
Ax = Bz for every x € D(A). denote it by A C B.

Definition 3.3. : An operator A : D(A) C X — X is said to be a
maximal accretive operator in X if A is an accretive operator in X and for
every accretive operator B of X with A C B then A = B.
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Theorem 3.4. If A Is an m-accretive operator in X then A is a maximal
accretive operator,

Proof: Let B be an accretive operator with A € B. Let A > 0 and
x,y] € B.

Since A is m- accretive we have ©+ Ay € R(I + AA) implies there exists
x1,11] € A such that =+ Ay = 27 + A\

Since B is accretive and [x1,y;] € B we have for every 2 € X,

llo — w1, z|| < |[(@ = w1) + M(Bx — Buay), 2|
“ HU' 1) + My — ), 2|
= |[(x + Ay) — (z1 + Ah ), 2|l = ||0, z|| for every z € X
==}

implies & — oy =0 and @

Therefore y = yy implies [z,y] € A. So A=DB
Hence A is a maximal accretive operator.

Lemma 3.5. Let A be an accretive operator in X and let (u,v) € X x.X
then A is maximal accretive in X iff for every [v,y] € A and = € X and
(x—u) + Ay —v),2 u,v] € A.

A > 0 one has ||x —u, z|| €

Proof:

Let A be a maximal accretive operator in X. Put T = AU [u, ¢!

Suppose ||z —u, 2| < ||(x —w) + Ay —v), 2| for every [z.y] € A,z € X
and A > (
then T is accretive in X and A € T implies [u,v] € A

Conversely, suppose that if A is aceretive operator in X and

|z —u, 2| < [z —w)+ Ay —v), 2| for every [,y] € A,z € X and A > 0

implies u, v} € A
Let B be accretive in X with A C B and [z1,y1] € B
Since B is accretive in X, for every [z,y] € A,z € X and A > 0 one has
| — a1, z|| < (& —w1) + AM(Bx - B;11 =l —21) + /\(z/ —1y1), 2|
which
implies [@1,41] € A. Therefore B C A. So A = B.
Hence A is ma.xun'al accretive in X.

Theorem 3.6. If A is an accretive operator in X then thers exists a
maximal accretive operator containing A.
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Proof:

Let B ={B; B is accretive in X and A C B} then (B, C) is a partially
ordered set.

Let T be a totally ordered set with 7" C B then by Zorn's lemma there
exists a maximal eletnent in B, is a maximal accretive operator containing
A.

Theorem 3.7. Let A be an accretive operator in X then the closure A

of A is accretive.

P ro ufi
Let [x1,y1, (2, y2] € A then there exists sequences {[zn, ynl }s {[2m, ym] }

in A such that 2, — 217y — Y1, Lm — 293 Ym — yo and A > 0 .
: Y1y 1 y Ym 2
Since A is accretive in X one has
Nz = 2, 2l < 2y = 200) + A(Azy, — Az ), zl|for every z € X

i
(@n — Tm) + AYn — Ym), :H for every z € X

Il

o, ||z1 — 2o, 2] € |[(21 — @2) + My1 — y2), zllfor every z € X

implies A is accretive in X.

Theorem 3.8. Let A be a maximal accretive operator in X then A is
sequentially closed.

Proof: For all w,,, v, € D(A), Let {[wn, yn]} in A such that @, — u, vy, —
vand A >0

Since A is accretive in X and [x,y] € A implies ||z — zp, 2| < ||(2 —
dIn )+ Ay — yn), zllfor every z € X

as n — oo we have ||z —u, 2| < |[(x —w) + Aly —v), z|| for every z € X

Therefore, by Lemia 3.6 [u,v] € A. Hence A is sequentially closed.

Corollary 3.9. If A is an m-maximal accretive operator in X then A is

sequentially closed.

Proof: We have an mi-accretive operator A in X is a maximal accretive
operator in X. Hence by Theorem 3.8, A is sequentially closed.
Next we prove analogous of Banach Alaoglu theorem in linear 2- normed

spaces.

Theorem 3.10. Let X be a linear 2- normed space then the closed unit
ball of X* is weak® compact, i.e. B = {f € X ||f|| € 1} is compact for
the weak™ topology.
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Proof;

If f € B then |f(x, 2) &, or every x,z € X

Let Dy, ={A € R; |\ < ||z, 2 } be a closed interval then it is compact.

We have f(r,z) € D, for every o,z € X. Take D = Il,e x D, . for
every » € X. Equip product topology on D then, by Tychnoft’s theorem D
is cornpact.

!

