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Abstract

The high thermal energy consumption is one of the main drawbacks hamper-

ing the commercial implementation of Membrane Distillation (MD) technology.

The development of adequate operating strategies can help to reduce these en-

ergy requirements. Accordingly, this paper focuses on the optimal management

of the array of MD modules composing a commercial-scale MD plant, trying

to reduce their thermal energy consumption while ensuring a given water need.

For this aim, the array of MD modules is modeled as a Mixed Integer Pro-

gramming (MIP) system to consider that some modules can be turned on/off

depending on the operation specifications. An algorithm based on the Gener-

alized Bender Decomposition (GBD) is then developed for the efficient solution

of the problem. This algorithm is incorporated in a Model Predictive Con-

trol (MPC) strategy allowing to manage the plant in real time. The effective-

ness of the proposed strategy is verified using a practical example. The obtained

results are compared with a manual and a previous strategy presented in liter-

ature, showing that for a sunny day, around the 65 and 55 % of the thermal

energy consumed by these methodologies can be saved, which means important

thermal energy savings that can be relevant for the industrial implementation
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of MD technology.

Keywords: Thermal efficiency; Desalination; Solar energy; Benders

decomposition; Model Predictive Control.

1. Introduction

Membrane Distillation (MD) is an arising thermally driven separation method

under investigation. This technology enables the use of low-grade thermal en-

ergy to desalinate water, what puts MD based processes in a competitive posi-

tion to relieve water-energy stress nexus sustainably [1]. Despite this fact, its

low energy efficiency, mainly caused by its high thermal energy consumption

per unit of distillate produced, has hampered the industrial commercialization

of the technology so far [2].

From the process point of view, MD stands out from conventional desalina-

tion technologies as: i) it is able to treat high salinity feed waters [3], ii) it has a

high rejection factor [4], iii) it is driven by the partial pressure difference between

both sides of the membrane, which is originated by a temperature difference in-

stead of a mechanical power that increases exergy and costs [5], iv) it operates

at low pressure around 0.1 MPa, which is much lower than the one required by

Reverse Osmosis (RO) processes 2.5-8.5 MPa [5], and v) it is conducted at low

temperature (lower than 90 oC), which allows MD units to be coupled with low

grade solar energy [4, 6]. This last advantage, together with the simplicity of the

process, make MD systems especially suitable for developing stand-alone plants

to be applied in offgrids locations; with good irradiance conditions and small-

medium water needs [7]. Nevertheless, for making MD technology competitive

at industrial-scale, its specific thermal energy consumption must be reduced by

improving both the MD module design and configuration [8], and the operating

strategies [6].

Regarding the design of MD modules, remarkable improvements have been

reported in the literature in the last decades. These investigations were aimed

at creating new membranes, configurations and modules, and to understand
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the membrane fouling [2]. These research efforts have caused a breakthrough in

terms of thermal efficiency, going from a specific thermal energy consumption of

628 kWh/m3 (MD modules without heat recovery [9]) to the current consump-

tion of commercial-scale modules, around 100 kWh/m3 at optimal operating

conditions [10]. Note that this number is far from the consumption of conven-

tional processes as RO, around 2-4 kWh/m3 [11]. However, as was pointed out

before, what is interesting of MD technology is that these energy requirements

(around 95 %) can be provided by solar energy [12]. Consequently, there are

also numerous works proposing effective combinations [13] and new designs of

integrated solar membrane-based desalination systems [14], showing that the

overall efficiency can be improved up to 15 %. Undoubtedly, the development

in the design of the modules is still an open research field, but due to the growth

of the technology, other research areas focused on the operation of MD modules

are gaining interest in recent years. These works are mainly aimed to optimize

the operating parameters of MD units [15], and to develop control and optimal

management methods for improving the performance of the technology in real

time [7].

