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Abstract. In this paper we present a framework for the specification of model
transformations by means of Prolog rules, using the ODM representation of UML
models. In addition, Prolog rules are also used for the validation of source and tar-
get models w.r.t. their ODM based metamodels. We have validated our proposal
by means of a prototype developed under SWI-Prolog.

1 Introduction

Model Driven Engineering (MDE) is an emerging approach for software development.
MDE emphasizes the construction of models from which the implementation should
be derived by applying model transformations. Hence, Model transformation [35, 20]
is a key tool of MDE. According to the Model Driven Architecture (MDA) [29] initia-
tive of the Object Management Group (OMG) [27], model transformation provides to
developers tools for transforming their models.

The MDA approach proposes three elements in order to describe a model transfor-
mation: the first one is the so-called meta-meta-model which is the basis of the model
transformation and provides the language for describing meta-models. The second one
consists in the meta-models of the models to be transformed. Source and target models
must conform to the corresponding meta-model. Such meta-models are modeled ac-
cording to the meta-meta-model. The third one consists in the source and target models.
Source and target models are instances of the corresponding meta-models. In addition,
source and target meta-models are instances of the meta-meta-model.

Therefore, in order to define a model transformation we should be able to meta-
model the source and target models w.r.t. the meta-meta-model, and map source and
target meta-models. In this context, model transformation needs formal techniques for
specifying the transformation. In particular, in most of the cases transformations can be
expressed by means of some kind of rules. The rules have to express how any source
model can be transformed into a target model in a given transformation.

On the other hand, the Ontology Definition Metamodel (ODM) proposal [30] of
the OMG aims to define an ontology-based representation of UML models. ODM is
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an standard for representing UML models by means of an ontology in which, among
others, UML classes are mapped into ontology concepts, UML associations are mapped
into ontology roles, and multiplicity restrictions of UML are mapped into cardinality
restrictions in roles. ODM is itself an UML meta-model in which UML models can
be accommodate. Following the ODM proposal, an UML model can be represented by
means of an ontology in which the TBox contains the UML meta-model and the ABox
contains the instance of the UML meta-model which represents the model.

The relationship between logic programming and ontologies is well-known. OWL
[36], the most prominent ontology language is based on Description Logic (DL) [8], a
fragment of first order logic, and some fragments of DL can be encoded into logic pro-
gramming, for instance, the so-called Description Logic Programming approach [15].
Typically, Description Logic is used for representing a TBox (terminological box) and
the ABox (assertional box). The TBox describes concept (and role) hierarchies (i.e.,
relations between concepts and roles) while the ABox contains relations between indi-
viduals, concepts and roles. Therefore we can see the TBox as the meta-data descrip-
tion, and the ABox as the description about data. The encoding of (fragments of) DL
into logic programming are based on the representation of the TBox by means of Prolog
rules and the representation of the ABox by means of Prolog facts. It means that any
instance of an ontology in this context can be represented by means of Prolog facts.

In model transformation a transformation maps the source model into the target
model. Therefore a transformation maps the ABox of the source model into the ABox
of the target model. Given that the encoding of a Description logic fragment into logic
programming maps the ABox of the ontology into Prolog facts, then model transforma-
tion consists on the mapping of Prolog facts. Therefore, model transformation can be
defined using Prolog rules.

In this paper we present a framework for the specification of model transformations
by means of Prolog rules, using the ODM representation of UML models. In addition,
Prolog rules are used for the validation of source and target models. We have validated
our proposal by means of a prototype developed under SWI-Prolog. The prototype to-
gether with the case study can be downloaded from http://indalog.ual.es/
mdd. Our approach will be applied to a well-known example of model transformation
in which an UML class diagram representing a database (as an entity-relationship dia-
gram) is transformed into an UML diagram representing a relational database.

Moreover, OWL is a formalism for knowledge representation in which reasoning
(consistence checking and querying) has been largely studied. Recently, a fragment of
OWL, named OWL RL [26] has been proposed and a set of rules have been defined for
it in order to provide rule based reasoning. Such rules can be implemented in Prolog.
In a previous work [2] we have implemented such rule system in the SWI-Prolog in-
terpreter. Now, we have integrated such reasoning with our current proposal as follows.
The source and target meta-models of a certain transformation can include constraints
that cannot be specified by means of an UML-based meta-model, rather than they can
be specified by means of OWL RL. Therefore, we are interested to validate source and
target models against their corresponding meta-models by means of OWL RL reason-
ing.



