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Abstract  1 

 2 

Digital surface models (DSMs) extracted from very high resolution (VHR) satellite stereo images 3 

are becoming more and more important in a wide range of geoscience applications. The number of 4 

software packages available for generating DSMs has been increasing rapidly. The main goal of this 5 

work is to explore the capabilities of VHR satellite stereo pairs for DSMs generation over different 6 

land-cover objects such as agricultural plastic greenhouses, bare soil and urban areas by using two 7 

software packages: (i) OrthoEngine (PCI), based on a hierarchical subpixel mean normalized cross 8 

correlation matching method, and (ii) RPC Stereo Processor (RSP), with a modified hierarchical 9 

semi-global matching method. Two VHR satellite stereo pairs from WorldView-2 (WV2) and 10 

WorldView-3 (WV3) were used to extract the DSMs. A quality assessment on these DSMs on both 11 

vertical accuracy and completeness was carried out by considering the following factors: (i) type of 12 

sensor (i.e., WV2 or WV3), (ii) software package (i.e., PCI or RSP) and (iii) type of land-cover 13 

objects (plastic greenhouses, bare soil and urban areas). A highly accurate light detection and 14 

ranging (LiDAR) derived DSM was used as the ground truth for validation. By comparing both 15 

software packages, we concluded that regarding DSM completeness, RSP produced significantly 16 

(p<0.05) better scores than PCI for all the sensors and type of land-cover objects. The percentage 17 

improvement in completeness by using RSP instead of PCI was approximately 2%, 18% and 26% 18 

for bare soil, greenhouses and urban areas respectively. Concerning the vertical accuracy in root 19 

mean square error (RMSE), the only factor clearly significant (p<0.05) was the land cover. Overall, 20 

WV3 DSM showed slightly better (not significant) vertical accuracy values than WV2. Finally, 21 

both software packages achieved similar vertical accuracy for the different land-cover objects and 22 

tested sensors.    23 

 24 
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1. Introduction 1 
 2 

Digital Surface Models (DSMs) are one of the core products of very high resolution (VHR) satellite 3 

stereo photogrammetric imagery. Three-dimensional (3D) information plays a crucial role for many 4 

geospatial analysis (e.g. Maune 2007), adding accurate georeferenced datasets into Geographic 5 

Information Systems. With the development of spaceborne sensors, it is expected that VHR stereo 6 

data can be acquired in a timely and repeated manner for any region of interest, much more 7 

affordable than traditional aerial surveys. According to Noh and Howat (2015), the quality of 8 

stereoscopic DSMs depends on: (i) the radiometric and geometric quality of the imagery, (ii) the 9 

accuracy of the sensor model used to represent the relationship between image and object space, 10 

and (iii) the performance of the image matching algorithm. 11 

Regarding radiometric and geometric quality of the imagery, the last investigations about extracting 12 

3D information from VHR satellite stereo pairs are mainly focused on the new breed of 13 

DigitalGlobe’s VHR satellites such as GeoEye-1 and WorldView-1/2/3/4 (Aguilar, Saldaña and 14 

Aguilar 2014; Noh and Howat 2015; Shean et al. 2016; Barbarella, Fiani and Zollo 2017; DeWitt et 15 

al. 2017) which are capable of capturing panchromatic (PAN) imagery of the land surface with 16 

ground sample distance (GSD) even lower than 0.5 m. Others recently published works also pay 17 

attention to the capabilities of the PAN triplet from Pléiades-1 to generate DSMs (Poli et al. 2015; 18 

Di Rita, Nascetti and Crespi 2017; Qin 2016). 19 

The sensor model used at the stereo pair orientation phase can be particularly important for the 20 

DSM accuracy, and most of the state-of-the-art work take either the rigorous linear-array model or 21 

parametric rational polynomial function model (RPF) (Fraser, Baltsavias and Gruen 2002; Toutin 22 

2006; Capaldo et al. 2012; Crespi et al. 2012; Poli and Toutin 2012). As compared to rigorous 23 

model, the RPF model is concluded to be capable of achieving similar level of accuracy and being 24 

much more compatible across different sensors, thus nowadays is widely used as the standard 25 

geometric model for spaceborne optical images. The RPF builds the object-to-image space mapping 26 

through 78 parameters called RPC (rational polynomial coefficients). It should be noted that the 27 
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initial RPC parameters derived from the satellite navigation system usually contain bias, thus the 1 

geo-referencing needs a bias-correction phase for generating precise epipolar images for dense 2 

image matching, which can be performed either using tie points (relative correction) or accurate 3 

ground control points (GCPs, for absolute correction)  (Grodecki and Dial 2003; Fraser and Hanley 4 

2003, 2005). 5 

With regard to the image matching algorithm, there are many commercial software packages being 6 

able to procedure DSM from VHR stereo images such as MATCH-T, supplied by Trimble, LPS 7 

eATE, embedded into ERDAS, or Socet Set ATE, by BAE Systems. Among these, OrthoEngine, 8 

the photogrammetric module of Geomatica (PCI Geomatics), has been the most used in research 9 

works, serving as a benchmark for others packages in comparison tests (Capaldo et al. 2012; 10 

Fratarcangeli et al. 2016; Barbarella, Fiani and Zollo 2017; Di Rita, Nascetti and Crespi 2017). A 11 

few open source tools for DSMs generation from VHR satellite have become available such as 12 

Satellite Stereo Pipeline (S2P) (de Franchis et al. 2014), the NASA Ames Stereo Pipeline (ASP) 13 

(Shean et al. 2016), or Digital Automatic Terrain Extractor (DATE) (Di Rita, Nascetti and Crespi 14 

2017). In addition, RPC Stereo Processor (RSP) (Qin 2016) and the Surface Extraction with TIN-15 

based Search-space Minimization (SETSM) (Noh and Howat 2017) represent other recently 16 

developed tools for DSM extraction. The aforementioned software packages use different image 17 

matching algorithms to find the corresponding image points. In that sense, Alobeid, Jacobsen and 18 

Heipke (2010) concluded that the matching method for generating DSMs is crucial, especially in 19 

urban environments. They found that the area-based least squares matching is not able to generate 20 

sharp building outlines and strongly impacted by occlusions. On the other hand, semi-global 21 

matching (SGM) (Hirschmüller 2008) and dynamic programming matching method (Birchfield and 22 