With respect to the optimization of the operating parameters, several au-

thors are working on the development of effective statistical or black-box models

that allow to find optimal operating conditions of MD units [16]. The statis-

tical model most widely used for this aim is the Response Surface Method-

ology (RSM). These kind of research works are based on the same procedure

[17, 18, 19]: i) to design and conduct an experimental campaign in a deter-

mined operating range, ii) to adjust the selected outputs of the model by means

of the RSM method, and iii) to find the optimal operating conditions within the

studied operating range by applying an optimization method. Similarly, other

authors used black-box models based on Artificial Neural Networks instead of

RSM models with the same objectives [19, 20, 21]. Even though all these stud-

ies show how the thermal efficiency can be considerably improved by using the

optimal static operating conditions they present, these conditions are difficult

to achieve when using an energy source with an intermittent nature such as
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solar energy [22].

In this sense, the development of control and optimal operating strategies

to be applied in real-time become essential. In [23] two control modes based

on on/off controllers for the day and night were presented in simulation, try-

ing to maintain the distillate production stable even in cloudy days. A neural

network based controller that optimizes the distillate production under inter-

mittent conditions was presented and experimentally tested in [24]. In spite

of irradiance disturbances, a feedback control system with reference governor

for fixing a suitable operating temperature at the inlet of the MD module was

proposed and experimentally tested in [25]. Moreover, the work [7] experimen-

tally demonstrated that the thermal energy demand of an MD module can be

reduced in 1.21 kWh/m3 by making an optimal management of the solar field

powering it. In summary, the works presented above are fundamentally focused

on the operation of the solar field, rejecting irradiance disturbances and main-

taining desired temperature setpoints to maximize both, distillate production

and thermal energy efficiency. However, not only the temperature affects the

performance of MD modules but also the feed water flow rate [26]. The optimal

management of this variable is specially relevant because a tradeoff solution

must be adopted to maximize both thermal efficiency and distillate produc-

tion in current commercial-scale MD modules [19, 27], thus requiring properly

formulated optimization problems.

In industrial-scale plants, the optimal operation of the feed water flow rate is

even more critical. Due to the low production of current MD commercial mod-

ules (around 30 L/h in optimal operating conditions [18]), an industrial-scale

plant must include multiple MD units. Accordingly, an optimal management

of this variable can considerably reduce the Specific Thermal Energy Consump-

tion (STEC) of the facility. To the best of the authors knowledge, only a previous

work [28] deals with this problem. In that work, a distributed Model Predic-

tive Control (MPC) approach was proposed aimed at reducing the STEC while

assuring water needs. The tests performed in that work demonstrated how the

distributed MPC controller can reduce by 5 % the mean STEC of the operation.
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Nevertheless, it should be commented that the principal objective of that work

was to demonstrate how an effective distributed MPC technique can manage

the facility optimally when the water resources were limited and not all the

MD modules could be fed at their optimal operating range. In this way, in the

formulation of the control system, only continuous variables for the feed water

flow rate (within its operating range 400-600 L/h) were considered.

Motivated by the above literature review, the main gaps observed in terms

of MD operational strategies are the followings:

1. The real-time management methods proposed in the literature for Solar-

powered MD (SMD) systems are focused on the heat generation circuit.

The optimal operation of the feed water flow rate of the MD modules

has hardly been addressed, which can significantly improve the energy

efficiency.

2. The developed methods are mainly applied to pilot-scale plants. In in-

dustrial plants, the presence of multiple MD modules totally alters the

formulation of the problem, which has not been well discussed in the

aforementioned literature.

3. The only published work that addresses the management of an industrial-

scale plant uses only continuous variables in the optimization problem.

With this formulation only the STEC can be minimized. If binary vari-

ables for turning on and off MD modules are introduced in the problem,

the distillate production can be better adapted to the water demand.

