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Abstract
Desalting brines from Reverse Osmosis (RO) plants is one of the most promis-
ing applications of Membrane Distillation (MD) systems. The development of
accurate models to predict MD system performances plays a significant role in
the design of this kind of industrial applications. In this paper, a commercial-
scale Permeate Gap Membrane Distillation (PGMD) module was modeled by
means of two different approaches: Response Surface Methodology (RSM) and
Artificial Neural Networks (ANN). Condenser inlet temperature, evaporator in-
let temperature, feed flow rate and feed water salt concentration were selected
as inputs of the model, while permeate flux and Specific Thermal Energy Con-
sumption (STEC) were chosen as responses. The prediction abilities of both
RSM and ANN models were compared with further experimental data by using
the Analysis of Variance (ANOVA) and the Root Mean Squared Error (RMSE).
The results show that the ANN model is able to predict in a more precise way
the behaviour of the module for the whole range of input variables. Thus, ANN
model was used to find the optimal operating conditions, for the module operat-
ing at feed water salinity of 70 and 105 g/L, concentrations that can be reached
when desalting RO brines.

Keywords: Permeate-gap Membrane Distillation, Response Surface
Methodology, Artificial Neural Network, Multiobjective Optimization, Brine
Treatment.

1. Introduction

Due to the high tolerance of MD systems to high salinity feeds, one of the
possible industrial applications of this technology consists on desalting seawater
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RO brines. Integrating MD technology in RO plants could be an essential factor
to obtain efficient desalination lines in terms of recovery [1–4]. However, the un-5

certainty associated with the performance of MD technology at large scale has
prevented the development of this kind of applications so far [5–8]. Therefore,
investigating the performance of large scale MD systems, under the operating
conditions imposed by RO brine, is required for assessing the energy efficiency
which is one of the main barriers of the MD technology [6]. In this context, the10

development of accurate theoretical (first principles-based) or empirical models,
to predict the performance of MD processes is fundamental. Models not only
allow designers to simulate and analyze MD systems under the required operat-
ing conditions [9–12], but can also be used for developing real time optimization
strategies [13, 14], or to develop optimization algorithms aimed at obtaining15

optimal designs of the application at hand [15].
The construction of first principles based models requires a total knowledge

of the process to be modeled, and it is usually a laborious task. On the contrary,
this knowledge is not as necessary to elaborate empirical models, but in this
case a good selection of the dependent and independent variables, and a good20

design of experiments are needed. Additionally, in the case of MD systems, the
difficulty in constructing theoretical models is greater as the different internal
design of each module influences its performance. So, internal modifications of
this theoretical models have to be done to adapt them to the different module
designs, which in many case is non-disclosed information. For that reason, the25

use of empirical models is a good option to obtain a mathematical expression
in a relatively fast and simple way. Two of the most common empirical models
used in the field of membrane sciences to visualize the operational space and to
understand the system behaviour are RSM and ANN [16, 17]. These models,
also known as black blox models, are able to fit both linear and nonlinear multi-30

variable problems. It should be remarked that these kind of empirical models
cannot been used to extrapolate the results to other systems, and they are only
valid for the range of operation in which they have been calculated.

RSM is a statistical method extensively used for characterizing membrane
distillation systems. This methodology is an efficient modeling tool providing35

quadratic functions to fit responses in linear or smooth nonlinear processes.
As can be seen in Tab. 1, most works presented until now in the literature use
RSM in order to optimize MD systems in terms of two of the most important pa-
rameters in this technology: permeate production and thermal energy efficiency.
However, not all works treat these two parameters in a simultaneous way [9, 18–40

24]. In addition, in most papers the feed water salt concentration, one of the
most important paremeters influencing the performance of MD systems, is not
taken into account as an input of the model [9, 12, 18, 19, 22, 23, 25, 26].

ANN is an emerging modeling tool in the field of MD systems. The main
advantage of this methodology is that it is able to fit almost all nonlinear pro-45

cesses. Besides, the way in which the model is built allows retraining the model
with further experimental data for improving predictions. Tab. 2 summarizes
the proposals made up to now in the literature for modeling MD systems by
means of ANN based models. As can be seen, almost all the works use ANN for
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characterizing only the permeate production of a MD unit [10, 11, 14, 27, 28],50

and only Shibazian and Alibabaei [29] consider also the thermal energy. Fur-
thermore, the feed water salt concentration is only considered by Cao et al. [27]
and Tavakolmoghadam and Safavi [28].

The goal of this work is to develop empirical models able to predict, in a55

precise way, the performance of a commercial-scale PGMD module for desalting
RO brines. For this purpose, three main objectives are developed: i) obtain-
ing empirical forecasting models based on RSM and ANN, under the required
operating conditions, ii) comparing the prediction abilities of the two modeling
approaches, and iii) finding the optimal operating conditions of this module60

for two of the salinity concentrations that can be reached when desalting RO
brines, 70 and 105 g/L. Compared to most modeling approaches presented un-
til now in the literature (see Tabs. 1 and 2), in this work, both the permeate
production and the thermal energy consumption were selected as predicted per-
formance parameters. In addition, apart from the typical independent variables65

considered in this technology (condenser inlet temperature, evaporator inlet
temperature, and feed flow rate), the feed water salt concentration (35-140 g/L)
has been used as an input, in order to visualize the effect of this parameter in
the responses. It should be pointed out that most of the studies presented in the
literature use bench-scale modules, whereas this study has been performed using70

a commercial-scale module, which can be very relevant to commercial purposes.
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2. Methodology

