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Abstract
A family of 26 non-parametric texture descriptors based on Histograms of Equivalent 
Patterns (HEP) has been tested, many of them for the first time in remote sensing applications, 
to improve urban classification through object-based image analysis of GeoEye-1 imagery. 
These HEP descriptors have been compared to the widely known texture measures 
derived from the gray-level co-occurrence matrix (GLCM). All the five finally selected 
HEP descriptors (Local Binary Patterns, Improved Local Binary Patterns, Binary Gradient 
Contours and two different combinations of Completed Local Binary Patterns) performed 
faster in terms of execution time and yielded significantly better accuracy figures than 
GLCM features. Moreover, the HEP texture descriptors provided additional information 
to the basic spectral features from the GeoEye-1’s bands (R, G, B, NIR, PAN) significantly 
improving overall accuracy values by around 3%. Conversely, and in statistic terms, 
strategies involving GLCM texture derivatives did not improve the classification accuracy 
achieved from only the spectral information. Lastly, both approaches (HEP and GLCM) 
showed similar behavior with regard to the training set size applied.
Keywords: GeoEye-1, OBIA, texture, histograms of equivalent patterns.

Introduction
Since the first very high resolution (VHR) satellite called IKONOS was successfully 
launched in 1999, images with spatial resolutions less than 1 m are constantly acquired 
over the earth surface. GeoEye-1 (GE1) is currently the second world’s highest spatial 
resolution commercial Very High Resolution (VHR) Earth Observation satellite, 
in both panchromatic (PAN) and multispectral (MS) products. This optical satellite, 
successfully launched in late 2008, is able to capture images of the Earth surface with 
0.41 m (PAN) and 1.65 m (MS) ground sample distance (GSD) at nadir. GE1 can 
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simultaneously capture the PAN band (spectral range from 450 to 800 nm) and four 
MS bands such as Blue (B: 450 to 510 nm), Green (G: 510-580 nm), Red (R: 655-690 
nm) and Near Infrared (NIR: 780-920 nm). It is worth noting that the higher geometric 
detail of a PAN image and the useful color information of a lower resolution MS image 
(four bands) can be integrated to produce a final pan-sharpened MS image with high 
spatial resolution by applying image fusion techniques [Sarp, 2014; Nikolakopoulos 
and Oikonomidis, 2015].
With the availability of pan-sharpened VHR satellite imagery, classification of small 
scale manmade structures in urban environments have become of great interest. In 
the last decade, Object-Based Image Analysis (OBIA) has proved to be an effective 
approach to deal with this problem [Carleer and Wolff, 2006; Blaschke, 2010; Lu et 
al., 2010; Myint et al., 2011; Weng, 2012; Gianinetto et al., 2014]. OBIA does not use 
individual pixels but pixel groups representing meaningful segments (or objects), which 
have been segmented according to different criteria before the classification stage is 
carried out. At this point, and regarding remote sensing image analysis, it should be 
clearly stated that much of the work referred to as OBIA has been originated around the 
software known as eCognition (Trimble, Sunnyvale, California, United States). Indeed, 
about 50%-55% of the papers related to OBIA are based on this package [Blaschke, 
2010].
With the advent of VHR satellite imagery, real world objects or regions that were 
previously represented by only one or two pixels consist now of many pixels. Therefore, 
techniques that take into account the existing spatial relations between image pixels 
within an image region have good chance to improve classification accuracy. Texture 
analysis is one of the most interesting and extended approaches for extracting this 
spatial structure. In fact, texture analysis is playing an increasingly important role 
in remote sensing image processing, principally motivated by the fact that it can 
provide supplementary information about image properties. The applications of texture 
extraction in remote sensing image classifications can be traced back to 1970s [Li 
et al., 2014]. Perhaps the most popular and widely used approach to extract image 
textural information are the second order texture features based on the so-called gray-
level co-occurrence matrix (GLCM) proposed by Haralick et al. [1973]. The inclusion 
of texture features seems to significantly improve classification accuracy of satellite 
images [Puissant et al., 2005; Carleer and Wolff, 2006; Agüera et al., 2008; Murray 
et al., 2010; Ozdemira and Karnieli, 2011; Stumpf and Kerle, 2011; Eckert 2012; 
Longbotham et al., 2012; Aguilar et al., 2013, Gianinetto et al., 2014]. Many feature 
extraction algorithms based on the GLCM have been proposed in the literature. For 
example, the GLCM model has been recently extended to three-dimensional space 
through the volumetric GLCM (VGLCM) [Tsai et al., 2007; Su et al., 2014; Su et al., 
2015], which is specifically designed for multispectral or hyperspectral imagery. In 
addition to the classical GLCM, other techniques to extract spatial information have 
been proposed and tested in the literature, including Markov random fields [Lorette 
et al., 2000; Zhao et al., 2007], Gabor filters [Clausi and Deng, 2005; Bianconi and 
Fernández, 2007], fractals [Parrinello and Vaughan, 2002], Moran’s I [Su et al., 2008] 
or wavelet [Myint et al., 2004; Huang and Zhang, 2012].
Texture classification has rapidly evolved during the last 20 years and many new 
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approaches have been proposed. Several new texture descriptors such as Local Binary 
Patterns (LBP) [Ojala et al., 2002], Improved Local Binary Patterns (ILBP) [Jin et 
al., 2004], Binary Gradient Contours (BGC) [Fernández et al., 2011] or Completed 
Local Binary Patterns (CLBP) [Guo et al., 2010], have been described in literature. 
The vast majority of the new available descriptors have been presented in the field of 
computer vision and pattern recognition and many have never tested in remote sensing 
applications. Of these, LBP have received attention in recent years for the segmentation 
and classification of airborne or satellite imagery [Lucieer et al., 2005; Li et al., 2010; 
Mdakane and Van den Bergh, 2012; Musci et al., 2013; Li et al., 2015]. Also CLBP was 
tested by Malek et al. [2015] in a paper focused on palm tree detection from unmanned 
aerial vehicles images.
Recently Fernández et al. [2013] demonstrated that many of the texture descriptors which 
characterize a texture image through the probability of occurrence of the patterns associated 
to a neighborhood of given size and shape belong to a general framework for texture analysis 
which they referred to as the HEP (Histograms of Equivalent Patterns). The HEP is based 
on partitioning the feature space associated to image patches of predefined shape and size. 
The partition is based on a priori suitable local or global functions of the pixels’ intensities 
[Bianconi and Fernández, 2014].
As already stated, second-order statistics derived from the GLCM are the most popular 
texture descriptors used in remote sensing. Moreover, eCognition is considered a standard 
in OBIA software working with VHR satellite imagery. Therefore, the classification 
accuracy attained by means of GLCM derivatives computed and classified into eCognition 
environment can be considered as a benchmark for other texture descriptors. On that 
basis, the main contribution of this paper is the performance comparison, in terms of 
computation time and classification accuracy, of GLCM features (classical approach) 
and a set of HEP texture descriptors for supervised object-based classification. To the 
best of our knowledge, this is the first study in which the HEP framework is tested in 
remote sensing applications. In fact, many of the descriptors included in HEP had never 
been used in VHR satellite imagery classification. The interaction between the texture 
descriptors tested in urban environments from VHR GE1 imagery and the number of 
samples used for training the classifier (training set size) is also studied. In addition, it 
will be estimated the increase in classification accuracy that GLCM and HEP texture 
features extracted from the PAN channel can achieve when combined with basic spectral 
information contained in the R, G, B, PAN and NIR bands from both pan-sharpened and 
PAN images.

Study site
The study area comprises 17 ha in the seaside village of Villaricos, province of Almería, 
Southern Spain (Fig. 1). The working area is centered on the WGS84 coordinates 
(Easting and Northing) of 609,007 m and 4,123,230 m. Its urban landscape presents high 
heterogeneity, with mixing old buildings and new housing developments, and therefore 
represents a challenging dataset for object-based classification.
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Figure 1 - Location of the study site. The working area has been delimited by the red polygon. 
Coordinate system: WGS84 UTM zone 30N.

GeoEye-1 data
A map-projected GE1 Geo (now known as Ortho-Ready Standard) bundle image, 
simultaneously recording the PAN and the four MS bands, was acquired on 29 September 
2010. The original product presented an off-nadir viewing angle of 20.6º, 16 bits per pixel 
(without dynamic range adjustment) and a spatial resolution of 0.5 m and 2 m in PAN 
and MS mode respectively. The corresponding pan-sharpened image, presenting a 0.5 m 
GSD and containing the whole spectral information coming from the MS image (4-bands), 
was attained by using the PANSHARP algorithm included in Geomatica v. 2012 (PCI 
Geomatics, Richmond Hill, Ontario, Canada). Finally, three 0.5 m GSD orthoimages (two 
PAN with 8-bit and 16-bit dynamic range, and one 16-bit pan-sharpened orthoimage) were 
computed by using OrthoEngine, the photogrammetric module of Geomatica software. 
Both orthoimages were obtained through the Rational Function model with zero order 
transformation in image space by using very accurate ancillary data such as 7 ground 
control points (GCPs) measured by DGPS and a LiDAR (Light Detection and Ranging) 
derived digital elevation model (DEM). These orthoimages presented a two-dimensional 
root mean squared error (RMSE2D) of 0.46 m estimated from 75 independent check points 
[Aguilar et al., 2012].