Tomasi 1998) achieve better results working on urban areas. 23 

It is important to note that DSM accuracy varies with the terrain surface roughness (Li 1992; 24 

Aguilar et al. 2005) and the target land-cover objects (Toutin 2006; Hobi and Ginzler 2012; 25 

Aguilar, Saldaña and Aguilar 2014). A plethora of literature about DSMs generation from VHR 26 
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satellite imagery over different study sites exists, including urban areas (Di Rita, Nascetti and 1 

Crespi 2017), flat bare soil (Aguilar, Saldaña and Aguilar 2014), mountainous areas (Fratarcangeli 2 

et al. 2016), densely vegetated deciduous forest (DeWitt et al. 2017), glaciated regions (Noh and 3 

Howat 2015) or over herb and grass land cover (Hobi and Ginzler 2012). However, to the best of 4 

our knowledge, few works have been specifically focused on greenhouse covered areas (Aguilar et 5 

al. 2014), where the different plastic materials with varying thickness, transparency, ultraviolet and 6 

infrared reflection and transmission properties, additives, age and colours are challenging for 7 

accurate 3D extraction. With such 3D information, the greenhouses mapping accuracy can be 8 

greatly improved by incorporating them (e.g., DSM or normalized digital surface model (nDSM)) 9 

into pixel-based and object-based supervised image classification algorithms (Aguilar et al. 2014; 10 

Celik and Koc-San 2018).     11 

The vertical accuracy of a DSM generated from VHR satellite images is normally evaluated through 12 

highly accurate light detection and ranging (LiDAR) information as ground truth (Toutin 2006; 13 

Capaldo et al. 2012; Noh and Howat 2015). However, the generated DSM may not represent height 14 

for every single pixel due to matching errors provoked by insufficient texture, occlusions or 15 

radiometric artifacts. Therefore, DSM quality should also be evaluated using DSM completeness, 16 

defined as the percentage of correctly matched points over the area of interest (Höhle and 17 

Potuckova 2011). 18 

The main objective of this paper is to evaluate and compare, exactly in the same conditions, the 19 

unfilled DSMs extracted from along-track WorldView-2 and WorldView-3 PAN VHR satellite 20 

stereo pairs over a very dense greenhouse covered area, also presenting mixed patches of bare soil 21 

and urban areas. Two software packages with two clearly different image matching approaches 22 

were also tested. In this sense, a DSM quality assessment, including both vertical accuracy and 23 

completeness, was performed to statistically analyse the effect of the following factors: (i) type of 24 

VHR sensor (i.e., WV2 or WV3), (ii) software package used (i.e., OrthoEngine or RSP) and (iii) 25 

type of land cover (plastic greenhouses, bare soil and urban areas). 26 
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2. Study sites 1 

 2 

The study area is located in the province of Almeria (Southern Spain). It comprises an area of ca. 3 

8000 ha centred on the geographic coordinates (WGS84) 36.7824°N and 2.6867°W (Figure 1). It is 4 

just at the core of the greatest concentration of greenhouses in the world, the so-called “Sea of 5 

Plastic”. This pilot area presents a smooth relief ranging between 152.6 m and 214.8 m above mean 6 

sea level. Within the study area, nine sub-plots (red, green and blue polygons in Figure 1) with areas 7 

between 14 ha and 36 ha were selected according to their type of land cover. In fact, three sample 8 

areas of each land cover were selected so that they were representatives of plastic greenhouses, bare 9 

soil (practically without vegetation) and urban areas respectively.   10 

Figure 1. Location of the study area in Almería (Spain). The nine selected subareas over plastic greenhouses, bare soil 11 
and urban areas are depicted as red, green and blue polygons respectively. Coordinate system: WGS84 UTM Zone 30N. 12 
 13 
 14 
 15 
 16 
 17 
 18 
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3. Datasets 1 

 2 

3.1. WorldView-2 and WorldView-3 stereo pairs 3 

 4 

A WorldView-2 (WV2) PAN along-track stereo pair was acquired on 5 July 2015 covering the 5 

study site (Table 1). It was collected in Stereo Ortho Ready Level-2A (StereoOR2A) format, 6 

presenting both radiometric and geometric corrections. StereoOR2A format is georeferenced to a 7 

cartographic projection using a surface of a constant height. It also counts on the corresponding 8 

RPC sensor camera model and metadata file. The delivered products were ordered with a dynamic 9 

range of 11 bits. The second stereo pair over the study site was collected on 11 July 2016. It was a 10 

PAN StereoOR2A product from WorldView-3 (WV3) with a dynamic range of 11 bits. The 11 

metadata including viewing geometry, sun positions and other acquisition parameters for both 12 

studied stereo pairs are shown in Table 1.  13 

 14 

Table 1. Characteristics of panchromatic images from WorldView-2 (WV2) and WorldView-3 (WV3) stereo pairs. 15 

Product WV2 Stereo Pair WV3 Stereo Pair 
Images WV2 Image 1 WV2 Image 2 WV3 Image 1 WV3 Image 2 
Acquisition Date (D/M/Y) 5/7/2011 5/7/2011 11/07/2016 11/07/2016 
Acquisition Time (GTM) 11:03 11:04 11:31 11:32 
Scan direction Forward Forward Forward Forward 
Off-Nadir View Angle 12.6º 24.6º 32.7º 22.2º 
In-Track View Angle 8.3 º -23.5 º 26.2 º -2.8 º 
Cross-Track View Angle 9.6 º 7.7 º -20.3 º -22.0 º 
Satellite Azimuth 59.2º 172.7º 336.3º 273.6º 
Collected GSD 0.484 m 0.550 m 0.422m 0.354 m 
Product Pixel Size 0.5 m 0.5 m 0.3 m 0.3 m 
Sun Azimuth 126.4º 126.9º 142.9º 143.5º 
Sun Elevation 69.1º 69.3º 72.4º 72.5º 

 16 

3.2. Ground truth LiDAR data 17 

 18 

The LiDAR data used as ground truth in this study was provided by the PNOA (National Plan of 19 

Aerial Orthophotograph of Spain) as a point cloud in LAS binary file, format v. 1.2 (Montealegre et 20 

al. 2015), containing easting and northing coordinates (UTM ETRS89 30N) and orthometric 21 

elevations (geoid EGM2008). It was captured on September 23, 2015, by a Leica ALS60 discrete 22 

return sensor with up to four returns measured per pulse and an average flight height of 2700 m. 23 
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The registered point density of the test area, taking into account the overlapping, turned out to be 1 