2.1. Test-bed facility
In this study, a spiral wound MD commercial module called Oryx 150 was

evaluated (see Fig. 1-b). The module was designed by the Fraunhofer Insti-75

tute for Solar Energy systems and is marketed by the company Solar Spring
(Freiburg, Germany). It had a Permeate Gap Membrane Distillation (PGMD)
configuration. The location of the different channels of the module was placed
to minimize heat losses to the environment. All inlets and outlets were located
at the top of the module. The permeate outlet was located on the outer perime-80

ter of the coil to facilitate the recovery of sensible heat from the permeate.
This module had a length, a height and a channel width of 7 m, 0.7 m and
3.2 mm respectively. The membrane surface area was 10 m2. The membrane
used in the module was a commercial membrane of W. L. Gore Associates.
The membrane was constituted by an active Polytetrafluoroethylene (PTFE)85

layer with a nominal pore size of 0.2 µm, a thickness of 70 µm and a porosity
of 80 % and a support of Polypropylene (PP) with a thickness of 280 µm and a
porosity of 50 %. The spacers were made of Low-Density Polyethylene (LDPE)
and the condensation foil was made of Ethylene Tetrafluoroethylene (ETFE).
The permeate gap was created by a PP spacer of 1 mm. The Oryx 150 mod-90

ule was integrated into a structure that was formed by a feed tank (475 L), a
filter of 300 µm placed after the outlet of the feed tank and before the inlet of
the MD module, the pump to circulate the feed solution, a deaerator and the
heat exchanger. Four PT100 temperature sensors were placed directly at the
inlet of the evaporator and condensation channels and at the outlets of them95

(see Fig. 2). The fifth temperature sensor was located at the inlet of the heat
exchanger on the side of the heating fluid (see Fig. 2). The volumetric flow
rate (F in Fig. 2) was measured with a flow meter placed before the inlet of the
condenser channel. A pressure sensor (WIKA) was located at the inlet of the
condenser channel to avoid overpressure. The permeate was measured with a100

weight (W in Fig. 2), using a tank to collect the permeate, and then, returning
it to the feed tank. All the temperature and pressure measurements were moni-
tored and registered by a Supervisory Control And Data Acquisition (SCADA)
system connected through a Programmable Logic Controller (PLC).

The MD module was tested in the Solar Membrane Distillation (SMD) pilot105

facility of Plataforma Solar de Almeŕıa (PSA, www.psa.es) (see Fig. 1-a). In
this facility, the module was connected to a solar field through a heat exchanger.
The solar field was formed by 10 flat plate collector (Solaris CP1 Nova, Solaris,
Spain) divided into two files with 5 collectors each one. The nominal thermal
power supplied was 7 kWth at a temperature of 90 oC. The heat rate supplied110

to the heat exchanger was controlled by means of the feedback control structure
presented in [33].

The operation of the MD system consisted of pumping the cold feed solu-
tion to the condenser inlet. The low temperature of the feed solution helped
the condensation of the permeate. The circulation of the feed solution along115

the condensation channel allowed preheating the solution thanks to the latent
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(a) SMD facility. (b) Solar Spring pilot module.

Figure 1: Test-bed facility at Plataforma Solar de Almeŕıa (PSA).

Figure 2: Schematic diagram of the test-bed facility.

heat of condensation and to the sensible heat that crossed the membrane. Af-
ter leaving the condensation channel, the solution passed to the deaerator to
eliminate the non-condensable gases from the feed solution and later it was cir-
culated towards the inlet of the heat exchanger. Afterwards, the hot feed went120

into the evaporator channel and circulated countercurrent with respect to the
circulation in the condensation channel. As the feed circulated along the evap-
orator channel, the vapour passed through the pores of the membrane driven
by the vapour pressure difference created on both sides of the membrane due
to the temperature difference. The concentrated feed solution (brine) left the125
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module through the outlet of the evaporator channel and was poured into the
feed tank for recirculation. Since the brine had a temperature above that of the
feed solution, it was cooled down with a chiller.

2.2. Thermal energy performance metric
The thermal efficiency of the distillation process can be evaluated by means

of several metrics, being the Specific Thermal Energy Consumption (STEC), the
one adopted in this work, one of the most employed [12, 34–36]. This metric
provides the thermal energy required per volume unit of distillate, and it can
be calculated as follows:

STEC (kWh/m3) = F · ρfeed · cp · (Tevap in − Tcond out)
c · D , (1)

where c is a conversion factor (3.6·106 s·W/(h·kW)), ρfeed is the feed water130

density (kg/m3), cp is the heat water capacity (J/(kg·oC)), D is the permeate
flow rate (L/h), and the rest of variables are according to Fig. 2.

2.3. Response Surface Methodology (RSM)
RSM is a set of mathematical and statistical techniques based on the fitting

of empirical models to the experimental data obtained through an experimental135

design. The RSM procedure consists of the development of a linear or quadratic
polynomial function that adjusts the response (permeate production, energy ef-
ficiency and so on) depending on the operating conditions (temperatures, flow
rates and so on). Therefore, polynomial functions are used to describe the
studied system and consequently, to explore (model and displace) the experi-140

mental conditions up to their optimization to achieve the best performance of
the system [37].