Methodology
Image segmentation is a crucial step of OBIA that splits an image into separated and 
homogeneous regions or image objects (IOs) on which later process will be applied. For 
this task, a widely known multiresolution segmentation algorithm included in eCognition 
Developer 8 was used. For achieving the final segmentation, multiresolution algorithm 
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was applied in two steps. A scale value of 20 at pixel level was used for the first step 
and, secondly, a scale value of 70 was applied on the first segmentation level scale. The 
segmentation was always computed by taking into account the four equally-weighted bands 
corresponding to the pan-sharpened orthoimage. Furthermore, compactness criterion was 
assigned a weight of 0.5 and shape value was fixed at 0.3 (i.e. weight of color = 0.7).
The segmentation parameters were determined based on expert judgment and visual 
interpretation through trial-and-error. As a result, 2723 IOs which match well the feature 
boundaries of the main land covers within the study area were obtained [Aguilar et al., 
2013]. Therefore, segmentation step assured pure objects (i.e. grouping pixels belonging to 
an only class) to later classify them and assessing the final classification accuracy by using 
a ground truth also based on that segmentation.

Ground reference
A ground reference was carried out into GIS environment by careful visual inspection of 
separate data sources. More details can be found in Aguilar et al. [2013]. The IOs resulting 
from the segmentation process were manually checked and finally classified into nine target 
classes (Tab. 1), thereby generating the reference map. It is worth noting that the proposed 
accuracy assessment, based on the ground reference map, exactly matched the previously 
segmented IOs and so contributed to artificially removing the potential segmentation 
errors, i.e. extra pixels and lost pixels defined by Marpu et al. [2010]. In this sense, under-
segmentation (splitting up the image into too few objects) was avoided by discarding from the 
ground reference map those segments not being pure class IOs. By applying this rule, 1886 
out of the initial 2723 IOs were visually identified as meaningful objects (Tab. 1). A subset of 
941 well-distributed IOs were selected to carry out the training phase, whereas the remaining 
945 IOs, also evenly distributed within the working area, were taken aside to cope with the 
validation phase. Total surface areas occupied by IOs for each class over the final ground 
reference map, as well as their mean and standard deviation (SD), are also depicted in Table 1.

Table 1 - IOs after GE1 segmentation and manual classification related to the target classes.

Class No. IOs
Area (m2)

Validation IOs Training IOs
Total Area Mean SD

Red buildings 298 22217 74.55 51.62 149 149

White buildings 558 17034.25 30.53 37.57 279 279

Grey buildings 68 5279.5 77.64 57.11 34 34

Other buildings 55 3086.25 56.11 34.04 28 27

Shadows 477 21600 45.28 63.59 239 238

Vegetation 194 17192.5 88.62 88.13 97 97

Bare soil 93 15464 166.28 126.84 47 46

Roads 72 15720.5 218.34 161.99 36 36

Streets 71 7317.75 103.07 109.06 36 35
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The manually assigned reference map including both training and validation subsets (i.e. 
1886 IOs) based on previous segmentation is shown in Figure 2a, where the four classes 
related to buildings (i.e. red, white, grey and others buildings) are presented as only one 
aggregated class named Buildings. It should be noted that both the IOs used as training 
samples (Fig. 2b) and those employed to carry out the accuracy assessment were always 
meaningful object.

Figure 2 - Manually assigned reference map including (a) both training and validation subsets 
and (b) map depicting the distribution of the IOs used as training samples.

Classifier and selection of training areas
The classification algorithm based on the Nearest Neighbour (NN) rule is simple to 
implement and generally performs good results with carefully chosen features. Thus, all 
the classification tests were carried out by using the NN rule for both GLCM and HEP 
according to the pursued goal of comparison purpose.
On one hand, the classical tests involving GLCM, including classification stage, were 
entirely computed within eCognition Developer 8. The NN classifier implemented in 
eCognition uses a fuzzy approach defined by membership functions [Baatz et al., 2004]. 
It returns a membership value of between zero and one based on the image object feature 
space distance to its nearest neighbor. The membership value takes a value of one if the 
train and test feature vectors are coincident. Otherwise the membership value is computed 
considering the separation to the nearest training samples [Definiens, 2009]. On the second 
hand, the 1-NN with L1 distance classifier implemented in MATLAB® R2008b is used to 
test the HEP descriptors.
Regarding the training areas, four random repetitions each containing 5, 10, 15 and 20% of 
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the total number of IOs were extracted from the whole training subset, resulting in a total 
of 16 training sets [Aguilar et al., 2013]. Table 2 depicts the number of IOs chosen for the 
classifier training stage.

Table 2 - Number of IOs used for training regarding training size and target class (four 
replicates for every training set).

Class 5% Training 10% Training 15% Training 20% Training

Red buildings 15 30 45 60

White buildings 28 56 84 112

Grey buildings 4 7 11 14

Other buildings 3 6 11 15

Shadows 24 48 72 96

Vegetation 10 20 30 39

Bare soil 5 10 14 19

Roads 4 8 11 15

Streets 4 8 11 15

GLCM texture descriptors tested
In most practical remote sensing applications involving VHR satellite images only GLCM 
derivatives are used as texture descriptors. Thus, in order to have a benchmark for other 
texture descriptors we decided to run the whole process of computing GLCM and classifying 
the image into eCognition environment.
Second-order statistics derived from the GLCM describe changes in gray-level values 
of pixels and relationships between pixel pairs in a given area [Haralick et al., 1973]. 
Regarding pixel-based analysis, texture is extracted from moving windows what can 
produce boundary problems. That is, windows can straddle the boundary between two 
landscape features and potentially different textures [Ferro and Warner, 2002]. However, 
when texture is calculated from segmented imagery, the boundary problem is minimized 
because the segments are relatively homogenous and texture is calculated for all pixels 
belonging to an image object.
In this study only five out of the 14 GLCM texture features originally proposed by Haralick 
et al. [1973] were considered, due to both the strong correlation frequently reported 
between many of them [Baraldi and Panniggiani, 1995; Laliberte and Rango, 2009] and 
their large computational burden. The five selected features were contrast (CON), entropy 
(ENT), mean (MEAN), standard deviation (SD) and correlation (COR). The same subset 
of GLCM texture features was selected by Stumpf and Kerle [2011] working on a similar 
OBIA workflow.
In eCognition software, Haralick texture features are calculated for all pixels contained in an 
image object. Pixels directly bordering the image object (surrounding pixels with a distance 
of 1) are additionally taken into account to reduce border effects. Rotation-invariant GLCM 
features are achieved by summing up the four directional matrices (i.e., 0°, N-S, 45° ,NE-
SW, 90°, E-W and 135°, SW-NE). All the five GLCM features were computed from the 
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16-bit PAN GE1 orthoimage owing to it would be probably the way followed by a common 
user. Anyway, the calculation of GLCM textures in eCognition is independent of the data 
bit-depth due to the fact that the dynamic range is interpolated to 8-bit before evaluating the 
co-occurrence matrix. All available information about how eCognition computes texture 
after Haralick can be found in Definiens [2009].

HEP texture descriptors tested
The HEP family represents in this work a set of alternative texture descriptors to the classical 
GLCMs. In order to understand the basic concept of HEP framework, the reader should be 
in mind that the texture structure of an image can be attained by detecting different grey-
scale patterns, the probability of which can be estimated through a histogram. In this way 
and for the sake of clarity, the following example is presented. The number of different 
3×3 grey-scale patterns would be 2569 considering an 8-bit PAN image. In this case, the 
ultra-high dimensional histogram would provide an unreliable estimation of the underlying 
texture structure. In this regard, any method belonging to the HEP deals with this problem 
by, firstly, defining a partition of the pattern space into classes of equivalent patterns being 
the number of classes equal to the dimensionality of the method, and, secondly, by merging 
the histogram bins of the equivalent ones [Fernández et al., 2013]. So, every HEP descriptor 
will be based in a suitable function f (the kernel function) in order to reduce the dimension 
of the histogram patterns. Details of some HEP descriptors can be found below.
For example, in the 3×3 domain (Eq. [1]) the Local Binary Patterns (LBP) operator [Ojala et al., 
2002] thresholds the eight peripheral pixels of the neighbourhood, Ij (j ∈ {0, 1, . . . , 7}) at the 
value of the central pixel, Ic, thus defining a set of 28 possible binary patterns, significantly 
reducing the aforementioned 2569 original patterns. In this case, Equation [2] shows the 
kernel function for LBP, being ξ(x) the binary thresholding function (Eq. [3]).
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Other HEP texture descriptor tested in this work is the first Binary Gradient Contours 
(BGC1) proposed by Fernández et al. [2011]. This descriptor is based on pairwise 
comparison of adjacent pixels belonging to a closed path traced along the periphery of the 
3×3 neighbourhood (hence the name contours). In the case of BGC1 the pixels that define 
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the path are: {0, 1, . . . , 7, 0} (Eq. [1]), therefore the corresponding couples from which the 
binary values are extracted are: {(0, 1), (1, 2), . . . , (7, 0)}. BGC1 generates (28 −1) possible 
different patterns, since the all 0s pattern is impossible by definition. The kernel function of 
BGC1 is reported in Equation [4].

f I IBGC
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j
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The improved local binary patters (ILBP) descriptor [Jin et al., 2004] are based on an idea 
similar to LBP, the only difference is that the whole 3×3 neighbourhood is thresholded by 
its average grey-scale value. This gives (29 − 1) possible binary patterns (the all 0s pattern 
is not possible by definition hence the −1). The kernel function is expressed in Equation 5 
where  is the average grey-scale value over the neighbourhood (Eq. [6]).
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On a different note, Completed Local Binary Patterns (CLBP) are actually combinations of 
the three basic operators such as CLBP_Sign (CLBP_S), CLBP_Magnitude (CLBP_M) and 
CLBP_Center (CLBP_C) described by Guo et al. [2010]. CLBP_S is just an alias for LBP, 
only changing the values of the binary thresholding function (Eq. [3]) for -1 when x < 0.
CLBP_C thresholds the central pixel at the average grey value of the whole image I( ), and 
therefore generates only two binary patterns. Bearing in mind that the whole image size 
is representing by a M×N matrix, the kernel function is shown in Equation [7], being I  
defined in Equation [8].
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CLBP_M considers the possible binary patterns that are defined by the absolute difference 
between the gray value of a pixel in the periphery and that of the central pixel when 
thresholded with a global parameter (Eq. [9]), where I  is the average value of the difference 
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in grey value between a pixel in the periphery and the central pixel (Eq. [10]).
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It is noteworthy that CLBP_MxC descriptor used in this work represents the combination 
of CLBP_M and CLBP_C, i.e., a joint 2D histogram is computed. In the same way, 
CLBP_S_MxC is the concatenation of CLBP_S and CLBP_MxC, i.e., first the histograms 
are calculated separately for later being concatenated together.
The HEP is a family of conceptually simple, easy to implement and reasonably fast 
texture descriptors. Fernández et al. [2013] described a general framework for texture 
analysis based on HEP including around 40 texture descriptors for 256 levels of digital 
number images and using a 3×3 square neighbourhood (the source code implemented 
in MATLAB® R2008b is available in http://webs.uvigo.es/antfdez/downloads.html). The 
unambiguous mathematical definition of the HEP descriptors carried out by Fernández 
et al. [2013] allowed us to test 26 non-parametric ones on our 8-bit PAN orthoimage 
from GE1 by using the aforementioned 1-NN with L1 distance classifier. After analyzing 
the first results, we selected five of the tested non-parametric texture descriptors: LBP, 
ILBP, BGC1, CLBP_MxC and CLBP_S_MxC, which have been conveniently explained 
throughout this section.