Therefore, the advantages of this approach are the declarative nature of the transfor-
mation specification, the use of a standardized language (Prolog), the ability of execut-
ing the transformation and automatically check the well-formedness constraints on the
source and target models. With respect to model transformation verification/validation,
our approach is limited to validation of source and target models. In addition, our ap-
proach is limited to ODM expressivity power and OWL RL reasoning capabilities.
We believe that we could extend our work to a more general framework of verifica-
tion/validation of model transformations in the line of [10], thanks to the logic nature
of our proposal.

The structure of the paper is as follow. Section 2 will introduce the model trans-
formation framework and will describe a case study of transformation. Section 3 will
present the Prolog-based approach. Section 4 will show model validation by means of
OWL RL. Section 5 will discuss related work. Finally, Section 6 will conclude and
present future work.

2 Model Transformation

The elements to be considered in a given ontology based transformation using Prolog
as transformation language can be summarized as follows:

– Firstly, we have to consider the meta-model of the source model which defines the
elements occurring in source model. Any given instance of the defined meta-model
is transformed by applying the transformation rules.

– Secondly, we have to consider the meta-model of the target model which defines
the elements occurring in target model. Any instance of the source meta-model is
transformed into an instance of the meta-model of the target model.

– Finally, we have to define Prolog rules for transforming any instance of the source
meta-model into an instance of the target meta-model. The instance of the target
meta-model defines the target model of the transformation.

The contribution of Prolog in this approach is the use of a well-known rule language
for expressing transformations. The question now is, how to express transformations in
Prolog? Our proposal is as follows.

– The ODM proposal provides a representation of UML models by means of an on-
tology. The TBox represents the meta-model and the ABox represents properly the
model. We can represent an ABox in Prolog by means of facts.

– In particular, the source model is defined by means of an instance of the source
meta-model and therefore a source model can be mapped into a set of Prolog facts.

– Now, a transformation between a source model and a target model can be seen as
a transformation of the set of Prolog facts of the source model into a set of Prolog
facts representing the target model.

– Our proposal is to use Prolog for defining rules for transforming Prolog facts rep-
resenting UML models.



Fig. 1. Integration with UML/OWL tools

Our approach has been implemented and tested with some examples. We have in-
tegrated our approach with other UML and OWL tools (see Figure 1). We have used
the TopCased UML tool [34] for designing the source and target meta-models. In ad-
dition, we have used a UML2OWL transformer (available from [17]) in order to have
the ODM-based representation of source and target meta-models. We have also used
the Protegé tool [21] for defining the instance of the source meta-model, and for ex-
porting the source model (i.e. meta-model+instance) into an OWL document. Protegé
is also used for defining constraints of the source meta-model. Such constraints are ex-
pressed by means of OWL RL. Then, the SWI-Prolog interpreter is used for validating
the source model, and for transforming the instance of the source model into the in-
stance of the target model. Once the target model is computed, Protegé can be used for
defining constraints on the target meta-model and SWI-Prolog is used for validating the
target model. After, the Protegé tool is also used for exporting the target model together
with the target meta-model to a OWL document. Finally, an OWL2UML transformer
has been used for obtaining the target model from the ODM-based representation.

2.1 Case Study

As an example of model transformation we will consider two UML profiles for database
design and we will describe how to transform the first profile into the second one.

The model of Figure 2 represents the modeling of a database by means of UML.
We will call to this kind of modeling, the “entity-relationship” modeling of a database
in contrast to the model of Figure 3 which will be called “relational” modeling of a
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Fig. 2. Entity-relationship modeling of the Case Study
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Fig. 3. Relational modeling of the Case Study

database. The proposed UML profile for entity-relationship modeling aims to adapt the
UML class diagram to the traditional entity-relationship model, with some extensions
for object-oriented modeling. The proposed UML profile consists of the following ele-
ments:

– Entities are represented by means of UML classes (i.e., Student and Course).
– A container is defined for each entity (i.e., DB Students and DB Courses). The

container is responsible of the storing of the objects of the entity. Containers are
not usual in the entity-relationship model, however in an object-oriented approach
the objects belonging to an entity have to be stored in a container. Our UML profile
assumes that containers are unique for each entity.