0.97 points/m2 (all returns). The estimated vertical accuracy of the LiDAR data was computed on 2 

131 GPS-RTK surveyed ground points evenly distributed over the whole study area. The standard 3 

deviation of the computed LiDAR vertical error, only including open terrain GCPs (Aguilar and 4 

Mills 2008), took a value of 0.14 m, meaning vertical accuracy higher than the 0.2 m nominal 5 

vertical error of PNOA LiDAR data (Montealegre et al. 2015). 6 

The original density of the LiDAR point cloud was significantly reduced to extract a representative 7 

and yet manageable set of LiDAR points. In this sense, only single and first returns LiDAR points 8 

were used. Usually, points from single return collect very well bare soil areas, while on plastic 9 

greenhouse, the laser beam can capture several returns (on the top of the plastic cover, on the crop 10 

inside or on the bare soil) depending mainly on the plastic material. Thus, in order to better 11 

represent the DSM ground truth from LiDAR data we selected the first return. After this, LiDAR 12 

data from the nine selected subareas were carefully edited by manually removing incorrect points. 13 

This task was especially time consuming for the plastic greenhouse subareas where the first return 14 

LiDAR points sometimes penetrate the plastic sheet. Finally, a spatially oriented data thinning was 15 

carried out by sub-sampling the original point cloud using a minimum distance between points of 2 16 

m. Following these steps, an evenly distributed ground truth LiDAR edited data over each study 17 

area of around 0.2 points/m2 was obtained for validation.  18 

4. Methodology 19 

 20 

4.1. DSM Extraction from VHR Satellite Imagery 21 

 22 

Two different software packages, based on different image matching approaches, were used to 23 

stereo-photogrammetrically generate the DSM from WV2 and WV3 stereo pairs. 24 

OrthoEngine, the photogrammetric module of Geomatica v. 2013 software (PCI Geomatics, 25 

Richmond Hill, ON, Canada) was the first of the packages tested. OrthoEngine (PCI henceforth) 26 

matching algorithm is based on cross-correlation where an automated area-based matching 27 
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procedure is performed on quasi-epipolar images. Specifically, this procedure utilizes a hierarchical 1 

sub-pixel mean normalized cross correlation matching method that generates correlation 2 

coefficients between zero and one for each matched pixel, where zero represents a total mismatch 3 

and one a perfect match. When the correlation coefficient of a matched point is lower than 0.5, this 4 

point is rejected and its height is not computed, meaning a gap and reducing the DSM 5 

completeness. Finally, a second-order surface is then fitted around the maximum correlation 6 

coefficients to find the match position to sub-pixel accuracy (Chen 2015). 7 

RSP (RPC Stereo Processor) was the other software package tested in this work. RSP was initially 8 

developed by Qin (2014) for 3D change detection and land cover classification studies and it was 9 

further refined as a standalone software package that performs stereo matching on RPC modelled 10 

space-borne images producing mapping products such as DSM and orthophoto (Qin 2016). RSP 11 

implements a hierarchical SGM approach based on the widely known algorithm proposed by 12 

Hirschmüller (2008) to generate the disparity maps after applying an epipolar rectification process 13 

to the original stereo images. 14 

The sensor orientation phase for both software packages was carried out by the empirical model 15 

based on a third-order 3-D rational functions with vendor’s RPCs data and refined by a zero-order 16 

polynomial adjustment (RPC0), following the block adjustment method published by Grodecki and 17 

Dial (2003) for image space. Although RPC0 requires only one GCP, and in order to have a better 18 

reliability, seven GPS-RTK surveyed ground points evenly distributed over the working area were 19 

used following the recommendations of Aguilar, Saldaña and Aguilar (2013). It is important to keep 20 

in mind that the GCPs were only marked once on the image space of the PCI project, being later 21 

exported to be automatically marked in the RSP project in order to guarantee the same input. 22 

Exactly the same seven GCPs were used to perform the sensor orientation for WV2 and WV3.  23 

After carrying out the sensor orientation phase, four grid spacing format DSMs for each subarea 24 

were stereo-photogrammetrically extracted by using different combinations of sensor (WV2 and 25 

WV3) and software packages (PCI and RSP). The DSMs were always computed in orthometric 26 



10 
 

elevations using the EGM2008 geoid. The resolution of these DSMs was set to 0.6 m and 1 m for 1 

WV3 and WV2 respectively (two times of the image GSD). In the case of PCI, “hilly terrain” and 2 

“without filling blanks” (no interpolation) parameters were chosen. In the case of the RSP software, 3 

the DSM was also extracted without filling blanks. Finally, 36 unfilled DSMs were extracted (9 4 

subareas × 2 software packages × 2 sensors).  5 

4.2. Quality assessment of the extracted DSMs 6 

 7 

The quality of the extracted DSMs was assessed by computing their completeness and vertical 8 

accuracy. As mentioned, the quality assessment was focused on different software packages, 9 

sensors and land covers. Thus, three samples of three types of land cover (plastic greenhouses, bare 10 

soil and urban areas) were considered within the study area, finally leading to the nine test subareas 11 

as shown in Figure 1.  12 

The completeness of every DSM was computed for the different studied subareas as the ratio 13 

between the number of correctly matched points and the maximum possible number of points for 14 

the selected DSM grid spacing. Therefore, the completeness offers a quantitative measure about the 15 

influence of the different tested factors on the ability to extract local 3D information over the study 16 

area.  17 

Regarding the accuracy of the stereo-photogrammetrically extracted DSMs from the WV2 and 18 

WV3 stereo pairs in the nine subareas, the 3D points from the manually edited LiDAR DSM were 19 

employed as independent check points (ICPs) for assessing the vertical accuracy (LiDAR ICPs), 20 

computing vertical residual (z-residual) at each corresponding point as photogrammetric height 21 

minus LiDAR height. It is important to note that each ICP will produce a z-residual if the area 22 

around the planimetric position of this ICP contains height information in the corresponding DSM. 23 

In this case, a bilinear interpolation was used to compute the value of that z-residual. For instance, 24 

in the case of the first repetition of plastic greenhouses land cover (area of 36 ha), 58909 LiDAR 25 

ICPs were considered as ground truth. However, the total number of successfully extracted z-26 
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residuals was fewer in photogrammetrically derived DSMs due to matching algorithm failures (i.e., 1 

the completeness values of the DSMs for each subarea were always lower than 100%). In fact, for 2 

this subarea different numbers of total extracted z-residuals (Total z-residuals) were computed from 3 