The development of a RSM has several steps: (i) selection of the main vari-
ables that exert the highest effect on the system through the screening studies
and the delimitation of the experimental region, in accordance with the goal of
the study and the experience of the researcher; (ii) choice of an experimental
design that defines which experiments should be carried out in the experimental
region and conduction of the experiments according to the selected experimen-
tal matrix; (iii) mathematical-statistical treatment of the experimental data by
adjusting a polynomial function (see Eq. 2); (iv) evaluation of the validity of
the model.

y = β0 +
k∑

i=1
βi · xi +

k∑
i=1

βii · x2
i +

k∑
1≤i≤j

βij · xi · xj , (2)

where k is the number of variables, β0 is the offset term coefficient, βi repre-
sents the coefficients of the linear effects, xi and xj represents the variables,
βij represents the coefficients of the interaction of effects, and βii represents145

the coefficients of the quadratic parameters. To estimate the coefficients of the
equation, the experimental design must ensure that all the studied variables
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are carried out for at least three levels of each variable. Among the most used
second order design are the three-level factorial design, the Box-Behnken design
and the central composite design. These designs differ from each other in their150

selection of experimental points, number of levels for the variables and number
of executions. In particular, central composite design is a fractional factorial or
factorial design with extended central points with a group of axial points also
called star points. So, for example, to optimize a process with three variables
(k = 3), the first block is a factorial 23, the second block is a set of 2x3 tests and155

the third blocks are repetitions in the center [38]. There are three types of cen-
tral composite design, specifically, circumscribed, inscribed and face-centered
central composite. In the last one, the star points are the center of each face
of the vector space, so this variety requires only three levels of for each factor.
After the experimental plan proposed by the design has been carried out and160

the values of the responses have been obtained for each experimental point, it is
necessary to evaluate the quality of the adjusted model by applying the ANOVA
[39]. With the ANOVA, the variation due to the treatment (change in the com-
bination of the levels of the variables) is compared with the variation due to the
random errors inherent in the measurements of the generated responses. From165

this comparison, it is possible to evaluate the significance of the regression used
to predict the answer.

2.4. Artificial Neural Network (ANN)
An ANN is also a mathematical model which is composed by simple intercon-

nected elements, that process information in response to external inputs, trying170

to imitate the behaviour of biological neural networks. These simple elements,
called neurons, are computational processors in which three main operations
(see Fig. 3) are carried out [40, 41]:

1. The n-element input vector (z1, z2, ...zn) is multiplied by weights (w1,1,
w1,2, ...w1,n).175

2. In the summing junction, the weighted inputs are added together with the
bias vector b, obtaining the argument a:

a = z1 · w1,1 + z2 · w1,2 + ...+ zn · w1,n + b. (3)

3. Finally, the argument a is converted into a scalar value Out by means of
the transfer function f (see Fig. 3):

Out = f(zW + b). (4)

In the transfer function block (f in Fig. 3), several functions can be employed,180

being the linear (purelin) and the log-sigmoid (logsig) transfer functions two of
the most adopted [40, 41]. Thus, the outputs of neurons calculated by these
transfer functions can be expressed as:

Purelin : Out = f(a) = a, (5)
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Figure 3: Schematic diagram of an artificial neuron.

Logsig : Out = f(a) = 1
1 + ea

. (6)

The form in which neurons are grouped and connected is known as topol-
ogy or architecture of the neural network. In general, neurons are grouped in185

different layers such as hidden and output layers. Moreover, the inputs can
be treated as an additional layer. Between the different kinds of architectures,
one of the most used to perform function fitting is the Multi-Layer feedforward
Perceptron (MLP) [42]. In this architecture, the number of inputs and outputs
of the network is defined according to the number of input and output variables190

of the system to be modeled. On the other hand, the optimal selection of the
number of layers, and the number of neurons required in each layer, is still an
active research area and it is usually obtained by trial and error. In practice,
most neural networks have only two or three hidden layers [42].

Once the architecture of the network is chosen, the weights and biases are
adjusted by mean of a training algorithm. Back Propagation (BP) algorithm
is the most commonly employed for training MLP networks [10, 11, 17, 42].
This algorithm tries to minimize a performance function by iteratively adjusting
network weights and biases. The index used as performance function in this
work is the Root Mean Square Error (RMSE):

RMSE =

√∑M
i=1
∑N

j=1(Yi,j − Ŷi,j)2

M ·N
, (7)

where M is the number of network outputs, N is the number of data used for195

training, and Yi,j and Ŷi,j is the experimental and predicted response respec-
tively. Thus, in each iteration BP algorithm modifies weights and biases in the
direction in which RMSE decreases. One iteration of this algorithm is given by
[42]:

λk+1 = λk − δ∆k, (8)
where λk is a vector containing current network weights and biases, δ is the200

learning rate, ∆k is the current gradient of RMSE function, and k being the
iteration number.
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2.5. Multi-objective optimization
The space of solutions of the RSM model can be easily explored by a con-

ventional gradient-based optimization method, as it is quadratic. However, the205

ANN model does not guarantee a linear or smooth nonlinear solution space to be
explored. Therefore, other global techniques such as genetic-based algorithms
should be considered. In this work, a multi-objective evolutionary algorithm
NSGA-II was employed to carry out the optimization. NSGA-II is a fast and
elitist optimizing approach which stands out for obtaining spread solutions near210

the optimal Pareto Front. In general, the algorithm can be roughly divided in
the following steps:

1. Creation of an initial population randomly selected according to the prob-
lem and constraints.

2. Nondominated sorting of the population inizializated previously.215

3. Calculation of the crowding-distance.
4. Selection of individuals based on a crowded-comparison operator.
5. Use crossover and mutation operators to generate a new population.

All the steps are widely explained in [43]. The optimization was carried out with
Matlab R2018a (the Mathworks, USA). The population size of the algorithm220

was fixed at 10, the maximum number of iterations at 500, and the convergence
tolerance was 1e-100.