In order to address the above issues, in the present work it is proposed a

general optimal operating strategy for reducing the total thermal energy con-

sumption of commercial-scale SMD plants connected to a consumer agent. The

strategy is focused on the management of the desalination unit of the facility, as

the optimal management of the solar field has been previously treated in the lit-

erature [7, 24, 25]. The contributions developed in this paper are the followings:

firstly, conventional models used in MD systems are adapted to the Mixed Inte-

ger Programming (MIP) methodology. In this formulation, the binary variables
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are related to valve apertures that allows to turn on/off the MD units installed

in the facility, whereas the continuous variables are related to the feed water flow

rate of each MD module. Based on this model, a Mixed Integer Nonlinear Pro-

gramming (MINLP) optimization problem is formulated, tasked with reducing

both the STEC and the total thermal energy consumption, while assuring the

water requirements. Secondly, it is proposed an efficient algorithm based on

the Generalized Benders Decomposition (GBD) method [29] that enables the

use of simpler optimization solvers, Mixed Integer Linear Programming (MILP)

and Quadratic Programming (QP) methods rather than MINLP for solving the

overall problem, which proved to reach optimal results more efficiently. This

algorithm is then incorporated into an MPC controller [30] which reflects the

operational strategy. Thirdly, to demonstrate the effectiveness of our novel pro-

posal, we present an exhaustive analysis by applying the developed technique

in a practical case study, and comparing the obtained results to those obtained

with a non-optimal management method (a manual operation) and with the

ones obtained with the previous approach presented in [28]. This analysis evi-

dences significant gains in relation to previous/manual approaches showing for

example that for a sunny day, around the 65 and 55 % of the thermal energy

consumed by these operating methodologies can be saved, which can mean im-

portant contributions toward the commercialization of MD technology.

The rest of the paper is arranged as follows: Section 2 is dedicated to the

description of the system and the optimization problem associated to the man-

agement of the facility. Section 3 is aimed at formulating the proposed operating

strategy. Section 4 shows the performance of the management technique in a

practical case study, and Section 5 summerizes the conclusion obtained from

the results.
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2. System description and problem formulation

2.1. System description

Fig. 1 shows a general schematic diagram of an SMD plant used for desalina-

tion purposes [4]. In this plant, a solar thermal field is used as thermal source.

The outlet of the solar field is coupled to a storage tank that is used as buffer

system for damping irradiance disturbances or storing the remaining thermal

energy of the process. Then, a heat exchanger is employed to connect the MD

modules and the heat generation circuit. As can be seen, the desalination unit

is formed by an array of MD modules which are bonded in parallel according

to Fig. 2. The feed water enters the MD unit, which uses the thermal energy

transferred by the solar field to produce distillate and brine. In the process, the

brine is rejected while the distillate is stored in the distillate tank. Finally, the

water demand agent takes the required freshwater from this tank.

Figure 1: Schematic diagram of an industrial-scale SMD plant.

Regarding the operation of the MD modules, as illustrated in Fig. 2, the

feed water is pumped by a main pipe to which all the MD modules are joined.

The available valves (Vm in Fig. 2) allow to turn on/off each MD module. If

a module is in operation, the feed water flows through the condenser channel.

In this stage, the feed solution is preheated with the latent heat of condensa-

tion and with the sensible heat that crosses the membrane. Afterwards, the

preheated solution is circulated to the heat exchanger where it is heated with

the fluid coming from the solar field storage tank. Later, the hot solution flows

through the evaporator channel where the volatile molecules are evaporated and

pass through the membrane and the non-volatile ones are rejected in the form
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Figure 2: Conection of a single MD module in the array of MD modules.

of brine. At the end, the volatile molecules are condensed and driven to the dis-

tillate tank. A more complete description of the process can be found elsewhere

[10, 18].

2.2. MD module modelling

As this work is focused on the management of the desalination unit, a model

that accurately represents the behaviour of each of the MD modules contained

in the unit must be used for the formulation of the problem. As was men-

tioned in the introduction section, most works presented in the literature use

the RSM methodology as the modelling approach. This method provides linear

or quadratic polynomial functions obtained from experimental data to fit the

outputs of MD processes. In this work, we use the RSM models presented in

[10, 18, 28]. By following these works, each subsystem m, i.e. each MD module

included in the array, can be modelled according to Fig. 3. So, each subsystem

m is characterized by:

• Input: feed water flow rate (Fm(k) ∈ <+).