– Relationships are represented by means of UML associations. Relation names are
association names. In addition, the proposed UML profile allows to define role
names to each end of the associations (i.e., is registered and register).

– Entity attributes are class attributes. Each entity has key attributes (one or more).



Fig. 4. Meta-model of the Source Models

metamodel B
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Fig. 5. Meta-model of the Target Models

– Associations can be adorned in our UML profile for entity-relationship modeling
with qualifiers. The role of qualifiers in our UML profile is to specify the key at-
tributes of each entity used as foreign keys of the corresponding association. A
constraint in our UML profile is that qualifiers have to be selected from the key
attributes in the corresponding entity.

– Navigability can be specified in our profile. In a relational model based implemen-
tation of the profile, one table should be implemented for each container and one
table for each navigable association.

Figure 3 shows the relational modeling of the same database. Such modeling also
defines an UML class diagram based profile for database design. It introduces the fol-



objectmodel A

name = credits

type = float

key = false

 : attribute

name = title
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name = id_course

type = int
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max = *
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 : qualifier
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name = id_student
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 : qualifier
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type = int

key = false
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type = String
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name = Student
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Fig. 6. Object Model of Source Model

lowing new stereotypes: << table >>, << row >> and << column >> for specifying
tables, rows of tables and columns of tables. In addition, line is used as role name of
each row in the table, key is used as role for key attributes in rows, foreign is used as
role for foreign keys in rows, and col is used for non keys and non foreign keys in rows.
Finally, each column has an attribute called type. A constraint of the target meta-model
is that foreign keys have to be keys of other tables.

Both profiles can be meta-modeled by means of UML. Figures 4 and 5 represent
the meta-modeling of the profiles. In the first case, DB Students and DB Courses are
instances of the class store, Student and Course are instances of the class data, the
attributes of Student class and Course class are instances of the class attribute, and
the relationships between entities are represented in the meta-model by means of the
classes relation, role and qualifier. In the second case, tables and rows of the target
model are instances of the corresponding classes, and the same can be said from key,
col and foreign classes. Now, we will show how the UML class diagram of the Figure
2, can be represented by means of an UML object diagram which is an instance of the
UML meta-model of the Figure 4. It can be seen in Figure 6. The UML model of Figure
3 can be also represented as an UML object diagram (see Figure 7).

Now, the problem of model transformation is how to transform an UML class di-
agram of the type A (as Figure 2) into an UML class diagram of type B (as Figure
3). The transformation is as follows. The transformation generates two tables called
the students and the courses including each one three columns grouped into rows. The
table the students includes for each student the attributes of Student of Figure 2. The
same can be said for the table the courses. Given that the association between Student



objectmodel B
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Fig. 7. Object Model of Target Model

and Course is navigable from Student to Course, a table of pairs is generated to rep-
resent the assignments of students to courses, using the role name of the association
end, that is, register concatenated with Course, for naming that table. The columns
id student and id course taken from qualifiers, play the role of foreign keys which are
represented by means of the role foreign in the associations of Figure 3.

The transformation can be considered as a transformation between object diagrams
of source and target meta-models. Therefore, a transformation should be able to de-
fine a set of rules from which an instance of the target meta-model is obtained from
the instance of the source meta-model. Our proposal is to use logic programming (in
particular, Prolog) for defining such transformation.

3 Prolog for Model Transformation

In this section, we will show how Prolog can be used for defining transformation rules
in our approach. In order to adapt Prolog to such context, we have to consider the
following elements:

– The Prolog interpreter has to import and export OWL files. This is the case of
SWI-Prolog which includes a library for importing and exporting RDF(S)/OWL
triples. The SWI-Prolog library stores RDF triples in a database, and they can be
retrieved by means of a predicate called rdf. The RDF library includes predicates:
rdf reset db/0 which resets the database, rdf load(+File,+Options)
for importing triples, rdf save(+File) for exporting triples, and finally, rdf -
assert(+Subject,+Property,+Object) for inserting a new triple in the
current database.