PCI WV2 DSM (38049), RSP WV2 DSM (52084), PCI WV3 DSM (36654) and RSP WV3 DSM 4 

(49119). To fully complete the picture, the vertical accuracy assessment for each subarea was also 5 

performed only on those ICPs where z-residuals were available for all the sensors and software 6 

packages tested in each subarea (i.e., Common ICPs), thus reducing the number of ICPs but 7 

ensuring a fair play in the comparison on different factors. In our example corresponding to the first 8 

repetition of greenhouse land cover, the final number of ICPs at which z-residuals could be 9 

computed in all cases stood at 26109 for PCI WV2 DSM, RSP WV2 DSM, PCI WV3 DSM and 10 

RSP WV3 DSM. In that sense, two strategies have been carried out in this work for assessing 11 

vertical accuracy from VHR satellite derived DSMs: (i) using all the ICPs from each subarea and 12 

combination of software/sensor, and (ii), for ensuring a fair comparison, using only those ICPs 13 

where the z-residuals were available for all the sensors and software tested in each subarea. After 14 

removing blunders from the z-residuals populations attained from both strategies by applying the 15 

widely known three-sigma rule (Daniel and Tennant 2001), statistics such as Mean, Standard 16 

Deviation (SD), vertical Root Mean Squared Error (RMSE) and 95th (LE95) percentile Linear Error 17 

were computed for the final vertical accuracy assessment. These statistics are usually adopted for 18 

the assessment of DSMs (Di Rita, Nascetti and Crespi 2017). 19 

The number of ICPs from the manually edited LiDAR point cloud, the total number of ICPs which 20 

produced z-residuals in each subarea and the number of z-residual attained on common ICPs are 21 

depicted in Table 2 for all the studied factors. It is worth noting that the figures depicted in Table 2 22 

are the mean values of three samples. 23 

In order to study the statistical influence on DSM quality attributed to the three factors studied in 24 

this work, an experimental design based on a factorial model with three samples was implemented. 25 

Since the residual populations (z-residuals at ICPs) did not always fit a normal distribution, the 26 
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Kruskal-Wallis H test (Spurrier 2003), a well-known rank-based non-parametric test, was applied to 1 

determine if there were statistically significant differences (p<0.05) between two or more groups of 2 

an independent variable or factor (land cover, software package or sensor) in relation to a 3 

quantitative dependent variable (DSM quality statistics such as Mean, SD, RMSE, LE95 and 4 

Completeness).  5 

Table 2. Number of ICPs from the manually edited LiDAR point cloud (LiDAR ICPs), number of all ICPs with z-6 
residuals (Total z-residuals) and number of common LiDAR ICPs which produce z-residuals from the 7 
photogrammetrically derived DSMs (Common ICPs), for all the studied cases (i.e., land cover, sensor and software). 8 
The depicted figures are given as mean values of three samples or repetitions while the range (Minimum, Maximum) 9 
are presented in brackets and italic font. 10 

Type of land 
cover 

No. ICPs and 
z-residuals 

WV2   WV3 

PCI RSP PCI RSP 

 
LiDAR ICPs 55609.7 

(51920, 58909) 
55609.7 

(51920, 58909)  
55609.7 

(51920, 58909) 
55609.7 

(51920, 58909) 

Greenhouse 
Total  

z-residuals 
41824.7 

(38049, 45797) 
53018.3 

(51432, 55539)  
36997 

(33557, 40780) 
49304 

(47409, 51384) 

 
Common ICPs 29457.7 

(26109, 33816) 
29457.7 

(26109, 33816)  
29457.7 

(26109, 33816) 
29457.7 

(26109, 33816) 

 
LiDAR ICPs 41050 

(25794, 50679) 
41050 

(25794, 50679)  
41050 

(25794, 50679) 
41050 

(25794, 50679) 

Urban 
Total  

z-residuals 
22346.3 

(14781, 26167) 
39090.7 

(24798, 47547)  
24514.7 

(15269, 29955) 
35951.7 

(22876, 42892) 

  Common ICPs 14419 
(9246, 18103) 

14419 
(9246, 18103)   14419 

(9246, 18103) 
14419 

(9246, 18103) 

 
LiDAR ICPs 36163.3 

(20588, 45087) 
36163.3 

(20588, 45087)  
36163.3 

(20588, 45087) 
36163.3 

(20588, 45087) 

Bare Soil 
Total  

z-residuals 
34654 

(19886, 43032) 
36113.7 

(20560, 45078)  
35621 

(20195, 44495) 
36009.3 

(20445, 44968) 

 
Common ICPs 34082.7 

(19622, 42658) 
34082.7 

(19622, 42658)  
34082.7 

(19622, 42658) 
34082.7 

(19622, 42658) 

 11 

5. Results and discussion 12 

 13 

5.1.Visual inspection 14 

 15 

Figures 2, 3 and 4 show the three-dimensional shaded relief for the different satellite derived DSMs 16 

produced in this work. Overall, these figures visually show that RSP software package achieved 17 

better results (in terms of completeness) than PCI for both WV2 and WV3 satellites, especially on 18 

urban areas and plastic greenhouses. A more detailed analysis of each figure is presented in below.     19 
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In Figure 2, the first column shows the original LiDAR data for the three samples of greenhouse 1 

land cover (subareas GH1, GH2 and GH3) with a grid spacing of 0.6 m. It is noteworthy that the 2 

little water irrigation ponds located at these agricultural areas did not have any first or single 3 

LiDAR return. Leica ALS60, as most of the LiDAR systems today, is set up to work over land 4 

using an infrared beam which tends to be absorbed by water, so over water bodies there are what 5 

are called data voids. These three LiDAR DSMs in Figure 2 can be visually compared to the DSMs 6 

derived from the WV2 and WV3 stereo pairs by using both PCI and RSP software packages. 7 

Through this visual inspection, the SGM implemented in RSP software achieved much better 8 

results than PCI algorithm for both WV2 and WV3 satellites in terms of the completeness. It is 9 

important to note that the WV2 DSMs over greenhouses seem to show a smaller number of missing 10 

image matching points than WV3 DSMs, although this fact should be statistically confirmed in the 11 

next section.  12 

The DSMs of the three samples over urban areas (UR1, UR2 and UR3) are shown in Figure 3. 13 