Fuzzy fusion of spectral and texture features for image object classification
The main goal of this section is to integrate the hypothetically complementary information 
provided by spectral and texture features to improve the final OBIA classification accuracy. 
In fact, combining information from different feature vectors or classifiers represents an 
important research line in the field of image classification [Kittler et al., 1998; Segl et al., 
2003; Permuter et al., 2006; Deselaers et al., 2010]. In theory, the integration of different 
and independent sources of information should improve the classification accuracy [Kittler 
et al., 1998]. In this sense, different sources of information are combined by voting rules, 
statistical techniques, belief functions, Dempster-Shafer evidence theory and other fusion 
schemes. It is beyond the scope of this paper the search of the best fusion scheme for our 
particular case. On the contrary, this section only tries to demonstrate that it is possible to 
significantly improve the final OBIA accuracy classification results by fusing the object 
information extracted from both spectral and texture features. Herein we investigated two 
different fusion strategies: 1) concatenation of features vector, and 2) fusion of a-posteriori 
class probabilities through Bayesian average. These two approaches are described here 
below.

http://webs.uvigo.es/antfdez/downloads.html
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1) Concatenation of feature vectors
This is the usual approach in remote sensing when the fused feature vectors present a low 
and similar dimension. This is the case of the fusion of the Haralick texture features and 
the basic spectral features used in this work (i.e. R, G, B, NIR and PAN bands from the 
GE1 orthoimages), where a NN supervised classification is carried out onto eCognition by 
simply concatenating the feature vectors. The following combinations were tested:
i) RGBNP_eCog (dimension=5): basic spectral features from GE1 imagery which refers to 
the mean DN values for every previously segmented object corresponding to the R, G, B, 
NIR and PAN bands;
ii) +GLCM_MEAN (dimension=6): fusion of the basic spectral features and GLCM Mean;
iii) +GLCM_SD (dimension=6): fusion of the basic spectral features and GLCM Standard 
Deviation;
iv) +GLCM_ENT (dimension=6): fusion of the basic spectral features and GLCM Entropy;
v) +GLCM_CON (dimension=6): fusion of the basic spectral features and the GLCM 
Contrast texture descriptor;
vi) +GLCM_COR (dimension=6): fusion of the basic spectral features and GLCM 
Correlation;
vii) +5_GLCMs (dimension=10): fusion of the basic spectral features and the five GLCM-
based texture descriptors.

2) Fusion of a-posteriori class probabilities through Bayesian average
It is not recommendable to concatenate HEP texture descriptors and spectral features due to 
the high dimension of HEP mappings (ranging from 255 to 768 for the five finally selected 
mappings) as compared to the low dimension of the spectral feature vector for GE1 (only 
five features corresponding to the spectral digital values of R, G, B, NIR and PAN bands). 
To overcome this problem we propose Bayesian averaging [Ruta and Gabrys, 2000]. 
The method can be applied to feature fusion provided that the output of the NN classifier 
is expressed as posterior probabilities. In this way, this means a fuzzy approach where it 
is necessary to estimate the posterior probabilities that an input object or segment with a 
feature vector X may belong to the target class wi (initially nine in our tests), i.e., P(X ∈ wi) 
for i=1 to M, being M the number of target classes. In our approach, posterior probabilities 
are computed through the inverse of L1 distance. This implies computing the L1 distance 
between every object to classify and the nearest training sample (1-NN approach) for each 
target class (di). A normalized kernel is applied to ensure that the membership values of 
each object to classify to belong to one of the target classes sum 1. Furthermore, a constant 
shift term (k = 0.05 in our case) is added to the L1 distance for avoiding singularities when 
the training sample and the object to classify present just the same feature vector and so the 
distance between them turns out to be zero (Eqs. [11] and [12]).
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These posterior probabilities are separately computed for every feature vector involved 
in the fusion process. Thus, a given input pattern extracted from an object receives L 
classification labels with posterior probabilities depending on the feature vectors used, 
being L the number of different feature spaces to be fused. In the context of expert fusion, 
it would be equivalent to fusing the opinion of several experts. The final classification 
is performed by applying the Bayesian average criterion, i.e., the object input pattern X 
is assigned to the target class for which P X waverage i∈( )  presents the maximum value 
according to the Equation [13].

P X w
L

P X waverage i
j

L

j i∈( ) = ∈ [ ]( )
=
∑1 13
1

; i=1 to M

The previously described Bayesian Average fusion scheme based on 1-NN L1 classifier 
was implemented in MATLAB®. In an analogous way to that used in the GLCM case, 
the following strategies to combine information from both the spectral and the previously 
mentioned group of five HEP texture descriptors were tested:
i) RGBNP_L1 (dimension=5): basic spectral features from GE1 imagery which refers to 
the mean DN values for every previously segmented object corresponding to the R, G, B, 
NIR and PAN bands;
ii) +BGC1 (dimension=5+255): fusion of spectral information and BGC1;
iii) +CLBP_S_MxC (dimension=5+768): fusion of spectral information and CLBP_S_
MxC;
iv) +CLBP_MxC (dimension=5+512): fusion of spectral information and CLBP_MxC;
v) +LBP (dimension=5+256): fusion of spectral information and LBP;
vi) +ILBP (dimension=5+511): fusion of spectral information and ILBP.

Classification and accuracy assessment
First of all, the texture descriptors belonging to GLCM and HEP were individually tested to 
carried out the supervised classification over the whole working area. The GLCM texture 
descriptors were totally computed and applied within eCognition environment, whereas the 
HEP methods were tested by using the aforementioned code implemented in MATLAB®. 
Later on, the different fusion strategies were also evaluated. The accuracy assessment was 
always conducted on the same 945 IOs (validation set) by means of the corresponding 
confusion matrices.
It is important to highlight that the four classes related to buildings (i.e. Red, White, Grey 
and Other buildings) were grouped in only one class named Buildings before computing 
the accuracy indexes explained below. Note that the class Buildings was the predominant 
class within the whole working area, presenting a percentage with respect to the manual 
classification surface of more than 38% (see Tab. 1).
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User’s Accuracy (UA), Producer’s Accuracy (PA) and Overall Accuracy (OA) were the 
accuracy values (based on error matrix) computed in this work [Congalton and Green, 
2009]. Furthermore, OA is the number of correctly classified objects divided by the total 
number of objects. Finally, the Fβ measure [Aksoy et al., 2010], which provides a way of 
combining UA and PA into a single measure, was also computed according to the Equation 
[14], where the parameter β determines the weight given to the accuracy computed as PA or 
UA. The value used in this study (β=1) weighs UA equal than PA.
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ββ
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Other important issue to be considered in the classification tasks, mainly when texture 
features are included and compared, is the required computing budget. In this sense, it 
is well known that the calculation of GLCM is very computationally intensive and time-
consuming, particularly working on high resolution large-size images. For this reason, it is 
important to evaluate the performance of each texture descriptor in terms of execution time. 
All the classification experiments carried out in this work were performed on a laptop PC 
equipped with INTEL® CORE™ i5 CPU 460M, 2.53 GHz, 4 GB RAM, and Windows XP 
Professional, Service Pack 3.

Statistical analysis
In order to study and compare the influence of factors such as texture descriptors tested and 
number of training samples on the final classification accuracy, several analysis of variance 
(ANOVA) tests were carried out by means of a factorial model with four repetitions 
[Snedecor and Cochran, 1980]. The observed variables were OA, PA, UA, Fβ, and the 
execution time. When the results of the ANOVA test turned out to be significant (p < 0.05), 
the separation of means was performed by applying the Duncan’s multiple range test at 
95% confidence level.

Results and discussion
Pre-Selection of HEP descriptors
The first step in this work was the pre-selection of the HEP descriptors which were going 
to be further examined. To this end, a one-way ANOVA test over 26 non-parametric texture 
mappings presented by Fernández et al. [2013] was performed.
Table 3 shows the comparison of mean values for OA attained by the different descriptors 
working on the 16 training sets. The five finally selected HEP texture descriptors (i.e. 
LBP, ILBP, BGC1, CLBP_MxC and CLBP_S_MxC shown in bold in Tab. 3) presented 
OA values better than 67.5% and relatively low dimensions ranging from 255 to 768. All 
of them had already achieved very good results on the eleven image datasets tested by 
Fernández et al. [2013]. However, and for the sake of contrasting the results provided in this 
work, further experiments should be undertaken to assess the performance of all the 26 HEP 
mappings on other VHR satellite images and other type of land covers.
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Table 3 - Overall accuracy (OA) for the 26 non-parametric texture descriptors belonging to the 
HEP family. OA values followed by different superscript letters indicate significant differences at 
a significance level p<0.05. The five finally selected HEP texture descriptors are presented in bold.