– A Prolog predicate transform(+SourceModelFile,+TargetModelFi-
le) is defined for transforming a source model (stored in a OWL file) into a target
model (stored also in a OWL file). The Prolog code of such predicate is as follows:



transform( , ):-rdf reset db,fail.
transform( , ):-retractall(new( , , )),fail.
transform(FileIn, ):-rdf load(FileIn,[]),fail.
transform( , ):-newrdf(A,B,C),assert(new(A,B,C)),fail.
transform(FileIn, ):-rdf reset db,fail.
transform( , ):-new(A,B,C),rdf global term(B,D),rdf assert(A,D,C),fail.
transform( ,FileOut):-rdf save(FileOut),rdf reset db.

– The source model is stored in Prolog and it can be retrieved by means of the rdf
predicate. The transformation rules define new triples representing the target model.
A new predicate called newrdf is defined in the transformation rules.

3.1 Transformation of the Case Study

In order to show how Prolog rules are defined in our approach for model transformation,
we will consider the case study of Section 2.1 in which the model A (see Figure 2) is
transformed into the model B (see Figure 3). Now, the model A can be represented by
means of an ontology in which the TBox contains the meta-model of Figure 4, together
with a ABox with the instance of Figure 6. The transformation has to map the ABox
of the model A to the ABox of the model B (see Figure 6). For instance, the OWL
document containing the ABox of the model A defines, among others, the following
elements:

<store rdf:about="#01 DB Students store">
<store.name rdf:datatype="&xsd;string">DB Students
</store.name>
<store.contains rdf:resource="#02 Student data"/>
</store>

<data rdf:about="#02 Student data">
<data.name rdf:datatype="&xsd;string">Student
</data.name>
<data.container rdf:datatype="&xsd;string">the students
</data.container>
<data.contained in rdf:resource="#01 DB Students store"/>
<data.attr of rdf:resource="#03 id student attribute"/>
<data.attr of rdf:resource="#04 name attribute"/>
<data.attr of rdf:resource="#05 age attribute"/>
<data.role of rdf:resource="#06 is registered role"/>
</data>

which represent the instances DB Student and Student of the classes store and data,
respectively. Now, the OWL document of the source model can be imported from Pro-
log and it can be retrieved by means of the Prolog predicate rdf. For instance:

Subject=’http://metamodelA.ecore#02 Student data’

Property=‘http://metamodelA.ecore#data.name’

Object=literal(type(’http://www.w3.org/2001/

XMLSchema#string’, ’Student’))

is obtained by means of the Prolog goal :-rdf(Subject,Property,Object).
Now, the predicate rdf can be used in the transformation rules to define the triples of
the target model. The transformation rules define a new predicate newrdf. For in-
stance, the following rules define the identifiers of the elements of the class table of the
model B:



newrdf(IdTable,rdf:type,’http://metamodelB.ecore#table’):-
rdf(IdData,rdf:type,’http://metamodelA.ecore#data’),
atom concat(IdData,’table’,IdTable).

newrdf(IdTable,rdf:type,’http://metamodelB.ecore#table’):-
rdf( ,’http://metamodelA.ecore#data.role of’,IdRole),
rdf(IdRole,’http://metamodelA.ecore#role.navigable’,Navigable),
Navigable=literal(type( ,true)),
atom concat(IdRole,’table’,IdTable).

The first rule defines triples (IdTable,rdf:type,’http://metamodel-
B.ecore#table’) obtained from triples (IdData,rdf:type,’http://me-
tamodelA.ecore#data’), where IdTable is the identifier of the table, which is
generated concatenating the word ’table’ to IdData. The second rule defines the
identifiers of tables obtained from navigable roles, which are generated concatenating
the word ’table’ to the identifier of the role. In such a way that the following Prolog
goal obtains the tables of the target model:

?- newrdf(IdTable,rdf:type,’http://metamodelB.ecore#table’).
IdTable = ’http://metamodelB.ecore#02 Student datatable’ ;
IdTable = ’http://metamodelB.ecore#09 Course datatable’ ;
IdTable = ’http://metamodelB.ecore#13 register roletable’ ;

which represent the identifiers of the tables Student, Course and register of the Fig-
ure 7. Now, the identifiers of the rows of Figure 7 can be defined as follows:

newrdf(IdRow,rdf:type,’http://metamodelB.ecore#row’):-
rdf(IdData,rdf:type,’http://metamodelA.ecore#data’),
atom concat(IdData,’row’,IdRow).

newrdf(IdRow,rdf:type,’http://metamodelB.ecore#row’):-
rdf(IdData,’http://metamodelA.ecore#data.role of’,IdRole),
rdf(IdRole,’http://metamodelA.ecore#role.navigable’,Navigable),
Navigable=literal(type( ,true)),
rdf split url( ,Pointer,IdData),
atom concat(IdRole,Pointer,Id),
atom concat(Id,’row’,IdRow).

The first rule defines the identifiers of rows obtained from instances of data (i.e., the
identifiers of the courses and the students), and the second rule defines the identifiers
of rows obtained from navigable roles (i.e., the identifier of registerCourse). Now, key,
col and foreign elements have to defined. For instance, the identifiers of instances of the
foreign class are defined as follows:

newrdf(Id,rdf:type,’http://metamodelB.ecore#foreign’):-
rdf( ,’http://metamodelA.ecore#data.role of’,IdRole),
rdf(IdRole,’http://metamodelA.ecore#role.navigable’,Navigable),
Navigable=literal(type( ,true)),
rdf(IdRole,’http://metamodelA.ecore#role.is’,IdQualifier),
rdf(IdData,’http://metamodelA.ecore#data.role of’,IdRole),
rdf split url( ,Pointer1,IdData),
rdf split url( ,Pointer2,IdQualifier),
atom concat(IdRole,Pointer1,Id1),
atom concat(Id1,Pointer2,Id2),
atom concat(Id2,’foreign’,Id).

In this case, instances of the foreign class are obtained from navigable roles, using
the identifier of the qualifier and the identifier of the role to generate the identifier. Now,
the association roles of the Figure 6 have to be defined. For instance, the role has from
the class table of Figure 4 is defined as follows:



newrdf(Id,’http://metamodelB.ecore#table.has’,IdRow):-
rdf(IdData,rdf:type,’http://metamodelA.ecore#data’),
atom concat(IdData,’table’,Id),
atom concat(IdData,’row’,IdRow).

newrdf(Id,’http://metamodelA.ecore#table.has’,IdRole):-
rdf(IdData,’http://metamodelA.ecore#data.role of’,IdRole),
rdf(IdRole,’http://metamodelA.ecore#role.navigable’,Navigable),
Navigable=literal(type( ,true)),
rdf split url( ,Pointer,IdData),
atom concat(IdRole,’table’,Id),
atom concat(IdRole,Pointer,Id),
atom concat(Id,’row’,IdRow).

The first rule defines the rows of tables obtained from instances of data, and the sec-
ond rule defines the rows of tables obtained from navigable roles. Now, the role is col
from row of Figure 4 is defined as follows:

newrdf(IdRow,’http://metamodelB.ecore#row.is col’,IdCol):-
rdf(IdData,rdf:type,’http://metamodelA.ecore#data’),
atom concat(IdData,’row’,IdRow),
rdf(IdData,’http://metamodelA.ecore#data.attr of’,IdAtt),
rdf(IdAtt,’http://metamodelA.ecore#attribute.key’,Key),
Key=literal(type( ,false)),
atom concat(IdAtt,’col’,IdCol).

in which columns are obtained from non key attributes. Finally, attributes of classes
of Figure 4 have to be defined. For instance, name of class table is defined as follows:

newrdf(IdTable,’http://metamodelB.ecore#table.name’,ContName):-
rdf(IdData,’http://metamodelA.ecore#data.container’,ContName),
atom concat(IdData,’table’,IdTable).

where the table names are obtained from container names (i.e., the students and
the courses). In addition, column names (i.e., age, name, title and credits) are obtained
from non key attribute names:

newrdf(IdCol,’http://metamodelB.ecore#col.name’,AttName):-
rdf(IdData,rdf:type,’http://metamodelA.ecore#data’),
rdf(IdData,’http://metamodelA.ecore#data.attr of’,IdAttribute),
rdf(IdAttribute,’http://metamodelA.ecore#attribute.name’,AttName),
rdf(IdAttribute,’http://metamodelA.ecore#attribute.key’,Key),
Key=literal(type( ,false)),
atom concat(IdAttribute,’col’,IdCol).