Again, the completeness achieved by using RSP yielded much better results than PCI software for 14 

both WV2 and WV3 imagery.  15 

Concerning the bare soil land cover (Figure 4), the quality of the DSMs derived from WV2 and 16 

WV3 stereo pairs appear similar to the quality of the LiDAR derived DSM in the three subareas 17 

(BS1, BS2 and BS3). The completeness was close to 100% for all the studied cases in Figure 4, 18 

although again RSP presented a slightly better rate of matching points than PCI. 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 
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 1 
Figure 2. DSMs corresponding to the three subareas (samples) of greenhouse land cover (GH1, GH2 and GH3). First 2 
column: Original LiDAR (first and single returns). Second column: PCI derived DSMs from WV2 (1 m grid spacing) 3 
and WV3 (0.6 m grid spacing) stereo pairs. Third column: RSP derived DSMs from WV2 (1 m grid spacing) and WV3 4 
(0.6 m grid spacing) stereo pairs. 5 
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Figure 3. DSMs corresponding to the three subareas (samples) of urban areas (UR1, UR2 and UR3). First column: 2 
Original LiDAR (first and single returns). Second column: PCI derived DSMs from WV2 (1 m grid spacing) and WV3 3 
(0.6 m grid spacing) stereo pairs. Third column: RSP derived from WV2 (1 m grid spacing) and WV3 (0.6 m grid 4 
spacing) stereo pairs. 5 
 6 
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Figure 4. DSMs corresponding to the three subareas (samples) of bare soil land cover (BS1, BS2 and BS3). First 2 
column: Original LiDAR (first and single returns). Second column: PCI derived DSMs from WV2 (1 m grid spacing) 3 
and WV3 (0.6 m grid spacing) stereo pairs. Third column: RSP derived DSMs from WV2 (1 m grid spacing) and WV3 4 
(0.6 m grid spacing) stereo pairs. 5 

 6 

 7 

 8 

 9 
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5.2.DSM completeness 1 

In this section we analysed the DSM completeness from a statistical point of view. Table 3 shows 2 

the completeness scores computed for all the 12 studied cases (i.e., three land covers, two sensors 3 

and two software packages). It should be noted that three samples for each case were considered 4 

(i.e., 36 VHR satellite derived DSMs). In order to summarize the results, the mean, maximum and 5 

minimum values of completeness are shown in Table 3. From the global statistical analysis of the 6 

completeness values using Kruskal-Wallis H test, it can be concluded that both land cover and 7 

software package factors turned out to be significant (p<0.05).   8 

The land cover was the main contributing factor, presenting a partial eta-squared statistic (ηp
2) of 9 

64.18%, meaning that 64.18% of the completeness variance is statistically explained by the land 10 

cover factor. The best completeness score (p<0.05) was achieved for bare soil with a mean value for 11 

the 12 cases shown in Figure 4 of 99.25%. The other two land covers did not present statistical 12 

significant differences (p<0.05) with respect to mean values of completeness for the 12 DSMs 13 

shown in Figures 2 and 3 (mean completeness value of 85.69% for Greenhouse land cover and 14 

79.09% for Urban land cover). Aguilar, Saldaña and Aguilar (2014), in their previous study by 15 

using PCI software, reported DSM completeness values over urban areas of 63.23% and 78.83% 16 

working from GeoEye-1 and WV2 stereo pairs respectively. In the current study DSM 17 

completeness values by applying PCI provided scores of 65.55% and 66.39% from WV2 and WV3 18 

stereo pairs respectively (Table 3).  19 

Turning to the global statistical analysis, the portion of variance explained by the software package 20 

turned out to be much lower (ηp
2=26.36%). In this regards, the DSMs generated by RSP yielded a 21 

completeness mean value of 95.62%, whereas the DSMs produced through PCI software achieved a 22 

mean value of 80.40%. Overall, the improvement completeness by using RSP software package 23 

instead of PCI was about 2%, 18% and 26% for bare soil, greenhouses and urban areas respectively. 24 

When per-class statistical analysis of completeness focusing on each land cover was performed, the 25 

software package factor proved to be significant (p<0.05), with similar ηp
2 values of around 75.60% 26 
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for each land cover studied. However, the difference in mean completeness values due to the 1 

software was very small for bare soil, while comparatively it was much more important in urban 2 

and greenhouse areas. In Table 3, mean values of completeness in the same column followed by 3 

different superscript letters are indicating significant differences at p<0.05. Therefore, the four 4 

completeness scores attained on bare soil land cover for each combination of sensor and software 5 

were not significant since all the values were followed of the same “e” letter. In the case of 6 

greenhouse and urban land cover, RSP completeness values turned out to be significant better than 7 

PCI for the same land cover and sensor (Table 3). According to Alobeid, Jacobsen and Heipke 8 

(2010), area-based matching algorithms (e.g., PCI software) usually present problems to generate 9 

clear building outlines on urban areas, while the SGM algorithm (e.g., RSP) achieves better results 10 

on the roof structures and boundaries.   11 

Regarding sensor factor, the ηp
2values were of 2.11%, 3.72% and 18.88% for bare soil, urban and 12 

greenhouse respectively. It is important to note that completeness values were only affected by the 13 

type of sensor in the case of greenhouse land cover, although statistical analysis revealed that this 14 

effect was quite moderate (p<0.15). The completeness was always worse for WV3 (Table 3) in the 15 

case of the greenhouse land cover. It was mainly attributed to the stereo pairs viewing geometry and 16 

its relationship with the sun position. In certain situations, the plastic cover of the greenhouses may 17 

induce specular reflection of sun light, thus causing unusually bright pixel digital values (sun glint 18 

effect). This effect contributes to increase the number of missing image matching points. In that 19 

sense, the viewing geometry of the WV3 stereo pair produced much more greenhouses affected by 20 

glint than WV2. In fact, the two images composing the WV3 stereo pair were collected just in front 21 

of the sun position (see satellite and sun azimuth in Table 1), while the WV2 images left the sun on 22 

their back (Table 1). 23 

 24 
 25 
 26 
 27 



19 
 

Table 3. Mean and range of values (maximum and minimum) of completeness attained from the three samples per land 1 
cover. Different superscript letters between data along Completeness column indicate significant differences at a 2 
significance level p<0.05. 3 

Land Cover Sensor Software Completeness (%) Max. (%) - Min. (%)  