• Outputs: distillate production (dm(k) ∈ <+) and the temperature differ-

ence (∆Tm(k) ∈ <+) between the outlet of the condenser channel (Tcout,m)
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and the inlet of the evaporator channel (Tein,m) of the MD module. It

should be remarked that this variable can be considered as the driving

force of the process, which will be used to calculate the amount of ther-

mal energy consumed by each MD module.

• Disturbances: inlet temperature of the condenser channel of the MD mod-

ule (Tcin,m(k) ∈ <+) and inlet temperature of the evaporator channel of

the MD module (Tein,m(k) ∈ <+).

Figure 3: Single MD module characterization. f denotes a linear function.

Note that k is related to the current time. Thus, following the ideas proposed

in [10, 18, 28], the model of a single MD m-module can be written in a generic

way as:

dm(k) = p1 + p2 · Tein,m(k) + p3 · Tcin,m(k) + p4 · Fm(k)

+ p5 · Tein,m(k) · Fm(k), (1)

∆Tm(k) = p6 + p7 · Tein,m(k) + p8 · Tcin,m(k) + p9 · Fm(k), (2)

where pi, with i = 1, . . . , 9, are constant polynomial coefficients, and the rest of

variables are defined in Appendix A.

2.3. MIP modelling of the array of MD modules

To formulate the whole optimization problem, binary variables have been

introduced in the model presented above. These variables are physically related

to the valves located at the inputs and outputs of each MD module (Vm in

Fig. 2). In this way, consideringM = {1, . . . ,m} the set of MD modules in the
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array, the MIP model of the whole system can be written as, ∀m ∈M:

dm(k) = αdm,1(k) · δm(k) + αdm,2(k) · Fm(k), (3)

∆Tm(k) = αTm,1(k) · δm(k) + αTm,2(k) · Fm(k), (4)

where:

αdm,1(k) = p1 + p2 · Tein,m(k) + p3 · Tcin,m(k), (5)

αdm,2(k) = p4 + p5 · Tein,m(k), (6)

αTm,1(k) = p6 + p7 · Tein,m(k) + p8 · Tcin,m(k), (7)

αTm,2(k) = p9, (8)

δm(k) ∈ {0, 1} , (9)

δm(k) · FMin
m ≤ Fm(k) ≤ δm(k) · FMax

m , (10)

FMin
m and FMax

m are the minimum and maximum feed flow rate allowed of each

MD module repectively, and δm denotes the binary variable related to the valve

of MD m-module, which assumes value 1 if the valve is open and 0 otherwise.

In addition, it must be remarked that all the subsystems are coupled by

the total distillate production, dT (k), and by the total water flow rate income

FT (k), which is: ∑
m∈M

dm(k) = dT (k), (11)

∑
m∈M

Fm(k) = FT (k), (12)

FMin
T ≤ FT (k) ≤ FMax

T , (13)

where FMin
T and FMax

T are the minimum and maximum flow rate provided by

the feed water pump.

2.4. Optimization problem formulation

The main objective of the optimization problem is to minimize the total

thermal energy consumption of the facility while assuring the water demand.

To achieve this, the manipulated variables available in the real facility are the
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aperture of the Vm valve (δm(k)) and the feed water flow rate (Fm(k)) of each

MD module. Thus, to formulate the optimization problem, three main things

must be considered.

First, the total distillate production must be equal or higher than the wa-

ter demand, what can be directly included in the optimization problem as a

constraint. Nevertheless, as shown in Fig. 1, there is a storage tank available

between the consumer and the producer agent. So, the production constraint

can be formulated according to the water level of the tank. Note that, the

behaviour of this element is like an integrator which allows to filter the water

demand, thus smoothing the production constraint.