Name Acronym Dimension OA (%)

Combination completed local binary 
patterns (S+MxC)

CLBP_S_
MxC 768 76.01 a

Combination completed local binary 
patterns (MxC) CLBP_MxC 512 72.76 b

Combination completed local binary patterns 
(SxMxC) CLBP_SxMxC 131072 71.70 bc

Improved binary local patterns ILBP 511 71.13 cd

Coordinated clusters representation CCR 512 69.75 de

Texture spectrum (0) TS0 6561 68.97 ef

Improved binary gradient contours (1) IBGC1 510 68.92 ef

Combination completed local binary patterns 
(SxM) CLBP_SxM 65536 68.91 ef

Reduced texture units RTU 45 68.79 ef

Local binary patterns LBP 256 67.93 fg

3D Local binary patterns 3DLBP 1024 67.61 fgh

Binary gradient contours (1) BGC1 255 67.56 fgh

Median binary patterns MBP 511 67.46 fgh

Binary gradient contours (2) BGC2 225 67.14 gh

Binary texture co-occurence spectrum BTCS+ 16 66.42 gh

Grey level texture co-occurence spectrum GLTCS+ 24 66.23 h

Binary gradient contours (3) BGC3 255 66.21 h

Completed local binary patterns (M) CLBP_M 256 63.12 i

Gradient-based local binary patterns GLBP 256 58.41 j

Improved center-symetric local binary 
patterns (D) D-LBP 16 55.97 k

Improved center-symetric local binary 
patterns (ID) ID-LBP 16 54.36 l

Rank transform RT 9 52.19 m

Grey level differences GLD 256 32.79 o

Modified texture spectrum MTS 16 32.25 o

Sum and difference histograms SDH 4088 30.68 p

Simplified texture spectrum STS 81 30.26 p
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Table 3 confirms the results found by Fernández et al. [2013], namely that CLBP_S_MxC 
performs best among the non-parametric HEP methods, presenting an average OA of 
76.01%. In addition, the classification accuracy achieved by CLBP_S_MxC is significantly 
different (p<0.05) with respect to the one computed for the other descriptors (note that the 
OA value of CLBP_S_MxC in Tab. 3 is followed by the letter “a”, which is not repeated 
in any other value along it’s the same column). In this way, the OA mean value for CLBP_
MxC (72.76%) is not significantly different of the value estimated from CLBP_SxMxC 
(71.70%), as both values are showing at least one superscript letter in common (in this case 
the letter “b”).

Comparing single texture descriptors
Once the top ten texture descriptors have been chosen, five belonging to HEP family and five 
to GLCM, a one-way ANOVA statistic test was carried out to compare their performance. 
Table 4 shows the corresponding means separation test results (16 repetitions) regarding 
execution time and OA values for the ten descriptors finally selected. PA and UA values 
are also indicated, although only for the three most relevant classes (i.e. Building, Shadows 
and Vegetation).
Regarding execution time, it is worth noting that the GLCM features were significantly 
(p<0.05) more time-consuming than the HEP ones. In the case of HEP, execution time 
was clearly related to the dimension of each texture descriptor, being BGC1 and LBP the 
fastest.
As for the classification accuracy assessment, the five HEP descriptors yielded higher OA 
values than those based on GLCM, being CLBP_S_MxC the most statistically accurate 
(p<0.05) texture descriptor. All the Haralick’s texture features computed within eCognition 
environment achieved poorer OA results. In fact, only GLCM_MEAN presented OA 
mean values higher than 41%. In that way and working with IKONOS and QuickBird 
imagery, Musci et al. [2013] have already demonstrated that using LBP descriptors 
instead of GLCM features may be beneficial for some remote sensing applications.
With regard to PA and UA values computed for the three main target classes, again 
CLBP_S_MxC performed the best. The HEP descriptors attained very good accuracies 
figures, especially regarding Shadows and Buildings classes. GLCM_ENT, GLCM_COR, 
GLCM_STD and GLCM_CON mainly failed over Vegetation and Shadows classes, 
whereas GLCM_MEAN presented very poor accuracy in the case of Vegetation class.
As it was already reported by Guo et al. [2010], better texture classification accuracy than 
the state-of-the-art LBP algorithms can be obtained by fusing the CLBP_S, CLBP_M 
and CLBP_C codes, either in a joint or in a hybrid way. The ranking drawn up by 
Fernández et al. [2013] presented CLBP_S_MxC as the best texture descriptor of the 
five HEP mappings tested in this work, followed by ILBP, BGC1, LBP and CLBP_MxC 
respectively. However, CLBP_MxC was ranked as the second best descriptor according 
to our results (Tab. 4), indicating that the performance of a texture descriptor can vary 
depending on the nature of the image where is applied (spatial resolution, image quality, 
target classes, etc.). 
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Table 4 - Comparison of mean values for the global ANOVA regarding the execution time, 
overall accuracy (OA), producer’s accuracy (PA) and user’s accuracy (UA) for the ten texture 
descriptors finally selected. Values in the same column followed by different superscript letters 
indicate significant differences at a significance level p < 0.05. The best significant values for each 
column are presented in bold.

Texture 
descriptor

Time 
(s) OA (%)

Buildings Shadows Vegetation

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

GLCM_ENT 543.9 f 37.55 h 50.44 f 53.27 e 35.36 e 32.53 f 12.18 d 13.05 d

GLCM_COR 651.5 g 38.76 gh 54.63 e 54.30 e 29.19 f 28.60 g 18.04 cd 19.14 c

GLCM_SD 522.3 e 39.13 g 55.15 e 53.79 e 30.73 f 32.95 f 15.46 cd 16.23 cd

GLCM_CON 528.5 e 40.96 f 56.51 e 57.37 d 31.69 f 32.08 f 19.27 c 19.58 c

GLCM_MEAN 472.0 d 57.77 e 70.26 d 69.89 d 72.70 d 72.57 e 19.07 c 19.95 c

BGC1 62.9 a 67.56 d 76.90 bc 91.66 a 75.29 cd 82.67 c 47.10 b 46.00 b

LBP 63.9 a 67.93 d 74.68 c 90.51 a 77.85 c 80.45 d 55.93 a 45.62 b

ILBP 105.8 b 71.13 c 77.95 b 91.45 a 81.70 b 85.04 b 60.18 a 46.23 b

CLBP_MxC 111.4 b 72.76 b 81.63 a 83.24 c 90.06 a 86.40 b 47.68 b 69.04 a

CLBP_S_MxC 221.9 c 76.01 a 83.47 a 89.12 b 91.11 a 89.50 a 54.96 a 68.30 a

Table 5 reports the OA mean values and computation time for each possible combination 
of texture descriptor and training ratio (i.e. 5%, 10%, 15% and 20%). One can ascertain 
from the table that computation time is essentially independent of the training ratio for 
HEP features computed using the MATLAB code we specifically developed for this study. 
This is so because feature extraction and distance calculation take by far most of the 
computing time, whereas the contribution of nearest neighbour (1-NN) classification to 
computation time is negligible. However, and interestingly enough, the computing time 
shows approximately linear dependence on the training ratio when GLCM features are 
used and the whole OBIA process is performed within the eCognition environment. This 
dependency on the training ratio of eCognition computation time might be due to internally 
implemented optimization procedures which cannot be controlled by the user. On a different 
note, in general, all the tested descriptors improved their overall classification accuracy 
from using a larger training set, this fact only was statistically significant (p<0.05) in the 
case of BGC1 and LBP.
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Table 5 - Comparison of mean values regarding execution time and OA for each texture 
descriptor and training set. Values in the same row followed by different superscript letters 
indicate significant differences at a significance level p < 0.05.

Texture descriptor 5% training 10% training 15% training 20% training

GLCM_ENT
OA (%) 36.62 36.99 38.23 38.36

Time (s) 230.00 d 437.00 c 640.83 b 867.65 a

GLCM_COR
OA (%) 37.88 38.04 39.09 40.02

Time (s) 272.83 d 520.83 c 792.83 b 1019.40 a

GLCM_SD
OA (%) 38.75 38.75 39.44 39.59

Time (s) 221.23 d 412.78 c 627.83 b 827.30 a

GLCM_CON
OA (%) 40.83 40.57 41.81 40.65

Time (s) 223.23 d 429.84 c 621.40 b 839.70 a

GLCM_MEAN
OA (%) 57.33 56.62 58.61 58.83

Time (s) 197.55 d 375.03 c 562.25 b 753.27 a 

BGC1
OA (%) 64.81 b 67.99 a 67.57 a 69.89 a

Time (s) 62.92 62.93 62.94 62.94

LBP
OA (%) 66.18 b 67.91 ab 68.26 ab 69.37 a

Time (s) 63.93 63.93 63.93 63.93

ILBP
OA (%) 70.07 70.18 71.21 73.05

Time (s) 105.83 105.83 105.83 105.83

CLBP_MxC
OA (%) 70.87 72.55 73.55 74.08

Time (s) 111.43 111.43 111.44 111.45 

CLBP_S_MxC
OA (%) 75.11 75.21 76.76 76.97

Time (s) 221.93 221.93 221.94 221.95

Comparing fusion strategies
So far, the improvements in terms of computation time and classification accuracy of the 
HEP texture features, as compared to the GLCM derivatives tested in this work, have 
already been drawn by using the texture descriptors individually. However, in the field 
of remote sensing, spectral features may be more important than texture features, and in 
OBIA classifications, they are always employed together. Henceforth, the improvements 
regarding the final OBIA classification accuracy due to the potential complementary 
information added by the texture features to the spectral ones are going to be tested.
In this sense, Table 6 presents the means separation test results from one-way ANOVA (16 
repetitions) of OA computed from the different fusion strategies tested. It should be noted 
that there are two OA values when only the five features corresponding to the spectral 
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digital values of R, G, B, NIR and PAN bands from the GE1 othoimages were used. One 
of them was totally computed within eCognition environment (RGBNP_eCog), whereas 
the other one was carried out by using a MATLAB code (RGBNP_L1). Both approaches 
employed different NN classifier algorithms, as it was previously explained. In that sense, 
OA values of around 84% attained by these both methods did not present any significant 
difference. When the information coming from the GLCM texture descriptors was added to 
the spectral one by simple concatenation, any improvement in classification accuracy was 
detected. In fact, the OA results were significantly worse for +5_GLCMs, +GLCM_STD, 
+GLCM_COR and +GLCM_ENT strategies (values ranging from 81.52% to 82.21%), 
whereas any remarkable change was obtained by adding +GLCM_MEAN (84.20%) or 
+GLCM_CON (84.30%). On the other hand, significant improvements with respect to the 
OA values performed from only spectral features (RGBNP_L1) were achieved when fusing 
the spectral information and the textural one provided by the HEP descriptors by using the 
Bayesian criterion. In this case OA values ranging from 84.92% to 86.97% were achieved.