Greenhouse 

WV2 
PCI 82.53b 86.00 - 76.42 

RSP 97.92de 99.06 - 95.66 

WV3 
PCI 70.83a 75.42 - 67.42 

RSP 91.49cd 92.18 - 90.40 

Urban 

WV2 
PCI 65.55a 67.49 - 63.97 

RSP 94.83cde 95.57 - 93.40 

WV3 
PCI 66.39a 69.21 - 63.67 

RSP 89.59c 90.80 - 87.19 

Bare Soil 

WV2 
PCI 97.83de 98.85 - 96.75 

RSP 99.94e 100.00 - 99.82 

WV3 
PCI 99.27e 99.40 - 99.17 

RSP 99.97e 99.99 - 99.94 

 4 

 5 

The relationship between DSM completeness and the glint effect over greenhouse plastic cover is 6 

shown in Figure 5. In this figure, the WV2 and WV3 DSMs produced by using PCI software 7 

package are depicted alongside the original PAN images from both stereo pairs for the GH2 8 

subarea. The red ellipses highlight greenhouses presenting visible radiometric anomalies due to 9 

glint effect in one of the stereo pair images, thus causing matching errors. However, and when the 10 

greenhouses also present extreme values of digital number because they are painted white (plastic 11 

sheets may be painted white during summer to protect plants from excessive radiation and to reduce 12 

the heat inside the greenhouse), the matching algorithm works well. These painted greenhouses are 13 

marked in blue ellipses in Figure 5 and there are no radiometric changes in the stereo pair images. It 14 

is important to bear in mind the geometric configuration between the sun and sensor positions when 15 

the satellite image is acquired. Wulder et al. (2008) reported important changes in shadow size and 16 

orientation due to the interaction of sun position and VHR satellite geometry, resulting in 17 

inconsistent classification over different scenes.  18 
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WV2 DSM PCI 

 
WV2 Image 1 WV2 Image 2 

WV3 DSM PCI 
 

WV3 Image 1 WV3 Image 2 

Figure 5. Influence of glint effect over greenhouse plastic cover in relation to DSM completeness at GH2 subarea (600 1 
m x 600 m). WV2 DSM produced by PCI and the original PAN images from WV2 stereo pair are shown in the first 2 
row. WV3 DSM produced by PCI and the original PAN images from WV3 stereo pair are shown in the second row. 3 
Blue ellipses mark greenhouses painted white and red ellipses highlight greenhouses presenting glint changes.  4 

 5 

 6 

5.3. DSM vertical accuracy 7 
 8 

DSM vertical accuracy assessment results (Mean, SD, RMSE and LE95) corresponding to each 9 

land cover, sensor and software packages when all the points from the manually edited LiDAR 10 

DSMs were employed as ICPs and all z-residuals considered (Total z-residuals) are depicted in 11 

Table 4. The land cover was the only statistically significant factor (p<0.05) when random errors 12 

were assessed following a global statistical analysis through the Kruskal-Wallis test including all 13 

the 36 cases. Very similar and high values of ηp
2 were obtained for RMSE (87.34%), SD (88.34%) 14 

and LE95 (88.34%). For instance, significant (p<0.05) mean SD values (12 cases) of 0.89 m, 2.17 15 

m and 0.23 m were achieved for greenhouse, urban and bare soil areas respectively. As for global 16 

statistical analysis related to systematic errors, measured as mean or bias values, the land cover (ηp
2 17 

= 18.86%) and sensor (ηp
2 = 12.83%) turned out to be significant (p<0.05) factors, although this 18 
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parameter presented a very high uncertainty. It is worth noting that the software package did not 1 

show any influence in the global accuracy assessment for both random and systematic errors despite 2 

that RSP presented far better completeness values than PCI. 3 

Focusing on the 12 DSMs corresponding to the bare soil land cover in Figure 4, only the sensor 4 

factor for SD was pointed out significant (p<0.05) with a ηp
2 value of 39.39%. In the case of bare 5 

soil land cover, the DSMs generated by WV3 presented significantly better accuracy in terms of SD 6 

(0.20 m) than in the case of WV2 (SD = 0.26 m). However, this improvement could not be 7 

confirmed when working with RMSE or LE95. Worse SD values of 0.40 m and 0.53 m were 8 

attained by Aguilar, Saldaña and Aguilar (2014) over bare soil areas from GeoEye-1 and WV2 9 

stereo pairs respectively. Shean et al. (2016) and Noh and Howat (2015) achieved around 10 

approximately 0.21 m vertical RMSE with WorldWiew-1 and WV2 stereo pairs in glaciated 11 

regions, and in both cases removing the offsets through co-registration. A small error in planimetric 12 

coordinates between LiDAR data and the photogrammetrically derived DSM (incorrect co-13 

registration) can lead to a systematic shift in height (Z coordinate). This can easily be spotted by 14 

visual analysis of the value of the residual over the area to check for spatial patterns which 15 

reproduce geomorphology of terrain or features (see for example the Figure 3f published by 16 

Aguilar, Saldaña and Aguilar (2014)). It is worth mentioning that a finer co-registration process 17 

could have been carried out in our work. 18 

Regarding the partial accuracy assessment statistical analysis over the unique greenhouse land cover 19 

(12 DSMs in Figure 2), significant differences (p<0.05) were only achieved for the software 20 

package factor in the cases of RMSE and LE95. In both measures, PCI yielded better accuracy 21 

values (RMSE = 0.85 m and LE95 = 2.07 m) than RSP (RMSE = 1.16 m and LE95 = 2.69 m). It is 22 

important to bear in mind that RSP presented higher completeness in DSM generation than PCI, 23 

especially for greenhouse and urban areas. Thus, the worse vertical accuracy results attained over 24 

greenhouses in the case of RSP seem to point to the fact that RSP is incurring a commission error 25 

when working on difficult-to-match image areas (i.e., some greenhouse roofs presenting glint effect 26 
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or very transparent plastic cover). This hypothesis is supported by the fact that both software 1 

packages did not show any accuracy differences over bare soil land cover with similar completeness 2 

and without glint or transparency problems. 3 

Table 4. Vertical accuracy (Mean, SD, RMSE and LE95) computed on the all ICPs. All the depicted values are mean 4 
values corresponding to three samples for each land cover. Minimum and Maximum values for the three samples are 5 
depicted in brackets and italic font for Mean and SD. Different superscript letters between data along the same column 6 
indicate significant differences at a significance level p<0.05.  7 