Consider the canonical projection Il .+ D — D, .
Equip B with the relative topology induced by weak™ topology. So it is
enough to prove that B is homeomorphic with a closed subset ' of D.
Detfine T : B — D as follows:
If feBthen f(v,z) e Dy forevery x,2 € X
So, define T'f = (f(«,2))r zexof D has the property that (wx, 2)™ coor-
dinate is a 2-linear functional of index (z, ).
Construct the set C of all (A; )z :ex € in D such that
Mar+wnzitz) = Moz + Azp,ze T Azg,zy T Az, 2
Az Bz, = OPBAz, o, for every x1, 22,21, 22 € X and ¢, 8 inR
We have T(B) C C
IfA..eC f\:n‘ r,2€ X
Define f: X x X — R by f(z,z) = A;. is a 2-linear functional on X.
Also | f(x, 2) Aze| <@, z]| implies H fll < 1. Therefore f € B.
AndTf = flz,2)rex = Ap2)erex. S0C CT(B). Therefore T(B) =

Next we have to prove that,

(1) T is one-to-one

(ii) C is a closed subset of D

(iii) T is bicontinuous (ie; homeomorphiism) from B onto T(B) = C'

For,

(i) Let f,g € B with T f =Tg then f(x,z) = g(x, z) for everv x,z € X
implies [ = ¢g. So T is one-to-one.

(ii) For 21, 22, 21, 22 € X, Define ¢ : D — R by ¢(As2) = A
Azy 21 = Aoyzg — A

2 LR,E

@yt 21+22)
- -’\'1'-2,:2

Take v = Ay ; then we have ¢(4) = Mg toga+a){W) — Ty oy () —
Moy, s i)~ Ry L %) = Fag o)

Since 7 Is continuous we have ¢ is continuous.

Define 0710, = {\,. € D : Mg dwmoadeg) = Ky T /\11 =
Aryzy . Then ¢ 10! is closed in D. Denote this clmed set by C,

Similarly, for fixed v1, v € X and o, 3 € Rtheset {(Ap2)erex: Ao, 32, =
aBAy, - ) is closed in D. Denote it by Cy; u,a,3)-
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Therefore, C = (NClyy u9,21,22) ) WNClo; ug,0,8)) Where 21, To, 21, 22, 11, 2
varies over X and «, 3 varies over R. Hence C is closed in D.

(iil) In the view of (i) T maps bijectively onto 17(B) = C

Consider a sub basic neighbourhood of fy for the relative weak* topol-
ogy on B of the form:

Letec X rhwn X ={f€B;|f(xo ) folzo,y0), €|l < ;}
Therefore, (V) = {[f(« ) ve & X FEV)
z{mz ql} X ,f emeh ||f J,O,,qo)_'fo(;l.w el _ B

_{;f €T, L/) T '—\"fEBWith HT (x0.y0) Tf) LQUO/(Tf( i‘“}
is a sub basic neighbourhood of T'fy for the relative tupolrm\ 111(1110(@ on
T(B) = ' by the product topology on D. So,T is bicontinuous from B onto
1(B) =€

Theorem 3.11. Let X be a linear 2-normed space and z,y € X then
for every = € X, ||, z|| < o+ ay, z|| for every o > 0 iff there is F' € [(w, z)
such that Re((y,z),F) = 0 [ "Re” means "real part of” |

Proof:

If x = 0 then the result holds true.

Assume that 2 = 0. Suppose Re((y,z),F) = 0 for some F € I{x,z)
then

e, 2

= F(r,z) = Re(F(r,2)) < Re(F(z+ay)) < [|Fll||lx+ay, || for
= ()

Since, ||F|| = ||z, z|| we have ||z, z|| < ||z + ay, z|| for e > 0

Conversely, suppose that ||z, z|| < ||z + ay, z|| for a >0

For each o > 0 let I, € I{x + ay, z) and g, = U%—H then ||g.| =1

Ther,

|, 2] < [|o + oy, 2]] = gal® + oy, 2) = Re[ga(z, 2)] + aRelgaly, )] <
|z, 2|| + aRe[ga(y, 2)]

implies lim{inf, 0 Rel(z, 2), gal} > |2, z|| and Re[(y, 2), ga] > 0

By the above theorem, the closed unit ball of X ¥ is weak™ compact then
the net {gq} has a cluster point ¢ with ||g|| = 1.

Rel{#,8), 8 = ||& 2

0y 2

0 implies R([ ,),,(]\ >1

2,2

and Re[(y, 2), ga] >
implies ||g|| = 1 and ¢g(z, z) = ||z, 2|
Take F = |ja, z|g then F(x,2) = ||z, 2|lg(x, 2) = ||z, 2]|*. Therefore,
FeI(x,z)and Re{(y,z),F] 20

Remark 3.12. From the above theorem we get "A is an accretive op-
erator in a linear 2-normed space X iff for every u,v € D(A) there exists
f € I(u—w,z) such that Re[f(Au — Av,z)] > 0".
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