4 Model Validation

Finally, we would like to show how to validate source and target models by means of
OWL RL. There are some constraints on source and target models that could not be
specified by means of the UML-based meta-model. Such constraints can be specified
by means of the OWL RL in order to validate the source and target models w.r.t. their
corresponding meta-model. For instance, in our case study we have the following con-
straints:

(1) Data entities of the source meta-model have at least a key.
(2) Qualifier entities of source models have to be selected from keys of Data entities.
(3) Foreign keys of the target models have to be keys of other tables.



Such constraints can be checked by means of OWL RL by adding the following
formulas in Description Logic:

(1) KeyAtt(id student), KeyAtt(id course)
(2) Qualifier v KeyAtt
(3) Foreign v Key

where KeyAtt is a new concept of the source meta-model defined as the elements
having the attribute key equal to true: KeyAtt ≡ ∃ key. {true} and KeyAtt u
∃key.{false} = ⊥.

Now, we can use the OWL RL reasoner for validating source and target models. For
instance, let us suppose that in the source model the Data entity Student has id student
attribute with key value set to false, and declared of type KeyAtt. Then, the OWL RL
reasoner shows as output the following message:

Warning: Disjoint Classes
Element:
http://metamodelA.ecore#03_id_student_attribute
Class:
http://metamodelA.ecore#keyatt
Class Restriction:
Property:
http://metamodelA.ecore#attribute.key
Has Value:
literal(type(http://www.w3.org/2001/XMLSchema#boolean, false))

The meaning of such message is that an element (i.e., id student) has been found
in the intersection of KeyAtt and ∃key.{false} classes. Let us now suppose that a cer-
tain Qualifier, for instance, id course is not selected from KeyAtt. Then the OWL RL
reasoner shows the following message:

Warning: Same and Different Individuals
http://metamodelA.ecore#10_id_course_attribute
http://metamodelA.ecore#10_id_course_attribute

The previous message adverts that id course is equal and different from itself, given
that the reasoner tries to make it equal to id course qualifier.

5 Related Work

Several transformation languages and tools have been proposed in the literature (see
[13] for a survey). In the context of MOF (Meta Object Facility) meta-modeling archi-
tecture, the QVT (Query-View-Transformation) language [28, 23] has been proposed as
standard for model transformation. QVT is actually a family of languages: the relations
and core languages which are declarative, and the operational mapping language which
is an imperative language. The language ATL (ATLAS transformation language) [19,
18] is a domain-specific language for specifying model-to-model transformations. ATL
is inspired by QVT. ATL is a hybrid language, and provides a mix of declarative and
imperative constructs.



Our approach follows a different direction, aiming to use a declarative language
(i.e., Prolog) for expressing transformations by using the ontology based representa-
tion of models. In addition, transformation and validation are integrated. Our proposal
contributes also to the framework of model transformation with declarative languages.

Declarative languages have already been used in this context in some works. A first
approach is [14], which describes the attempts to use several technologies for model
transformation including logic programming. In particular, they use as examples the
Mercury and F-Logic logic languages. The approach [7] introduces inductive logic pro-
gramming in model transformation. The motivation of the work is that designers need
to understand how to map source models to target models. With this aim, they are able
to derive transformation rules from an initial and critical set of elements of the source
and target models. The rules are generated in a (semi-) automatic way. We believe that
(semi-) automatic derivation of transformation rules could be an extension of our work,
but it is out of the scope of the current work.