Land Cover Sensor Software Mean (m) SD (m) RMSE (m) LE95 (m) 

Greenhouse 

WV2 
PCI -0.08 (-0.31, 0.11) 0.81ab (0.70, 0.94) 0.83ab 2.03a 

RSP -0.11 (-0.47, 0.34)  1.10abc (0.93, 1.30) 1.16abc 2.83abc 

WV3 
PCI -0.21 (-0.41, -0.02) 0.82ab (0.71, 1.03) 0.86ab 2.12a 

RSP -0.47 (-0.92, 0.34) 0.84ab (0.80, 0.87) 1.16abc 2.54ab 

Urban 

WV2 
PCI 0.10 (-0.04, 0.22) 2.12cd (1.74, 2.73) 2.12cd 5.21cd 

RSP -0.27 (-0.61, -0.07)  2.92d (2.32, 3.66) 2.95d 7.23d 

WV3 
PCI -0.41 (-0.54, -0.32) 1.89bcd (1.43, 2.72) 1.94bcd 4.83bc 

RSP -0.54 (-0.77, -0.27) 1.75bc (1.31, 2.73) 1.85bc 4.62bc 

Bare Soil 

WV2 
PCI 0.23 (0.19, 0.32) 0.25a (0.22, 0.29) 0.34a 0.67a 

RSP -0.03 (-0.08, -0.01)  0.28a (0.23, 0.31) 0.28a 0.56a 

WV3 
PCI 0.07 (-0.20, 0.32) 0.21a (0.17, 0.25) 0.30a 0.57a 

RSP -0.08 (-0.32, 0.10) 0.20a (0.14, 0.23) 0.26a 0.48a 

 8 

In the case of urban subareas depicted in Figure 3, none of the vertical accuracy statistics led to 9 

significant (p<0.05) for both sensor and software factors. As in the previous case, PCI presented 10 

better accuracy values than RSP for the WV2 stereo pair. However, in the case of WV3, RSP had a 11 

slightly better performance in terms of SD, RMSE and LE95. RMSE and SD values resulted to be 12 

significantly better at 0.10 signification level for WV3 (RMSE=1.90 m and SD=1.82 m) than in the 13 

case of WV2 (RMSE=2.53 m and SD=2.52 m). In view of these figures, it seems that the better 14 

GSD of the WV3 DSMs yielded better vertical accuracy results in very uneven urban land cover. 15 

Using a similar methodology on GeoEye-1 and WV2 stereo pairs Aguilar, Saldaña and Aguilar 16 

(2014) achieved SD values over urban areas located in Southern Spain of 2.67 m and 2.74 m. On 17 

the other hand, Poli et al. (2015) reported higher vertical RMSE values on urban areas ranging from 18 
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6.1 m to 8.5 m by using GeoEye-1, WV2 and Pléiades-1A stereo images, although they tested the 1 

accuracy of filled DSMs (i.e., areas without successful matching 3D points were interpolated). Di 2 

Rita, Nascetti and Crespi (2017) compared two software packages in urban areas (DATE, based on 3 

SGM and PCI) to produce DSMs from Pléiades-HR and GeoEye-1 stereo pairs. Although they 4 

worked with the filled DSMs, the obtained accuracy statistics were quite similar, with slight better 5 

performances of DATE with Pléiades and of PCI with GeoEye-1. 6 

Finally, if a statistical analysis is performed for the values depicted in the columns of Table 4, we 7 

can conclude that there was no difference (i.e., no superscript) between systematic errors or Mean 8 

values. Regarding random errors, the best accuracy attained for bare soil land cover, WV3 and RSP 9 

(e.g., SD=0.20 m) was not significantly different of the rest of accuracy values computed for bare 10 

soil and greenhouse land cover because all these figures are followed of the letter “a” (Table 4). The 11 

random errors for urban land cover without letter “a” in Table 4 were significantly worse than for 12 

bare soil.        13 

 14 
Table 5. Vertical accuracy assessment (Mean, SD, RMSE and LE95) restricted to only common ICPs with z-residuals 15 
in each subarea. All the depicted values are mean values corresponding to three samples for each land cover. Minimum 16 
and Maximum values for the three samples are depicted in brackets and italic font for Mean and SD. Different 17 
superscript letters between data along the same column indicate significant differences at a significance level p<0.05. 18 

Land Cover Sensor Software Mean (m) SD (m) RMSE (m) LE95 (m) 

Greenhouse 

WV2 
PCI -0.09 (-0.30, 0.09) 0.76ab (0.67, 0.87) 0.78ab 1.87ab 

RSP -0.22 (-0.48, 0.13) 0.76ab (0.66, 0.82) 0.83abc 1.85ab 

WV3 
PCI -0.20 (-0.40,-0.00) 0.72ab (0.64, 0.88) 0.77ab 1.87ab 

RSP -0.50 (-0.92, 0.20) 0.58ab (0.50, 0.67) 0.91abc 1.77ab 

Urban 

WV2 
PCI 0.07 (-0.09, 0.16) 1.68c (1.37, 2.27) 1.69c 4.24c 

RSP -0.02 (-0.09, 0.16) 1.67c (1.32, 2.35) 1.68c 4.30c 

WV3 
PCI -0.16 (-0.38, 0.10) 1.46bc (1.06, 2.11) 1.49bc 3.84bc 

RSP -0.33 (-0.67, -0.13) 1.31bc (0.92, 1.96) 1.39bc 3.54bc 

Bare Soil 

WV2 
PCI 0.23 (0.18, 0.32) 0.24a (0.22, 0.28) 0.34a 0.66a 

RSP -0.03 (-0.07, -0.01) 0.26a (0.21, 0.30) 0.26a 0.53a 

WV3 
PCI 0.07 (-0.20, 0.31) 0.20a (0.16, 0.24) 0.29a 0.56a 

RSP -0.08 (-0.32, 0.10) 0.19a (0.13, 0.23) 0.25a 0.47a 

 19 
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So far, the statistical analysis on vertical accuracy of VHR satellite DSMs, especially on greenhouse 1 

and urban land covers, varied with their differences in completeness. In order to avoid this 2 

dependence and ensure a fair comparison, a second strategy was conducted. Table 5 shows the 3 

results for the DSM vertical accuracy assessment (Mean, SD, RMSE and LE95) by using only the 4 