3. Results and discussion

Variable Nomenclature Range
Evaporator inlet temperature (oC) Tevap 60-80
Condenser inlet temperature (oC) Tcond 20-30
Feed flow rate (L/h) F 400-600
Feed water salt concentration (g/L) S 35-140

Table 3: Input model variables.

3.1. Response Surface Methodology based model
RSM was used to characterize the performance of MD module through the225

specific thermal energy consumption (STEC) and permeate flux (Pflux), as a
function of the main parameters that affect the performance in this technology,
which are summarized in Tab. 3. Notice that the variables have been selected
according to the allowed operational limits of the module [12], since the ob-
jective is to perform a realistic study in commercial-scale. After choosing the230

variables, , the Design of the Experiment (DoE) was carried out with Statgraph-
ics centurion, a highly specific multivariate analysis package. The chosen design
to obtain the experimental campaign was the Face-centered Central Compos-
ite (CCF) design which required three levels of each of the variables. The data
proposed by the CCF design for modeling are presented in Appendix A.235

13



Terms Pflux(L/(h·m2)) STEC(kWh/m3)
Coefficient P-value Coefficient P-value

Tevap 0.039820 0.0000 -75.525 0.0006
Tcond -0.000171 0.0000 105.672 0.0505

F 0.002683 0.0000 -6.079 0.1223
S -0.010709 0.0000 26.804 0.0000

Tevap
2 -0.000065 0.7800 0.613 0.5504

Tevap·Tcond -0.000063 0.7383 -1.365 0.1147
Tevap·F 0.000062 0.0000 0.059 0.1651
Tevap·S -0.000208 0.0000 -0.273 0.0042
Tcond

2 -0.000181 0.8463 0.613 0.8804
Tcond·F 0.000006 0.7383 -0.113 0.1838
Tcond·S -0.000107 0.0104 0.368 0.0336

F2 -0.000004 0.1374 0.005 0.5966
F·S -0.000009 0.0002 -0.014 0.0758
S2 0.000132 0.0000 -0.024 0.5127

Table 4: Values of the regression coefficients and their statistical significance.

After carrying out the experimental campaign and introducing the experi-
mental values of the responses of interest, the experimental design was analyzed.
The ANOVA analysis was used to verify if the regression equations were sta-
tistically valid. The statistical parameters used to evaluate the goodness of the
fit was the p-value, the coefficient of determination (R2) and the adjusted co-240

efficient of determination (adjusted-R2). Specifically, the p-value was used to
determine which terms of the equation were statistically significant. For that,
the p-value was compared with the level of significance to decide which terms
were excluded from the final model. A value of 0.05 was used for the level of
significance, meaning that if the p-value was lower than 0.05, the coefficient was245

significantly different from zero with a confidence level of 95 %. Therefore, the
coefficients with a p-value higher than 0.05 were not included in the final equa-
tions. Tab. 4 shows the p-values of the coefficients for both responses (STEC
and Pflux). Thus Tevap, Tcond, F, S, Tevap·F , Tevap·S , Tcond·S, F·S and S2 were
significant for Pflux while for STEC, only Tevap, S and Tevap·S were statistically250

significant. Non-significant terms were removed from the model to obtain the
simplified equations for both Pflux and STEC:

Pflux = −0.8868 + 0.0291 · Tevap − 0.0104 · Tcond − 0.0008 · F − 0.0087 · S
+ 0.000061 · Tevap · F − 0.0002 · Tevap · S − 0.0001 · Tcond · S
− 0.000009 · F · S + 0.0001 · S2

(9)

STEC = −317.712 + 5.874 · Tevap + 24.296 · S − 0.273 · Tevap · S (10)

The simplified equations were also subjected to an analysis of variance.
Tab. 5 shows the values of the statistics for the simplified models for Pflux and
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STEC. The p-value and the coefficients of determination determined a good fit255

for Pflux but the R2 and adjusted-R2 were low for the STEC. The comparison
between the observed values and the adjusted values by the models is shown
in Fig. 4. An excellent fit can be observed between the experimental and pre-
dicted responses for Pflux (see Fig. 4-1). On the other hand, the adjustment
in the STEC response is not so good (see Fig. 4-2), as expected in view of the260

results of the ANOVA. Notice that the RSM model is composed by linear, in-
teraction and quadratic terms, which are good at adjusting linear or quadratic
behaviours, however it provides unsuccessful fitting when it comes to nonlinear
behaviour, as the one obtained by the feed water salt concentration influence
on the STEC. When the feed water salt concentration is not taken into account265

as an input of the model, RSM provides satisfactory adjustments [12].
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Figure 4: Comparison between predicted values by RSM model (STECpred and Pflux,pred)
and experimental data (STECexp and Pflux,exp).

Statistical estimator Condition for a good fit Pflux STEC
p-value ≤0.05 ≤0.01 ≤0.02

R2 closed to 1 0.998 0.704
adjusted-R2 in agreement with R2 0.996 0.664

Table 5: Goodness of the adjustment of the simplified models of Pflux and STEC

3.2. Neural Network based model
The neural network based model was developed considering as inputs S,

Tcond, Tevap and F (see Tab, 3), and as outputs Pflux and STEC. In this case, the
data used in the RSM method were complemented with more samples. It should270

be remarked that, although DoE ensures data well distributed throughout all the
input data range, the ANN model, which is exclusively data-based, can present
abrupt nonlinearities in the responses if the amount of data is not large enough,
and if the data set is not well distributed. This fact can be especially significant
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when the range of the input data is large, and some of these parameters have275

a clear nonlinear influence on the responses, as is the case of feed water salt
concentration in this study. Thus, Appendix A shows all the experimental data.
Besides, it should be commented that, as in the case of experimental data used
in RSM model, four measurements were taken for each experimental point.