Table 6 - Comparison of mean values regarding overall accuracy (OA), producer’s accuracy 
(PA) and user’s accuracy (UA) for the different strategies tested to fuse texture and spectral 
features. Values in the same column followed by different superscript letters indicate significant 
differences at a significance level p < 0.05. For each column, statistically significant improvement 
values as compared to both RGBNP_L1 and RGBNP_eCog are presented in bold.

Fusion strategy OA (%)
Buildings Shadows Vegetation

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

+ 5_GLCMs 81.52 d 91.45 cde 89.57 gh 91.66 b 88.00 d 65.20 e 74.01 d

+ GLCM_SD 81.72 d 90.67 ef 88.74 h 90.12 bcde 90.22 bc 75.00 d 81.41 c

+ GLCM_COR 81.99 d 91.26 def 90.01fg 88.39 e 87.50 d 77.06 cd 86.22 b

+ GLCM_ENT 82.21 d 90.28 f 90.61 ef 89.23 de 87.25 d 75.64 d 86.95 b

RGBNP_L1 83.93 c 92.08 bcd 90.87 def 88.70 e 91.08 ab 82.67 ab 90.37 a

RGBNP_ eCog 84.16 bc 92.05 bcd 91.00 cdef 89.36 cde 91.48 ab 82.86 ab 89.81 a

+ GLCM_MEAN 84.20 bc 92.14 bcd 91.10 bcde 91.84 b 91.39 ab 79.96 bc 87.05 b

+ GLCM_CON 84.30 bc 92.51 abc 90.73 def 90.35 bcde 89.62 c 80.22 bc 90.19 a

+ BGC1 84.92 b 92.33 abcd 91.96 bc 91.11 bcd 91.13 ab 83.76 ab 90.46 a

+ CLBP_S_MxC 85.00 b 92.58 ab 91.75 bcd 91.29 bcd 91.74 a 83.38 ab 90.65 a

+ LBP 85.04 b 92.31 abcd 92.13 b 91.50 bc 91.14 ab 84.15 ab 89.90 a

+ CLBP_MxC 85.11 b 92.72 ab 91.37 bcde 91.95 b 92.06 a 83.05 ab 91.49 a

+ ILBP 85.12 b 92.41 abc 92.04 bc 91.50 bc 91.14 ab 84.09 ab 90.27 a

+ 5_HEPs 86.97 a 93.28 a 93.48 a 95.42 a 92.19 a 84.73 a 90.42 a
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However, the significantly (p<0.05) best overall classification accuracy was achieved by 
adding the five HEP descriptors to the information contained in the five spectral bands 
from the GE1 othoimages (+5_HEPs). For comparison purposes, an overall total extraction 
accuracy of 80% was observed by Sebari and He [2013] by means of an automatic fuzzy 
OBIA approach over IKONOS images for urban objects extraction.

Figure 3 - Detailed results of urban land cover classes on a subarea of 160 m 
× 160 m depicting: (a) multiresolution segmentation of GE1 pan-sharpened 
orthoimage (b) ground truth or validation set (c) classification of the validation 
IOs from using the fusion strategy + GLCM_MEAN corresponding to the fourth 
repetition with 20% of training set (d) classification of the validation IOs from 
using fusion strategy + 5_HEPs for the fourth repetition with 20% of training set.

A qualitative visual evaluation of the classification approaches fusing the spectral and 
textural information is presented in Figure 3 over a subarea of around 160 m × 160 m. Also, 
the performance of the segmentation process can be seen in Figure 3a. The classification 
results, referred to the IOs belonging to the validation set (Fig. 3b), are presented for the best 
combinations of GLCM and HEP attained by using the fourth repetition corresponding to 
the 20% of training size. In this way, + GLCM_MEAN (Fig. 3c) achieved an OA of 85.25% 
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whereas + 5_HEPs reached 89.04% (Fig. 3d). In the case of + 5_HEPs combination, the 
main errors in classification were observed in IOs which should belong to Buildings class 
but they were misclassified as Shadows. For + GLCM_MEAN case, the misclassification 
errors was more variable, affecting many classes. In this sense, a good strategy to improve 
the classification accuracy results in the case of + 5_HEPs approach could be to simply carry 
out a previous IOs classification based on spectral thresholds to extract Shadows objects.
In addition, Table 6 also includes the classification accuracy (PA and UA) for the three 
most important classes studied (Vegetation, Shadows and Buildings). The different fusion 
strategies including texture descriptors were not able to significantly improve the accuracy 
obtained for the Vegetation class (i.e. PA and UA) from only using the spectral features 
(Tab. 6). This fact is consistent with the results reported by Aguilar et al. [2013] where 
textures after Haralick were not able to improve vegetation classification accuracy only 
based on spectral features, neither for GE1 orthoimages nor for WorldView-2 ones. In 
contrast, Laliberte and Rango [2009] stated that the inclusion of texture measures based 
on GLCM increased classification accuracies for differentiating rangeland vegetation using 
OBIA techniques on unmanned aerial vehicles imagery. However, the optimal texture 
features were not stable, depending so far on the segmentation scales tested.
The results for the classification of vegetation class presented by Aguilar et al. [2013], 
also corresponding to the GE1 image tested in this work, reached values of 86.1% and 
90.1% for PA and UA respectively when employing normalized ratios such as the well-
known Normalized Difference Vegetation Index (NDVI) or the Normalized Difference of 
Blue band Index (NDBI). Notice that these scores were very close to the accuracy results 
achieved in this work by using the +5_HEPs strategy (Tab. 6).
Regarding Shadows class, three fusion strategies such as +5_HEPs, +CLBP_MxC and 
+GLCM_MEAN resulted in a statistically significant increase in the PA values with respect to 
those attained by only using spectral information (Tab. 6). It is well-known that texture features 
are a potentially powerful method for detecting Shadows as they are highly distinctive, do not 
depend on colors, and are robust to illumination changes. In fact, the Shadows classification 
in urban areas has been improved by using textural features based on GLMC as additional 
information [Su et al., 2008; Aguilar et al., 2013]. However, the accuracy attained by using 
+5_HEPs was significantly (p<0.05) the best for the Shadows class.
As regards Buildings, +5_HEPs and +LBP strategies managed to significantly increase the 
accuracy figures only based on spectral features (Tab. 6). Several authors reported that the 
most relevant feature for classifying Buildings from VHR satellite images turned out to be 
vertical information from laser scanning [Longbotham et al., 2012; Aguilar et al., 2013]. In 
that sense, mean values of 94% and 94.6% for PA and UA respectively were reported by 
Aguilar et al. [2013], working on the same GE1 orthoimages tested in this work, by only using 
basic spectral features, but adding elevation information from LiDAR data. Contributing with 
values of 93.28% and 93.48% for PA and UA respectively, the texture information contained 
in the +5_HEPs strategy tried out in this work was able to almost completely replace the lack 
of vertical information, which can be considered as a relevant finding.
The classification accuracy of the different fusion strategies was also studied with regard to 
the size of the training set (Tab. 7). As a general rule, the results turned out to be significantly 
better (p<0.05) by increasing the percentage of training from 5% to 20%. It is important 
to note that the expected classification accuracy is related to the training data used, mainly 



113

European Journal of Remote Sensing - 2016, 49: 93-120

size and quality [Foody and Mathur, 2006]. Although all the fusion strategies involving 
HEP descriptors achieved OA values higher than the benchmark set up from only spectral 
information, statistically significant improvements were only attained by using +5_HEPs 
on the training sets ranging from 10% to 20%. Conversely, and in statistic terms, strategies 
involving GLCM derivatives did not improve the classification accuracy achieved from 
only the spectral information.

Table 7 - Comparison of mean OA values for the different fusion strategies and training size. 
Values in the same row followed by different superscript letters indicate significant differences 
at a significance level p < 0.05. Different subscript letters within the same column indicate 
significant differences (p<0.05). For each column, statistically significant improvement values 
as compared to both RGBNP_L1 and RGBNP_eCog are presented in bold.