Common ICPs (see Table 2) producing z-residuals in each subarea. Values in each column followed 5 

of different superscript letters presented significant differences (p<0.05). The application of this 6 

strategy provided much clearer and more conclusive results. In fact, the systematic errors were not 7 

significant (p<0.05) for any factor, and the random errors turned out to be significant at 0.05 level 8 

only for the land-cover factor. In that way, the best global SD mean values computed on 12 cases 9 

were obtained for bare soil (SD=0.22 m), followed by greenhouse (SD=0.71 m), and finally, urban 10 

areas (SD=1.53 m).      11 

The results for the bare soil land cover were very similar to those aforementioned in Table 4. It is 12 

needed to bear in mind that the completeness values in this land cover were always very close to 13 

100%. Again the DSMs generated by WV3 yielded significantly (p<0.05) better accuracy only in 14 

terms of SD. Both software packages worked very well and without significant differences in 15 

vertical accuracies for this land cover.  16 

For greenhouse land cover, neither the sensor nor the software factors were significant at 0.05 17 

signification level for Mean, SD, RMSE or LE95. When the residuals were only computed in those 18 

LiDAR ICPs successfully matched by the two tested software (Common ICPs), overall, the vertical 19 

accuracy measures yielded better values. This fact was particularly important for RSP software 20 

package where, for instance, the SD value was improved around of 0.30 m. In the case of Common 21 

ICPs strategy, the vertical accuracy results for the two software packages studied were practically 22 

identical. Similar results were attained on urban land cover, where the software factor was analysed. 23 

Regarding the sensor factor, it is important to note that better accuracy values were achieved by 24 

using WV3 stereo pair instead of WV2 one mainly in urban areas. However, these differences were 25 

not significant (p<0.05). Agile VHR satellites such as WV2 and WV3, which are capable of 26 
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operating their on-track and cross-track view angles to reduce the revisit time, can produce imagery 1 

with suboptimal geometric configurations. In our case, the WV3 stereo pair was acquired with 2 

excessively high off-nadir angles of 22.2 and 32.7 degrees. Satellite imaging stereo geometry, 3 

measured as convergence angle (Li et al. 2007), plays a significant role in the final DSM vertical 4 

accuracy (Li et al. 2009; Aguilar, Saldaña and Aguilar 2014). Although the stereo pairs used in this 5 

work presented similar convergence angles of 35.8 and 32.1 degrees for WV2 and WV3 6 

respectively, the two WV3 images were located just in front of the sun, thus causing undesired glint 7 

effects over greenhouse plastic covers. This worse WV3 viewing geometry masked the expected 8 

improvements due to its better GSD. 9 

Poli et al. (2015) reported that in urban areas characterized by small adjacent units and narrow 10 

streets, the height of the roofs was estimated quite well in the image-based DSMs, but the height of 11 

narrow streets between buildings was overestimated (photogrammetric DSM above LiDAR data), 12 

as narrow streets were not visible in the stereo pairs due to occlusion effects or dark shadows. These 13 

authors suggested that these problems may be limited by using stereo triplet of VHR satellite 14 

imagery including a nadir scene. This strategy could be also recommended for improving the DSM 15 

quality (accuracy and completeness) in greenhouse land cover. By having the same greenhouse 16 

captured in a large number of images, the probability to find insolvable glint problems would be 17 

smaller. 18 

In a previous work published by Fratarcangeli et al. (2016) working with ZiYuan-3 optical satellite 19 

imagery (GSD ranging from 2.1 m to 3.7 m), the DSMs extracted with PCI software package on 20 

urban and mountain areas presented better vertical accuracy than the DSMs generated by using a 21 

software package based on SGM (DATE). However PCI yielded worse completeness than DATE. 22 

These findings seem to point out that SGM algorithm improves DSM quality basically by 23 

increasing the success matching ratio, thus improving DSM completeness.    24 

 25 

 26 
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6. Conclusions 1 

 2 

To the best of our knowledge, this work provides the first comparison supported by a rigorous 3 

statistical study between two widely applied image matching methods to generate DSMs from VHR 4 

satellite stereo pairs. In fact, a classical area-based least squares with hierarchical subpixel mean 5 

normalized cross correlation matching method (PCI) and a modified hierarchical SGM method 6 

(RSP) are tested in order to extract DSMs from WV2 and WV3 VHR satellite stereo pairs. The 7 

software packages performance was mainly studied on the unique agricultural plastic greenhouse 8 

land cover, although also bare soil and urban land covers were investigated. The DSM quality was 9 

statistically analysed in terms of completeness and vertical accuracy.    10 

The SGM algorithm included within RSP software improved DSM quality by means of increasing 11 

the success matching ratio. Indeed, the DSM completeness resulted to be significantly (p<0.05) 12 

better for every land cover when RSP was used, yielding improvements as compared to PCI of 13 

approximately 2%, 18% and 26% for bare soil, greenhouses and urban areas respectively. 14 

Regarding vertical accuracy, no significant differences were found with regards to the matching 15 

algorithm used. 16 

The target land cover was the most influential factor for both completeness and vertical accuracy of 17 

the extracted DSMs. Bare soil was the terrain type with better completeness value (99.25%) and 18 

vertical accuracy (SD=0.22 m). Plastic greenhouses presented better, although non-significant, 19 

completeness (85.69%) than urban land cover (79.09%). Regarding vertical accuracy, greenhouse 20 

land cover had significant better values than urban areas with SD values of 0.71 m and 1.53 m 21 

respectively. 22 

The DSMs extracted from the stereo pairs of WV2 and WV3 had a similar quality at 0.05 23 

signification level for accuracy and completeness. Overall, the DSM accuracies were slightly better 24 

in the case of WV3. In the case of completeness, the values for WV3 were worse than the WV2 25 

ones only in the greenhouse land cover. The greenhouse plastic covers may produce specular 26 

reflection of sun light causing glint effect. In that way, the viewing geometry of our WV3 stereo 27 
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pair produced much more greenhouses affected by glint than WV2 one because of the two images 1 

from the WV3 stereo pair were collected just in front of the sun position, while the WV2 images 2 

left the sun on their back. Bearing in mind the importance of the satellite viewing geometry and its 3 

relationship with the sun position in the greenhouse land cover, the use of stereo triplet on this 4 

unique landscape could be considered a good strategy in order to improve the DSM quality in terms 5 

of both accuracy and completeness. 6 

 7 
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