Second, the total thermal energy consumption of the desalination unit can

be directly reduced by turning on as few modules as possible at each moment.

This can be achieve by optimally managing the binary variables according to

the operating water needs.

Third, when a module is turned on, the total thermal energy it consumes can

be reduced by improving its thermal efficiency. In MD processes, one of the most

widely used metrics to estimate the thermal efficiency is the STEC [4, 10, 18].

The STEC is defined as the amount of thermal energy required to produce a

volume unit of distillate (kWh/m3). For a single m-module, it can be calculated

as follows:

Sm(k) =
c1 · Fm(k) ·∆Tm(k)

dm(k)
, (14)

c1 =
ρ · cp
cf

, (15)

where Sm(k) is the STEC of MD m-module, and the rest of variables and

constants are defined in Appendix A. It should be noted that to maximize the

distillate production (to meet the water needs) and to minimize the STEC in

current commercial MD modules, the maximun and minimum feed flow rate

must be applied respectively [28]. Thus, the operation of the feed flow rate of

each MD module is not trivial, and a tradeoff solution must be taken at each

sample time depending on the operating conditions.
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According to the above issues, the optimization problem can be formulated

as:

min
∑
m∈M

c1 · Fm(k) ·∆Tm(k)

dm(k)
, (16)

subject to, ∀m ∈M:

dm(k) = αdm,1(k) · δm(k) + αdm,2(k) · Fm(k) + c2 · (1− δm(k)) , (17)

∆Tm(k) = αTm,1(k) · δm(k) + αTm,2(k) · Fm(k), (18)

δm(k) · FMin
m − Fm(k) ≤ 0, (19)

Fm(k)− δm(k) · FMax
m ≤ 0, (20)

δm(k) ∈ {0, 1} , (21)

and the constraints that couple all the MD modules and the consumer and

producer agent: ∑
m∈M

Fm(k) = FT (k), (22)

FMin
T ≤ FT (k) ≤ FMax

T , (23)∑
m∈M

dm(k) = dT (k), (24)

(dT (k)−D(k)) · c3 + LT (k − 1) ≥ L∗ (25)

LMin
T ≤ LT (k) ≥ LMax

T (26)

where c2 is a large number (i.e., 106) used to avoid division by zero in Eq. (16),

D(k) is the water demand of the consumer agent, c3 is the conversion factor,

LT (k) is the water level of the distillate tank, LMin
T and LMax

T are the maximum

and minimum level of the tank, and L∗ is the setpoint water level of the distillate

tank. Note that all the units and description of the variables are available in

Appendix A.

In the formulation of the optimization problem, the objective function,

Eq. (16), is focused on minimizing the sum of the STEC of each MD module.

The summation term allows to minimize the total thermal energy consumption
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of the whole system, while the STEC calculation allows to enhance the thermal

efficiency of the modules turned on at each sampling time. The constraints in

Eqs. (17)-(24) define the model of the system and the physical limits of the

manipulated variables. Eq. (25) is related to the production needs, which have

been introduced in the problem according to the water level of the distillate

tank, as was explained before. Finally, it should be remarked that the dis-

turbances and water demand are known, and therefore, they are fixed in the

optimization problem.

Note that, the formulated problem is an MINLP problem due to the non-

linearity of the objective function Eq. (16), and the presence of binary and

continuous variables. Regarding the feasibility of the problem, the only con-

straint that can turn the problem infeasible is Eq. (25). However, as long as the

desalination unit and the solar field powering it are well sized according to the

water needs the problem will be feasible. In addition, the tank level setpoint

can be adapted to the plant operation in the starting of the operation, if the

tank starts with level zero. Nevertheless, smoothing techniques could also be

applied in this constraint such as the use of slack variables if necessary.