Fusion strategy
Overall Accuracy (%)

5% training 10% training 15% training 20% training

RGBNP_eCog 83.06 b 
abc 83.48 b 

bc 84.33 ab 
b 85.77 a 

bc

+ GLCM_ENT 80.85 b 
bcd 82.19 ab 

cd 82.75 ab 
c 83.04 a 

d

+ GLCM_COR 79.48 b 
d 82.33 a 

cd 82.48 a 
c 83.67 a 

d

+ GLCM_SD 80.32 b 
cd 81.27 ab 

d 82.72 a 
c 82.59 a 

d

+ GLCM_CON 82.85 b 
abc 84.12 ab 

b 84.91 ab 
b 85.33 a 

c

+ GLCM_MEAN 82.48 b 
abc 84.09 ab 

b 84.51 a 
b 85.72 a 

bc

+ 5_GLCMs 79.56 b 
d 81.35 ab 

d 82.48 a 
c  82.69 a 

d

RGBNP_L1 82.62 b 
abc 83.30 b 

bc 84.72 ab 
b 85.36 a 

bc

+ BGC1 83.75 b 
ab 84.46 b 

b 85.22 ab 
b 86.25 a 

bc

+ LBP 83.69 b 
ab 84.59 ab 

b 85.41 ab 
b 86.49 a 

bc

+ ILBP 83.74 b 
ab 84.64 ab 

b 85.57 ab 
b 86.51 a 

bc

+ CLBP_MxC 83.61 b 
ab 84.51 b 

b 85.59 ab 
b 86.72 a 

b

+ CLBP_S_MxC 83.59 b 
ab 84.22 b 

b 85.46 ab 
b 86.73 a 

b

+ 5_HEPs 85.01 c 
a 86.91 b 

a 87.39 ab 
a 88.57 a 

a

The larger training set size and the more consistent repetitions usually imply that the results 
can be analyzed in a better way. Therefore, Table 8 shows the classification accuracy in 
terms of Fβ for each target class by grouping the results corresponding to the 15% and 20% 
training sets, therefore using eight repetitions in the ANOVA statistic test. There was a clear 
trend to improve the classification accuracy achieved from only spectral features when 
using HEP texture descriptors for all the target classes with the exception of Vegetation. 
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However, the best and statistically significant values of Fβ were only attained for the +5_
HEPs strategy and the classes named as Buildings, Shadows and Bare Soil. The +CLBP_
MxC approach also yielded significantly better accuracy in terms of Fβ when it was applied 
to classify the Shadows class.

Table 8 - Comparison of mean Fβ values for each class and different fusion strategies by groping 
the training repetitions of 15% and 20%. Values in the same column followed by different 
superscript letters indicate significant differences at a significance level p < 0.05. For each 
column, statistically significant improvement values as compared to both RGBNP_L1 and 
RGBNP_eCog are presented in bold.

Fusion strategy Fβ (%)
Buildings

Fβ (%)
Shadows

Fβ (%)
Vegetation

Fβ (%)
Roads

Fβ (%)
Bare Soil

Fβ (%)
Streets

RGBNP_eCog 91.84 bc 91.28 cdef 87.71 a 53.97 abc 42.19 b 37.13 ab

+ GLCM_ENT 90.76 de 88.85 g 82.31 cd 46.82 d 39.00 bc 36.32 ab

+ GLCM_COR 91.07 cde 89.01 g 84.17 bc 46.10 de 36.19 c 31.03 bc

+ GLCM_SD 90.11 de 90.99 def 80.72 d 40.99 ef 39.44 bc 26.26 c

+ GLCM_CON 91.95 bc 90.39 f 87.15 a 51.07 bcd 40.78 bc 40.80 a

+ GLCM_MEAN 92.05 bc 92.73 b 85.16 b 50.34 cd 38.73 bc 35.11 ab

+ 5_GLCMs 90.80 de 91.13 def 72.81 e 38.86 f 36.04 c 37.05 ab

RGBNP_L1 91.76 bcd 90.89 ef 88.42 a 54.91abc 40.29 bc 36.15 ab

+ BGC1 92.48 b 91.64 cde 88.32 a 56.29 abc 42.71 b 38.44 ab

+ LBP 92.59 b 91.96 bcde 88.42 a 56.59 abc 43.06 b 38.38 ab

+ ILBP 92.58 b 92.02 bcd 88.53 a 57.05 ab 43.47 b 37.98 ab

+ CLBP_MxC 92.51 b 92.74 b 89.17 a 55.74 abc 42.79 b 38.19 ab

+ CLBP_S_MxC 92.62 b 92.27 bc 88.90 a 56.40 abc 44.04 b 37.24 ab

+ 5_HEPs 93.80 a 94.34 a 88.60 a 59.24 a 51.18 a 42.72 a

Conclusions
In this paper, 26 non-parametric texture descriptors which characterize a texture image 
through the probability of occurrence of the patterns associated to a neighborhood of given 
size and shape (Histograms of Equivalent Patterns, HEP) has been tested. Most of these 
HEP descriptors were originally developed in the fields of computer vision and pattern 
recognition and, to our best knowledge, many of them had never been used in VHR satellite 
imagery classification. The HEP descriptors have been compared with the widely used 
texture measures derived from the gray-level co-occurrence matrix (GLCM) in order to 
improve urban land-use mapping by applying OBIA supervised classification (NN) from 
GE1 orthoimages.
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The classification assessment carried out only involving single texture features proved 
that any of the five best tested HEP descriptors (i.e., LBP, ILBP, BGC1, CLBP_MxC and 
CLBP_S_MxC) significantly (p<0.05) improved the results achieved from the GLCM 
approaches (i.e., CON, ENT, MEAN, STD and COR), both in terms of accuracy and 
computation time. In the case of HEP descriptors, the higher was the dimension of each 
descriptor, the longer was the execution time. Regarding the accuracy results, whereas 
values of OA ranging from 37.5% to 57.8% were attained by using GLCM features, much 
better OA figures ranging from 67.5% to 76% were achieved through HEP descriptors.
Nevertheless, the clear advantages of the HEP-based texture measures stated above only 
would have any sense in remote sensing if they were able to add extra information to the 
spectral feature vector from GE1 imagery (R, G, B, NIR and PAN bands). It is noted that 
in the field of remote sensing, spectral and texture features are both always considered 
together. In this way, statistically significant (p<0.05) improvements in overall accuracy 
figures of around 3% (achieving values of up to 88.57%) were attained when the fusion 
strategy (Bayesian Average scheme) involving the five HEP texture descriptors was used. 
Conversely, and in statistic terms, strategies involving GLCM derivatives did not improve 
the classification accuracy achieved from only spectral information. Regarding the size 
of the training set for NN supervised classification, both approaches (HEP and GLCM) 
showed similar behavior.
These findings related to the application of HEP texture descriptors on VHR remote sensing 
imagery are quite promising, but they should be contrasted in further works by being 
applied on other VHR satellite imagery and other non-urban areas. Also, it would be very 
interesting to test the performance of other parametric and non-parametric texture measures 
belonging to the HEP family.
The last but not the least, the problem of the high dimension of HEP mappings as compared 
to the low dimension of the spectral feature vector for GE1 would be solved to features fusion 
purposes. In our case, a fusion of a-posteriori class probabilities through Bayesian average 
was proposed, but this method could be improved and even adapted for other classifier.

Acknowledgements
This work was supported by the Spanish Ministry of Economy and Competitiveness (Spain) 
and the European Union (FEDER founds) under Grant References AGL2014-56017-R 
and CTM2010-16573. It takes part of the general research lines promoted by the Agrifood 
Campus of International Excellence ceiA3, http://www.ceia3.es/. The authors would like 
to thank anonymous reviewers for their constructive comments on earlier drafts of this 
manuscript.

References
Agüera F., Aguilar F.J., Aguilar M.A. (2008) - Using texture analysis to improve per-

pixel classification of very high resolution images for mapping plastic greenhouses. 
ISPRS Journal of Photogrammetry and Remote Sensing, 63: 635-646. doi: http://dx.doi.
org/10.1016/j.isprsjprs.2008.03.003.

Aguilar M.A., Aguilar F.J., Saldaña M.M., Fernández I. (2012) - Geopositioning Accuracy 
Assessment of GeoEye-1 Panchromatic and Multispectral Imagery. Photogrammetric 

http://www.ceia3.es/
http://dx.doi.org/10.1016/j.isprsjprs.2008.03.003
http://dx.doi.org/10.1016/j.isprsjprs.2008.03.003


Aguilar et al.  Classification of urban areas through HEPs

116

Engineering and Remote Sensing, 78 (3): 7181-7197. doi: http://dx.doi.org/10.14358/
pers.78.3.247.

Aguilar M.A., Saldaña M.M., Aguilar F.J. (2013) - GeoEye-1 and WorldView-2 pan-
sharpened imagery for object-based classification in urban environments. International 
Journal of Remote Sensing, 34 (7): 2583-2606. doi: http://dx.doi.org/10.1080/0143116
1.2012.747018.

Aksoy S., Akcay H.G., Wassenaar T. (2010) - Automatic mapping of linear woody 
vegetation features in agricultural landscapes using very high-resolution imagery. 
IEEE Transactions on Geoscience and Remote Sensing, 48 (1): 511-522. doi: http://
dx.doi.org/10.1109/TGRS.2009.2027702.

Baatz M., Benz U., Dehghani S., Heynen M., Höltje A., Hofmann P., Lingenfelder I., 
Mimler M., Sohlbach M., Weber M., Willhauck G. (2004) - eCognition elements user 
guide 4.0. München, Germany: Definiens Imaging GmbH.

Baraldi A., Panniggiani F. (1995) - An Investigation of the Textural Characteristics 
Associated with Gray Level Cooccurrence Matrix Statistical Parameters. IEEE 
Transactions on Geoscience and Remote Sensing, 33 (2): 293-304. doi: http://dx.doi.
org/10.1109/36.377929.

Blaschke T. (2010) - Object Based Image Analysis for Remote Sensing. ISPRS Journal of 
Photogrammetry and Remote Sensing, 65 (1): 2-16. doi: http://dx.doi.org/ 10.1016/j.
isprsjprs.2009.06.004.