The experimental data set was divided in 3 subsets: i) training subset (75%
of samples), ii) validation subset (20% of samples), and iii) test subset (5% of
samples). Moreover, in order to avoid overfitting during the training process,
both the input and output variables were normalized in the range 0.1-0.9 by
means of the following expression [10]:

yn = (1 − U − L) · yk − ymin

ymax − ymin
+ L, (11)

where yn is the normalized sample, yk is the actual sample, ymax and ymin are280

the maximum and minimum value of the variable to be normalized, and U and
L are the upper and lower bounds considered to define the output network range
(U = L = 0.1).

Figure 5: Schematic diagram of the optimal network architecture. x1, x2, x3 and x4 are S,
Tcond, Tevap and F, while Ŷ1 and Ŷ2 are Pflux and STEC.

The training process was accomplished in the Neural Network Toolbox of
MATLAB, using the Lavenberg-Marquardt BP algorithm [40]. Several ANN285

architectures were tested varying the number of hidden layers between 1-3 and
the number of neurons in each layer between 1-10. The transfer function adopted
in the hidden layers was the logsig, whereas the one employed in the output
layer was the purelin. The optimal architecture was selected according to the
performance function (RMSE).290
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Input weight matrix IW(1,1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1.441 0.890 0.372 −2.015
−1.528 1.047 0.516 −2.105
−0.831 −0.541 0.926 0.213
2.115 1.427 0.796 0.612

−1.957 0.117 0.139 −0.472
0.023 −0.053 0.177 0.210

−0.698 0.842 1.351 −0.953

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Hidden layer 1 bias vector b(1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2.148
2.269
2.840

−0.788
−1.478
−0.042
−4.384

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Hidden layer 2 weight matrix LW(2,1)T =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−0.610 −0.593
0.450 0.461

−1.086 −0.257
−0.011 0.049
−0.593 −0.408
−0.974 −1.613
−0.280 0.467

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Hidden layer 2 bias vector b(2) =

∣∣∣∣ −0.680
1.162

∣∣∣∣
Output layer weight matrix LW(3,2)

∣∣∣∣ 1.860 −0.030
−0.094 −1.518

∣∣∣∣
Output layer bias vector b(3) =

∣∣∣∣ 0.844
0.398

∣∣∣∣
Table 6: Optimal network weights and bias.

The optimal ANN model (see Fig. 5) is composed by 4 inputs, two hidden
layers containing 7 and 2 neurons respectively, and two outputs. This feedfor-
ward neural network topology can be described as MLP (4:7:2:2). Notice that
the training process was iteratively performed (as was metioned in Section 2.4)
until reaching a RMSE sufficiently small, according to the imposed goal for the
training subset (RMSE≤5·10−4, normalized value according to Eq. 11). In the
optimal network case, the training process was stopped after 13 iterations ob-
taining a RMSE=2.61·10−4 for the training data subset, while the RMSE of
the validation and test subsets was lower than 1·10−3. Tab. 6 summarizes the
optimal values of network weights and bias in a matrix-vector format. The ANN
model can be expressed as:

Ŷ = Φ(3)(LW(3,2)Φ(2)(LW(2,1)Φ(1)(IW(1,1)x + b(1)) + b(2)) + b(3)), (12)

where Φ(i) is the transfer function correspondent to layer i (i=1-3), LW(2,1)

and LW(3,2) are the layer weight matrices, where the superscripts indicates the
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destination and source connections, IW(1,1) is the input weight matrix, x is the
network input, and Ŷ is the network output. It should be commented that the
same notation has been employed in Tab. 6 and Fig. 5.295

The fit between the experimental data used in the training and validation
processes, and the predicted values by the ANN model are shown in Fig. 6.
Besides, Tab. 7 shows the analysis of variance (ANOVA) for these two subsets.
As can be observed, the obtained p-values (lower than 0.05) and coefficients of
determination (close to 1) evidence the good fit obtained by ANN model in both300

cases Pflux and STEC. Notice that in the next subsection more experimental
data will be used to test the performance of the ANN model.
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Figure 6: Comparison between predicted values by ANN model (STECpred and Pflux,pred)
and experimental data (STECexp and Pflux,exp).
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Pflux STEC
Training Validation Training Validation

p-value ≤0.01 ≤0.01 ≤0.01 ≤0.01
R2 0.994 0.991 0.993 0.990

adjusted-R2 0.993 0.990 0.992 0.989

Table 7: Goodness of the adjustment of ANN model.

3.3. Comparison between the prediction abilities of the two modeling approaches.
In order to compare in the same conditions the prediction abilities of the

RSM and ANN models, additional experimental data were employed (see Tab. 8).305

The comparison were performed based on the Root Mean Square Error (RMSE),
the coefficient of determination (R2) and the adjusted-R2.

S (g/L) Tcond(oC) Tevap(oC) F(L/h) STEC(kWh/m3) Pflux(L/(h·m3))
35 20 75 600 297.563 2.303
35 25 75 400 246.323 1.568
35 30 65 500 286.500 1.311
60 20 65 600 506.388 1.141
60 25 65 500 535.293 0.756
60 30 65 400 453.794 0.580
60 30 75 600 368.303 1.524
140 20 75 500 499.528 1.054
140 25 65 600 678.193 0.736
140 30 65 400 1172.35 0.214

Table 8: Additional experimental data used to compare the two modeling approaches.
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Figure 7: Comparison between predicted values of both models (STECpred and Pflux,pred)
and experimental data (STECexp and Pflux,exp).
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RSM ANN
STEC Pflux STEC Pflux

RMSE 85.70 0.10 27.01 0.06
R2 0.770 0.985 0.982 0.988

adjusted-R2 0.742 0.984 0.981 0.987

Table 9: Comparison of predictive abilities of RSM and ANN.