The language Tefkat [25, 24] is a declarative language whose syntax resembles a
logic language with some differences (for instance, it uses forall construct for traversing
models). In this framework, [16] proposes metamodel transformations in which evolu-
tionary aspects are formalised using the Tefkat language. In our case, we have adopted
the syntax of Prolog for transforming models. The advantage of using Prolog is that a
Prolog programmer can use our tool without training. In addition, the programmer can
use the existing Prolog libraries in the code. In particular, the OWL RL library can be
used for validation of models. With respect to incrementality, we have still not covered
this aspect in our work.

The language Maude [11] has been also used in several works about model trans-
formation. For instance, in [31] UML models and metamodels have been formalized
in Maude, and the same authors have developed an Eclipse plug-in called Maudelling
that enables the transformation of models and metamodels to the corresponding Maude
specifications. Mova [12] and Moment [9] are also Maude-based modeling tools for ver-
ification of UML models. In the case of Maude-based tools, they also have to represent
(UML) metamodels and models by means of the constructions of the language: sorts,
classes, etc. The introduction of models in Maude enables to use many of the tools
(model checking, verification, etc) available on Maude. Comparing Maude proposals
with our approach, we believe that Maude is equipped with powerful tools for model
checking and verification and it makes model transformation an interesting application
of the Maude language. Our proposal aims in the same sense to find a framework for
model transformation based on Prolog. Prolog can provide easy specification and rapid
prototyping, along with the wide acceptance of Prolog as programming language.

Prolog has been already used in the context of MDD in the MoMaT framework [32].
In particular, they use Prolog for representing and verifying models in the same sense as
our proposal. Our approach can be considered as an extension of such work, allowing
meta-modeling and transformation/validation of models. However, our work take as
basis the ODM representation of models, and uses OWL RL reasoning for validation.
In summary, our approach to model transformation with Prolog can be seen as the basis
for the building a ODM/Prolog and logic-based tool for transforming and analysing
models.



There are also so-called graph transformation languages, which can be considered
of declarative nature. This is the case of VIATRA2 [6], GReAT [1] and AGG [33], among
others. Graph transformation languages describe transformations by graph rewriting.
Usually, these languages consist of rules whose match with a graph provides a trans-
formation on the graph, in particular, deleting and adding new elements to the graph.
VIATRA2 has some features which make the proposal closer to our approach. Although
the specification of model transformations is supported by graph transformations, Pro-
log is used as transformation engine. Thus XMI models and rules are translated into a
Prolog graph notation. In our proposal Prolog is used as transformation engine but also
as transformation specification language. Graph transformations provides a very intu-
itive and visual mechanism for expressing transformations. Our approach is not focused
on visual representation of transformations, however, it is based on meta-modeling of
source and target models which makes easy the definition of transformations.

Finally, Datalog has been used in [5] to transform data schemas (from OO schemas
to SQL and from SQL to XML, for example). Our model transformation approach has
been applied a similar problem to the presented in [5]. In the same line of research (i.e,
database transformations), the WOL language [22] is a declarative language for spec-
ifying database transformations and constraints. WOL is based on Horn clause logic
expressions using a small number of simple predicates and primitive constructors. Our
running example can be seen as an example of tranformation in WOL, however, our
approach can be applied to other kinds of UML transformations.

6 Conclusions and Future Work

In this paper we have presented a framework for the specification and validation of
model transformations by means of Prolog rules, using the representation of UML
models by means of ODM. Our approach has been applied to a well-known exam-
ple of model transformation in which an UML class diagram representing a database
(as an entity-relationship diagram) is transformed into ab UML diagram representing a
relational database. We have validated our proposal by means of a prototype developed
under SWI-Prolog.

Our approach has to be extended in the future as follows: (a) Firstly, we would like
to test our prototype with other kinds of UML diagrams and transformations, and also
with bigger examples; (b) Secondly, we are also interested in the use of our approach
for model driven development of user interfaces in the line of our previous works [3, 4];
(c) Finally, we believe that our work will lead to the development of a logic based tool
for transformation under the ECLIPSE framework.
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4. J. M. Almendros-Jiménez and L. Iribarne. UML Modeling of User and Database Interaction.
The Computer Journal, 52(3):348–367, 2009.

5. P. Atzeni, P. Cappellari, R. Torlone, P.A. Bernstein, and G. Gianforme. Model-independent
schema translation. The VLDB Journal, 17(6):1347–1370, 2008.
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