Bianconi F., Fernández A. (2007) - Evaluation of the effects of Gabor filter parameters 
on texture classification. Pattern Recognition, 40: 3325-3335. doi: http://dx.doi.org/ 
10.1016/j.patcog.2007.04.023.

Bianconi F., Fernández A. (2014) - A unifying framework for LBP and related methods. 
In: Local Binary Patterns: New Variants and Applications (Studies in Computational 
Intelligence), Springer, pp. 17-46. doi: http://dx.doi.org/10.1007/978-3-642-39289-4_2.

Carleer A.P., Wolff E. (2006) - Urban land cover multi-level region-based classification of 
VHR data by selecting relevant features. International Journal of Remote Sensing, 27 
(6): 1035-1051. doi: http://dx.doi.org/10.1080/01431160500297956.

Clausi D.A., Deng H. (2005) - Design-based texture feature fusion using Gabor filters and 
co-occurrence probabilities. IEEE Transactions on Image Processing, 14 (7): 925-936. 
doi: http://dx.doi.org/ 10.1109/TIP.2005.849319.

Congalton R.G., Green K. (2009) - Assessing the Accuracy of Remotely Sensed Data: 
Principles and Practices. 2nd Ed. Boca Raton, FL: CRS Press/Taylor & Francis.

Definiens (2009) - Definiens eCognition Developer 8 Reference Book. München: Definiens 
AG.

Deselaers T., Heigold G., Ney H. (2010) - Object classification by fusing SVMs and Gaussian 
mixtures. Pattern Recognition, 43 (7): 2476-2484. doi: http://dx.doi.org/10.1016/j.
patcog.2010.02.002.

Eckert S. (2012) - Improved forest biomass and carbon estimations using texture measures 
from WorldView-2 satellite data. Remote Sensing, 4 (4), 810-829. doi: http://dx.doi.org/ 
10.3390/rs4040810.

Fernández A., Álvarez M.X., Bianconi F. (2011) - Image classification with binary gradient 
contours. Optics and Lasers in Engineering, 49 (9-10): 1177-1184. doi: http://dx.doi.
org/ 10.1016/j.optlaseng.2011.05.003.

http://dx.doi.org/10.14358/pers.78.3.247
http://dx.doi.org/10.14358/pers.78.3.247
http://dx.doi.org/10.1080/01431161.2012.747018
http://dx.doi.org/10.1080/01431161.2012.747018
http://dx.doi.org/10.1109/TGRS.2009.2027702
http://dx.doi.org/10.1109/TGRS.2009.2027702
http://dx.doi.org/10.1109/36.377929
http://dx.doi.org/10.1109/36.377929
http://dx.doi.org/%2010.1016/j.isprsjprs.2009.06.004
http://dx.doi.org/%2010.1016/j.isprsjprs.2009.06.004
http://dx.doi.org/%2010.1016/j.patcog.2007.04.023
http://dx.doi.org/%2010.1016/j.patcog.2007.04.023
http://dx.doi.org/10.1007/978-3-642-39289-4_2
http://dx.doi.org/10.1080/01431160500297956
http://dx.doi.org/%2010.1109/TIP.2005.849319
http://dx.doi.org/10.1016/j.patcog.2010.02.002
http://dx.doi.org/10.1016/j.patcog.2010.02.002
http://dx.doi.org/%2010.3390/rs4040810
http://dx.doi.org/%2010.3390/rs4040810
http://dx.doi.org/%2010.1016/j.optlaseng.2011.05.003
http://dx.doi.org/%2010.1016/j.optlaseng.2011.05.003


117

European Journal of Remote Sensing - 2016, 49: 93-120

Fernández A., Álvarez M.X., Bianconi F. (2013) - Texture description through Histograms 
of Equivalent Patterns. Journal of Mathematical Imaging and Vision, 45: 76-102. doi: 
http://dx.doi.org/ 10.1007/s10851-012-0349-8.

Ferro C.J.S., Warner T.A. (2002) - Scale and texture in digital image classification. 
Photogrammetric Engineering and Remote Sensing, 68: 51-63.

Foody G.M., Mathur A. (2006) - The use of small training sets containing mixed pixels 
for accurate hard image classification: Training on mixed spectral responses for 
classification by a SVM. Remote Sensing of Environment, 103 (2): 179-189. doi: http://
dx.doi.org/10.1016/j.rse.2006.04.001.

Gianinetto M., Rusmini M., Candiani G., Dalla Via, G., Frassy F., Maianti P., Marchesi A., 
Rota Nodari F., Dini L. (2014) - Hierarchical classification of complex landscape with 
VHR pan-sharpened satellite data and OBIA techniques. European Journal of Remote 
Sensing, 47: 229-250. doi: http://dx.doi.org/ 10.5721/EuJRS20144715.

Guo Z., Zhang L., Zhang D. (2010) - A completed modeling of Local Binary Pattern 
operator for texture classification. IEEE Transactions on Image Processing, 19 (6): 
1657-1663. doi: http://dx.doi.org/ 10.1109/TIP.2010.2044957.

Haralick R.M., Shanmugam K., Dinstein I.H. (1973) - Textural features for image 
classification. IEEE Transactions on Systems, Man and Cybernetics, 3 (6): 610-621. 
doi: http://dx.doi.org/ 10.1109/TSMC.1973.4309314.

Huang X., Zhang L. (2012) - A multiscale urban complexity index based on 3D wavelet 
transform for spectral-spatial feature extraction and classification: an evaluation on 
the 8-channel WorldView-2 imagery. International Journal of Remote Sensing, 33 (8): 
2641-2656. doi: http://dx.doi.org/ 10.1080/01431161.2011.614287.

Jin H., Liu Q., Lu H., Tong X. (2004) - Face detection using improved LBP under Bayesian 
framework. Proceedings of the 3rd International Conference on Image and Graphics 
(ICIG), Hong Kong, China, 306-309.

Kittler J., Hatef M., Duin R.P.W., Matas J. (1998) - On combining classifiers. IEEE 
Transactions Pattern Analysis and Machine Intelligence, 20 (3): 226-239. doi: http://
dx.doi.org/10.1109/34.667881.

Laliberte A.S., Rango A. (2009) - Texture and scale in object-based analysis of 
subdecimeter resolution Unmanned Aerial Vehicle (UAV) imagery. IEEE Transactions 
on Geoscience and Remote Sensing, 47 (3): 761-770. doi: http://dx.doi.org/ 10.1109/
TGRS.2008.2009355.

Li M., Zang S., Zhang B., Li S., Wu C. (2014) - A Review of Remote Sensing Image 
ClassificationTechniques: the Role of Spatio-contextual Information. European Journal 
of Remote Sensing, 47: 389-411. doi: http://dx.doi.org/ 10.5721/EuJRS20144723.

Li W., Chen C., Su H., Du Q. (2015) - Local Binary Patterns and Extreme Learning Machine 
for Hyperspectral Imagery Classification. IEEE Transactions on Geoscience and Remote 
Sensing, 53 (7): 3681-3693. doi: http://dx.doi.org/ 10.1109/TGRS.2014.2381602.

Li Z., Hayward R., Zhang J., Jin H., Walker R. (2010) - Evaluation of spectral and 
texture features for object-based vegetation species classification using support vector 
machines. Proceedings of the International Archives of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences, XXXVIII (7A), ISPRS TC VII Symposium, 
Vienna, Austria.

Longbotham N., Chaapel C., Bleiler L., Padwick C., Emery W.J., Pacifici F. (2012) - 

http://dx.doi.org/%2010.1007/s10851-012-0349-8
http://dx.doi.org/10.1016/j.rse.2006.04.001
http://dx.doi.org/10.1016/j.rse.2006.04.001
http://dx.doi.org/%2010.5721/EuJRS20144715
http://dx.doi.org/%2010.1109/TIP.2010.2044957
http://dx.doi.org/%2010.1109/TSMC.1973.4309314
http://dx.doi.org/%2010.1080/01431161.2011.614287
http://dx.doi.org/10.1109/34.667881
http://dx.doi.org/10.1109/34.667881
http://dx.doi.org/%2010.1109/TGRS.2008.2009355
http://dx.doi.org/%2010.1109/TGRS.2008.2009355
http://dx.doi.org/%2010.5721/EuJRS20144723
http://dx.doi.org/%2010.1109/TGRS.2014.2381602


Aguilar et al.  Classification of urban areas through HEPs

118

Very High Resolution multiangle urban classification analysis. IEEE Transactions on 
Geoscience and Remote Sensing, 50 (4): 1155-1170. doi: http://dx.doi.org/10.1109/
TGRS.2011.2165548.

Lorette A., Descombes X., Zerubia J. (2000) - Texture analysis through a Markovian 
modelling and fuzzy classification: Application to urban area extraction from satellite 
images. International Journal of Computer Vision, 36 (3): 221-236. doi: http://dx.doi.
org/10.1023/A:1008129103384.

Lu D., Hetrick S., Moran E. (2010) - Land Cover classification in a complex urban-rural 
landscape with QuickBird imagery. Photogrammetric Engineering and Remote Sensing, 
76 (10): 1159-1168. doi: http://dx.doi.org/10.14358/PERS.76.10.1159.

Lucieer A., Stein A., Fisher P. (2005) - Multivariate texture-based segmentation of remotely 
sensed imagery for extraction of objects and their uncertainty. International Journal of 
Remote Sensing, 26 (4): 2917-2936. doi: http://dx.doi.org/ 10.1080/01431160500057723.

Malek S., Bazi Y., Alajlan N., AlHichri H., Melgani F. (2014) - Efficient Framework for 
Palm Tree Detection in UAV Images. IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 7 (12): 4692- 4703. doi: http://dx.doi.org/ 10.1109/
JSTARS.2014.2331425.