Fig. 7 shows the correlation between the additional experimental data and
the predicted values, and Tab. 9 shows the performance metrics. On the one
hand, in the case of the permeate flux (Pflux), the R2 and the adjusted-R2

310

values obtained with both models were similar (very close to 1, see Fig. 7 ),
whereas the obtained RMSE error was 0.06 and 0.10 (L/(h·m2)) for the ANN
and RSM model respectively, which evidences the good results obtained with
both models. On the other hand, in the STEC case, the R2 and the adjusted-R2

values obtained with the ANN model were 0.982 and 0.981 respectively, whereas315

the ones obtained with the RSM model were 0.770 and 0.742 respectively. The
RMSE of the ANN model was 27.01 (kWh/m3) while the RMSE of the RSM
model was 85.70 (kWh/m3). It should be taken into account that the low grade
of adjustment obtained by the RSM model in the STEC case can be explained
for two main reasons: (1) the nonlinear behaviour of STEC with respect to320

feed water salt concentration, and (2) the simplified equation modeling STEC
does not consider the influence of Tcond and F in the responses, hence it adds
uncertainty to the model (see Eq. 10). Thus, it can be concluded that the ANN
model is more suitable for predicting STEC, specially when working at high
feed water salt concentration.325

In addition to the comparison carried out previously, 3D response surfaces
were displayed to observe the influence of the feed water salt concentration in
both Pflux and STEC, and also to compare the surfaces provided by RSM and
ANN models. It should be taken into account that the influence of the rest of
input variables was studied in [12]. Thus, Figs. 8 and 9 show the 3D response330

surfaces for RSM and ANN models respectively.
On one hand, it can be observed in Fig. 8-1, 3 and 5, and in Fig. 9-1, 3 and 5

the influence of the feed water salt concentration and the other input variables
(Tevap, Tcond and F) in the Pflux predicted by the RSM and ANN models re-
spectively. It can been seen that Pflux decreases significantly with increasing335

feed water salt concentration. Notice that, the 3D response surfaces obtained
by the two models were similar, due to Pflux being almost linear in all the input
data range.

On the other hand, in Fig. 8-2, 4 and 6, and in Fig. 9-2, 4 and 6 the effects
of S, Tevap, Tcond and F on the STEC predicted by the RSM and ANN models340

are shown. In this case, the opposite behaviour than in Pflux can be observed,
STEC augments when increasing feed water salt concentration. Therefore, an
increase in the salinity implies a decrease in thermal efficiency. Besides, some
differences can be seen in the 3D response surfaces of both models. RSM model
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provides almost linear surfaces for the whole input data range, whereas ANN345

model provides nonlinear surfaces which represent in a more accurate way the
behaviour of STEC observed from experimental data (see Appendix A). In ad-
dition, ANN model takes into consideration the influence of Tcond and F in
the response (see Fig. 9-4 and 6), whereas RSM model does not consider these
variables (see Eq. 10) as was commented before.350

According to the results obtained, different interaction effects can be seen
among the input variables. Considering Tevap and S, the increase of Tevap yields
to an increase of the performance, namely, an increase of Pflux and a decrease of
STEC, and this effect is stronger the higher the S values. The increase of S leads
to a decrease of the performance and this effect is stronger for smaller Tevap.355

Regarding the interaction effect between F and S, an increase of F at different
S values causes an enhancement of Pflux. However, the effect of increasing F on
STEC depends on S. For a salinity value of 35 g/L, an increase of F causes a
negative effect on STEC, while for high S values, an increase of F produces the
contrary effect. This is because at high S and low F, the permeate production360

decreases at a higher rate than the decrease of the external heat necessary by
working with a low F. Finally, the effect of Tcond on the Pflux is negative. An
increase of this variable, yields to a decrease of the driving force, diminishing
Pflux and this effect is stronger for high S. Regarding the STEC, at a salinity
of 35 g/L, an increase of Tcond favours the decline of the STEC, however, at365

high S values, the increase of Tcond leads to an increase of STEC because the
decrease of Pflux at high S is more pronounced.

From an optimization point of view, two interesting conclusions can be
drawn. Firstly, in Fig. 9-6 it can be observed how STEC decreases at low
F when S is in a low-medium range, and then, at high S, STEC has an almost370

curvilinear behaviour with respect F where the minimum value is located around
500 L/h. Secondly, it can be observed that the STEC does not present large
variations with respect to Tevap at low S, around 80 kWh/m3 at 500 L/h (see
Fig. 9-1). However, at high salinity concentrations (i.e. 140 g/L), the influence
is remarkable, around 500 kWh/m3 at 500 L/h (see Fig. 9-1). This fact can be375

very relevant in solar powered batch operations since the result of an optimiza-
tion problem with a time horizon of one day could be: working at low Tevap
at low salinity concentrations and storing thermal energy to be able to operate
at high temperature, significantly improving performance, when high salinity
ranges are reached.380
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3.4. Multi-objective optimization
Once the models were developed, validated and compared, a multi-objective

optimization was carried out using NSGA-II algorithm. The objective was to
find a set of solutions that ensure a trade-off between the two performance
parameters (maximizing Pflux and minimizing STEC), that require contrary385