Marpu P.R., Neubert M., Herold H., Niemeyer I. (2010) - Enhanced evaluation of image 
segmentation results. Journal of Spatial Science, 55 (1): 55-68. doi: http://dx.doi.org/ 
10.1080/14498596.2010.487850.

Mdakane L., Van den Bergh F. (2012) - Extended local binary pattern features for improving 
settlement type classification of QuickBird images. PRASA 2012: Twenty-Third Annual 
Symposium of the Pattern Recognition Association of South Africa, Pretoria, South 
Africa, 29-30 November 2012.

Myint S.W., Lam N.S.N., Tyler J.M. (2004) - Wavelets for urban spatial feature 
discrimination: comparisons with fractal, spatial autocorrelation, and spatial co-
occurrence approaches. Photogrammetric Engineering and Remote Sensing, 70 (7): 
803-812. doi: http://dx.doi.org/10.14358/PERS.70.7.803.

Myint S.W., Gober P., Brazel A., Grossman-Clarke S., Weng Q. (2011) - Per-pixel vs. 
object-based classification of urban land cover extraction using high spatial resolution 
imagery. Remote Sensing of Environment, 115 (5): 1145-1161. doi: http://dx.doi.org/ 
10.1016/j.rse.2010.12.017.

Murray H., Lucieer A., Williams R. (2010) - Texture-based classification of sub-Antarctic 
vegetation communities on Heard Island. International Journal of Applied Earth 
Observation and Geoinformation, 12 (3): 138-149. doi: http://dx.doi.org/ 10.1016/j.
jag.2010.01.006.

Musci M., Queiroz Feitosa R., Costa G.A.O.P., Fernandes Velloso M.L. (2013) - Assessment 
of Binary Coding Techniques for Texture Characterization in Remote Sensing Imagery. 
IEEE Geoscience and Remote Sensing Letters, 10 (6): 1607-1611. doi: http://dx.doi.
org/ 10.1109/LGRS.2013.2267531.

Nikolakopoulos K., Oikonomidis D. (2015) - Quality assessment of ten fusion techniques 
applied on Worldview-2. European Journal of Remote Sensing, 48: 141-167. doi: http://
dx.doi.org/ 10.5721/EuJRS20154809.

Ojala T., Pietikäinen M., Mäenpää T.T. (2002) - Multiresolution gray-scale and rotation 
invariant texture classification with local binary pattern. IEEE Transactions on Pattern 

http://dx.doi.org/10.1109/TGRS.2011.2165548
http://dx.doi.org/10.1109/TGRS.2011.2165548
http://dx.doi.org/10.1023/A:1008129103384
http://dx.doi.org/10.1023/A:1008129103384
http://dx.doi.org/10.14358/PERS.76.10.1159
http://dx.doi.org/%2010.1080/01431160500057723
http://dx.doi.org/%2010.1109/JSTARS.2014.2331425
http://dx.doi.org/%2010.1109/JSTARS.2014.2331425
http://dx.doi.org/%2010.1080/14498596.2010.487850
http://dx.doi.org/%2010.1080/14498596.2010.487850
http://dx.doi.org/10.14358/PERS.70.7.803
http://dx.doi.org/%2010.1016/j.rse.2010.12.017
http://dx.doi.org/%2010.1016/j.rse.2010.12.017
http://dx.doi.org/%2010.1016/j.jag.2010.01.006
http://dx.doi.org/%2010.1016/j.jag.2010.01.006
http://dx.doi.org/%2010.1109/LGRS.2013.2267531
http://dx.doi.org/%2010.1109/LGRS.2013.2267531
http://dx.doi.org/%2010.5721/EuJRS20154809
http://dx.doi.org/%2010.5721/EuJRS20154809


119

European Journal of Remote Sensing - 2016, 49: 93-120

Analysis and Machine Intelligence, 24 (7): 971-987. doi: http://dx.doi.org/ 10.1109/
TPAMI.2002.1017623.

Ozdemir I., Karnieli A. (2011) - Predicting forest structural parameters using the image 
texture derived from WorldView-2 multispectral imagery in a dryland forest, Israel. 
International Journal of Applied Earth Observation and Geoinformation, 13 (5): 701-
710. doi: http://dx.doi.org/ 10.1016/j.jag.2011.05.006.

Parrinello T., Vaughan R.A. (2002) - Multifractal analysis and feature extraction in satellite 
imagery. International Journal of Remote Sensing, 23 (9): 1799-1825. doi: http://dx.doi.
org/ 10.1080/01431160110075820.

Permuter H., Francos J., Jermyn I. (2006) - A study of Gaussian mixture models of color and 
texture features for image classification and segmentation. Pattern Recognition, 39 (4): 
695-706. doi: http://dx.doi.org/ 10.1016/j.patcog.2005.10.028.

Puissant A., Hirsch J., Weber C. (2005) - The utility of texture analysis to improve per-pixel 
classification for high to very high spatial resolution imagery. International Journal of 
Remote Sensing, 26 (4): 733-745. doi: http://dx.doi.org/ 10.1080/01431160512331316838.

Ruta D., Gabrys B. (2000) - An overview of classifier fusion methods. Computing and 
Information Systems, 7: 1-10.

Sarp G. (2014) - Spectral and spatial quality analysis of pan-sharpening algorithms: A case 
study in Istanbul. European Journal of Remote Sensing, 47: 19-28. doi: http://dx.doi.
org/ 10.5721/EuJRS20144702.

Sebari I., He D.-C. (2013) - Automatic fuzzy object-based analysis of VHSR images for 
urban objects extraction. ISPRS Journal of Photogrammetry and Remote Sensing, 79: 
171-184. doi: http://dx.doi.org/ 10.1016/j.isprsjprs.2013.02.006.

Segl K., Roessner S., Heiden U., Kaufmann H. (2003) - Fusion of spectral and shape 
features for identification of urban surface cover types using reflective and thermal 
hyperspectral data. ISPRS Journal of Photogrammetry and Remote Sensing, 58 (1-2): 
99-112. doi: http://dx.doi.org/ 10.1016/S0924-2716(03)00020-0.

Snedecor G.W., Cochran W.G. (1980) - Statistical Methods. 7th ed. Ames, IA: Iowa State 
University Press.

Stumpf A., Kerle N. (2011) - Object-oriented mapping of landslides using Random Forests. 
Remote Sensing of Environment, 115 (10): 2564-2577. doi: http://dx.doi.org/ 10.1016/j.
rse.2011.05.013.

Su H., Yong B., Du P., Liu H., Chen C., Liu K. (2014) - Dynamic classifier selection using 
spectral-spatial information for hyperspectral image classification. Journal of Applied 
Remote Sensing, 8 (1): 085095. doi: http://dx.doi.org/10.1117/1.JRS.8.085095.

Su H., Sheng Y., Du P., Chen C., Liu K. (2015) - Hyperspectral image classification based 
on volumetric texture and dimensionality reduction. Frontiers of Earth Science, 9 (2): 
225-236. doi: http://dx.doi.org/10.1007/s11707-014-0473-4.

Su W., Li J., Chen Y., Liu Z., Zhang J., Low T.M., Inbaraj S., Siti A.M.H. (2008) - Textural 
and local spatial statistics for the object-oriented classification of urban areas using 
high resolution imagery. International Journal of Remote Sensing, 29 (11): 3105-3117. 
doi: http://dx.doi.org/ 10.1080/01431160701469016.

Tsai F., Chang, C.K., Rau, J.Y., Lin, T.H., Liu G.R. (2007) - 3D computation of gray level 
co-occurrence in hyperspectral image cubes. Lecture Notes in Computer Science, 4679: 
429-440. doi: http://dx.doi.org/10.1007/978-3-540-74198-5_33.

http://dx.doi.org/%2010.1109/TPAMI.2002.1017623
http://dx.doi.org/%2010.1109/TPAMI.2002.1017623
http://dx.doi.org/%2010.1016/j.jag.2011.05.006
http://dx.doi.org/%2010.1080/01431160110075820
http://dx.doi.org/%2010.1080/01431160110075820
http://dx.doi.org/%2010.1016/j.patcog.2005.10.028
http://dx.doi.org/%2010.1080/01431160512331316838
http://dx.doi.org/%2010.5721/EuJRS20144702
http://dx.doi.org/%2010.5721/EuJRS20144702
http://dx.doi.org/%2010.1016/j.isprsjprs.2013.02.006
http://dx.doi.org/%2010.1016/S0924-2716(03)00020-0
http://dx.doi.org/%2010.1016/j.rse.2011.05.013
http://dx.doi.org/%2010.1016/j.rse.2011.05.013
http://dx.doi.org/10.1117/1.JRS.8.085095
http://dx.doi.org/10.1007/s11707-014-0473-4
http://dx.doi.org/%2010.1080/01431160701469016
http://dx.doi.org/10.1007/978-3-540-74198-5_33


Aguilar et al.  Classification of urban areas through HEPs

120

Weng Q. (2012) - Remote sensing of impervious surfaces in the urban areas: requirements, 
methods, and trends. Remote Sensing of Environment, 117: 34-49. doi: http://dx.doi.
org/ 10.1016/j.rse.2011.02.030.

Zhao Y., Zhang L., Li P., Huang B. (2007) - Classification of high spatial resolution 
imagery using improved Gaussian Markov random-field-based texture features. IEEE 
Transactions on Geoscience and Remote Sensing, 45 (5): 1458-1468. doi: http://dx.doi.
org/ 10.1109/TGRS.2007.892602.

© 2016 by the authors; licensee Italian Society of Remote Sensing (AIT). This article is an open 
access article distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/%2010.1016/j.rse.2011.02.030
http://dx.doi.org/%2010.1016/j.rse.2011.02.030
http://dx.doi.org/%2010.1109/TGRS.2007.892602
http://dx.doi.org/%2010.1109/TGRS.2007.892602

	_GoBack