operating conditions in some variables such as Tcond and F. This set of opti-
mal solution is known as Pareto Front or nondominant solutions. Thus, two
optimization cases were proposed according to the levels of feed water salt con-
centration that can be reached when performing batch operation for desalting
RO brines. In the first optimization problem, the feed water salt concentration390

was fixed at 70 g/L, whereas in the second optimization problem, the feed water
salt concentration was fixed at 105 g/L. Notice that the optimized variables in
both cases are Tcond, Tevap, and F, since they can be easily manipulated to
achieve the desired performance. The optimization was carried out using only
the ANN model as it takes into account all the input variables for the two per-395

formance parameters, as was commented in the previous section. The results
obtained for both optimization cases are reported in Fig. 10 and Tab. 10. In
addition, three experimental runs randomly selected were performed in order
to validate the optimal points obtained in the two optimization problems (see
Tab. 11).400
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Figure 10: Pareto fronts of the two optimization cases. (1) Results related to optimization
problem 1, and (2) results related to optimization problem 2.

Attending to the results, Tab. 10 shows that different operating conditions
are required in some of the parameters depending on the level of feed water
salinity. Notice that the pareto fronts must be analyzed by assigning different
importance for responses, according to the specific desirability of the applica-
tion. In general, it can be seen that in the two studied cases, for applications405

that require higher distillate production it is better to operate with larger F and
smaller Tcond. However, if the thermal efficiency is the decisive factor in the
application, it is better to operate with smaller F and larger Tcond at the feed
water salinity of 70 g/L. On the other hand, at the feed water salinity of 105 g/L,
larger Tcond and larger F are required. It is also important to remark that in the410
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Run Tcond(oC) Tevap(oC) F(L/h) STECpred (kWh/m3) Pflux,pred (L/(h·m2))
Pareto front values of optimization problem 1

1 20.00 80.00 600.00 389.31 1.83
2 20.31 80.00 577.04 381.85 1.82
3 21.09 80.00 557.45 370.53 1.79
4 28.81 80.00 599.86 355.03 1.67
5 30.00 80.00 597.49 353.26 1.64
6 26.64 80.00 436.35 353.26 1.22
7 26.84 80.00 426.97 350.05 1.18
8 26.85 80.00 401.38 341.36 1.10
9 29.67 80.00 412.29 329.42 0.98
10 30.00 80.00 400.00 320.47 0.91

Pareto front values of optimization problem 2
1 20.00 80.00 600.00 470.67 1.51
2 21.02 80.00 598.73 468.58 1.46
3 21.49 80.00 595.28 467.35 1.44
4 20.62 80.00 556.64 455.28 1.43
5 21.11 80.00 557.07 452.81 1.41
6 21.40 80.00 548.95 446.56 1.40
7 21.33 80.00 532.78 440.51 1.38
8 30.00 80.00 600.00 421.48 1.38
9 29.86 80.00 585.48 416.96 1.36
10 30.00 80.00 580.10 416.20 1.35

Table 10: Values of the Pareto fronts obtained by ANN model for both optimization problems.

Run in the STECpred Pflux,pred STECexp Pflux,exp
optimization (kWh/m3) (L/(h·m2)) (kWh/m3) (L/(h·m2))

Confirmation runs of optimization problem 1
3 370.53 1.79 361.50 1.79
6 353.26 1.22 360.10 1.18
8 341.36 1.10 357.15 1.02

Confirmation runs of optimization problem 2
1 470.67 1.51 474.97 1.48
4 455.28 1.43 456.08 1.46
5 452.81 1.41 454.38 1.40

Table 11: Validation of the optimal operating points.

two optimization problems, the inlet evaporator channel temperature is at the
maximum (80 oC) for all the pareto solutions. Nevertheless, in real solar pow-
ered operations, this temperature will be limited by the irradiance conditions at
every moment and, therefore, the optimal operating conditions can be obtained
by modifying only Tcond and F. It should be pointed out that Tcond steadily415

increases when performing batch operations, but it could be manipulated using
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cooling devices in order to work in the optimal operating points, thus increasing
MD module performance.

Moreover, Tab. 12 shows the salt rejection factor (SRF) for each of the420

studied salinities. For the three salinities, the SRF was close to 100 %, confirm-
ing that in this case, in accordance with the MD fundamentals, the operating
conditions do not affect the salinity of permeate [44].

S (g/L) Tcond(oC) Tevap(oC) F(L/h) SRF (%)
35 20.00 80.00 583.00 99.99 %
70 21.10 80.00 558.00 99.99 %
105 20.60 80.00 557.45 99.99 %

Table 12: Salt rejection factor for each salinity.

4. Conclusion

Response Surface Methodology (RSM) and Artificial Neural Networks (ANN)425

were used for modeling the performance of a commercial-scale PGMD module,
under the operating conditions required by one of its possible potential industrial
implementation: desalting brines from RO plants. The independent variables
chosen for the models were the condenser inlet temperature (20-30 oC), the
evaporator inlet temperature (60-80 oC), the feed flow rate (400-600 L/h) and430

the feed water salt concentration (35-140 g/L), while permeate flux (L/(h·m2))
and Specific Thermal Energy Consumption (STEC, kWh/m3) were selected as
predicted variables. The prediction abilities of the two modeling tools were
compared with further experimental data. In addition, the optimal operating
conditions (maximizing and minimizing Pflux and STEC respectively) for two435

of the feed salinity concentrations (70 and 105 g/L) that can be reached when
performing batch operation for desalting RO brines were determined.

Regarding the models, the ANN model achieved higher accuracy in predict-
ing the responses, specially in the STEC case. This fact can be explained since
the feed water salt concentration affects the STEC on a nonlinear way, which440

cannot be well represented by a quadratic equation. Therefore, ANN model is
shown to be more adequate than RSM for developing models in which the feed
water salt concentration is considered as an input. However, it should be also
commented that it required more experimental data.

The multi-objetive optimization carried out revealed that, depending of the445

level of feed water salinity, different operating conditions are required in some
of the parameters. Therefore, real time multi-objective optimization could be
essential for performing batch operations aimed at desalting RO brines, specially
when the MD facility is powered by solar energy.

In future works, the models presented in this paper will be used for develop-450

ing optimization algorithms able to perform optimal designs of a solar powered
MD facility to be integrated in a RO plant. In the same way, models will be

26



used for optimizing the solar powered operation of the MD module in batch
mode operation.
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[24] M. Khayet, C. Cojocaru, C. Garćıa-Payo, Application of response surface
methodology and experimental design in direct contact membrane distilla-530

tion, Industrial & Engineering Chemistry Research 46 (2007) 5673–5685.

[25] D. Cheng, W. Gong, N. Li, Response surface modeling and optimization of
direct contact membrane distillation for water desalination, Desalination
394 (2016) 108–122.

33



[26] Q. He, P. Li, H. Geng, C. Zhang, J. Wang, H. Chang, Modeling and535

optimization of air gap membrane distillation system for desalination, De-
salination 354 (2014) 68–75.

[27] W. Cao, Q. Liu, Y. Wang, I. M. Mujtaba, Modeling and simulation of
VMD desalination process by ANN, Computers & Chemical Engineering
84 (2016) 96–103.540

[28] M. Tavakolmoghadam, M. Safavi, An optimized neural network model
of desalination by vacuum membrane distillation using genetic algorithm,
Procedia Engineering 42 (2012) 106–112.

[29] S. Shirazian, M. Alibabaei, Using neural networks coupled with parti-
cle swarm optimization technique for mathematical modeling of air gap545

membrane distillation (AGMD) systems for desalination process, Neural
Computing and Applications 28 (2017) 2099–2104.

[30] D. Cheng, N. Li, J. Zhang, Modeling and multi-objective optimization
of vacuum membrane distillation for enhancement of water productivity
and thermal efficiency in desalination, Chemical Engineering Research and550

Design 132 (2018) 697–713.

[31] Y. Zhou, M. Huang, Q. Deng, T. Cai, Combination and performance of
forward osmosis and membrane distillation (FO-MD) for treatment of high
salinity landfill leachate, Desalination 420 (2017) 99–105.

[32] N. U. Kumar, A. Martin, Experimental modeling of an air-gap membrane555

distillation module and simulation of a solar thermal integrated system for
water purification, Desalination and Water Treatment 84 (2017) 123–134.

[33] J. D. Gil, L. Roca, G. Zaragoza, M. Berenguel, A feedback control sys-
tem with reference governor for a solar membrane distillation pilot facility,
Renewable Energy 120 (2018) 536–549.560

[34] H. C. Duong, P. Cooper, B. Nelemans, T. Y. Cath, L. D. Nghiem, Eval-
uating energy consumption of air gap membrane distillation for seawater
desalination at pilot scale level, Separation and Purification Technology
166 (2016) 55–62.

[35] E. Guillén-Burrieza, G. Zaragoza, S. Miralles-Cuevas, J. Blanco, Exper-565

imental evaluation of two pilot-scale membrane distillation modules used
for solar desalination, Journal of Membrane Science 409 (2012) 264–275.

[36] G. Zaragoza, A. Ruiz-Aguirre, E. Guillén-Burrieza, Efficiency in the use
of solar thermal energy of small membrane desalination systems for decen-
tralized water production, Applied Energy 130 (2014) 491–499.570

[37] W. J. Hill, W. G. Hunter, A review of response surface methodology: a
literature survey, Technometrics 8 (1966) 571–590.

34



[38] G. E. Box, K. B. Wilson, On the experimental attainment of optimum
conditions, in: Breakthroughs in Statistics, Springer, 1992, pp. 270–310.

[39] L. Stahle, S. Wold, et al., Analysis of variance (ANOVA), Chemometrics575

and Intelligent Laboratory Systems 6 (1989) 259–272.

[40] M. H. Beale, M. T. Hagan, H. B. Demuth, Neural Network Toolbox: User’s
Guide (Version 10.0), 2017.

[41] M. T. Hagan, H. B. Demuth, Neural networks for control, in: American
Control Conference, 1999. Proceedings of the 1999, volume 3, IEEE, 1999,580

pp. 1642–1656.

[42] H. B. Demuth, M. H. Beale, O. De Jess, M. T. Hagan, Neural network
design, PWS Publishing Co., 2014.

[43] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiob-
jective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary585

Computation 6 (2002) 182–197.

[44] D. Winter, J. Koschikowski, M. Wieghaus, Desalination using membrane
distillation: Experimental studies on full scale spiral wound modules, Jour-
nal of Membrane Science 375 (2011) 104–112.

35


	Introduction
	Methodology
	Test-bed facility
	Thermal energy performance metric
	Response Surface Methodology (RSM)
	Artificial Neural Network (ANN)
	Multi-objective optimization

	Results and discussion
	Response Surface Methodology based model
	Neural Network based model
	Comparison between the prediction abilities of the two modeling approaches.
	Multi-objective optimization

	Conclusion