It should be also remarked that the boundary conditions of the problem

mainly change according to the operating temperature (temperature at the in-

let of the evaporator channel of the MD modules), which depends on solar

irradiance. Therefore, the problem must be solved in real time to achieve an

optimal operation. However, the nonlinearity of the problem requires a high

computational power which prevents the problem from being solved quickly by

using MINLP solvers, especially when the number of agents in the array of MD

modules is large. Therefore, in the following section we propose an efficient

algorithm based on the GBD method for solving this problem.

3. The GBD-based MPC operating strategy

In this section the GBD and the MPC methods are introduced. Then, the

MINLP problem presented in the previous section is formulated according to
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these two methodologies.

3.1. Benders decomposition method

Considering a generic MINLP problem:

min
x,y

f(x, y). (27)

s.t. h(x, y) = 0, (28)

g(x, y) ≤ 0, (29)

x ∈ X ⊆ <nx , (30)

y ∈ Y ny = {0, 1}, (31)

the basic idea of the GBD method [29] consists on solving this problem on a

iterative way, computing at each iteration an upper and a lower bound in the

solution space of the MINLP model. These bounds are obtained by decomposing

the overall MINLP problem into two problems: the master problem which

provides the lower bound, and the primal problem which provides the upper

bound.

The primal problem corresponds to the problem defined in Eqs. (27)-(31)

with the y-variables fixed in a particular solution 0-1, which is denoted by yl,

being l the iteration counter:

min
x,y

f(x, yl). (32)

s.t. h(x, yl) = 0, (33)

g(x, yl) ≤ 0, (34)

x ∈ X ⊆ <nx . (35)

Remark 3.1. Note that the solution of this primal problem is the global solution

for problem (27)-(31).

At this point, two different cases can be distinguished: feasible primal, and

infeasible primal. If the solution of the primal problem is feasible at iteration

l, it provides information of: i) the value of xl, ii) the value of the upper bound,
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which is the value of f(xl, yl), and iii) the value of the optimal Lagrange mul-

tipliers vectors λl and µl related to the set of equality (h) and inequality (g)

constraints respectively. The aforementioned information allows us to formulate

the following Lagrange function, which is called the optimallity cut:

Ll(x, y,λl,µl) = f(x, y) + λl
T
h(x, y) + µl

T
g(x, y). (36)

On the other hand, if the solution of the primal problem at iteration l is infeasi-

ble, only the constraints of the primal problem are considered, and the following

optimization problem is formulated in order to identify a feasible solution:

min
x,γ

γ (37)

s.t. h(x, yl) = 0, (38)

g(x, yl) ≤ γl, (39)

γ ≥ 0, (40)

x ∈ X. (41)

The solution of this problem provides information about the Lagrange multi-

pliers related to the equality and inequality constraints, which are denoted in

this case as λ̄
l

and µ̄l respectively. These multipliers allows us to formulate the

feasibility cut as:

L̄l(x, y, λ̄
l
, µ̄l) = λ̄

lT
h(x, y) + µ̄l

T
g(x, y). (42)

Remark 3.2. It should be noted that at each iteration only one cut is generated,

depending if the primal problem is feasible or infeasible. In addition, the upper

bound is generated only if the primal problem is feasible.

The master problem is defined according to the duality theory being based

on the projection of the overall MINLP problem in the y-space (see [29] for more

details):

min
y,µ0

µ0 (43)

s.t. µ0 ≥ Ll
1

(xl
1

, y,λl
1

,µl
1

) l1 = 1, . . . , L1, (44)

0 ≥ L̄l
2

(xl
2

, y, λ̄
l2

, µ̄l
2

) l2 = 1, . . . , L2, (45)
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where L1 and L2 are the last iteration counters at which the optimallity and

feasibility cuts were updated.

Remark 3.3. The master problem is equivalent to the MINLP (27)-(31). Also,

the value of the variable µ0 is the value of the lower bound.

The whole algorithm is solved on an iterative way according to the flow-

chart presented in Fig. 4. The iterations terminate when the gap between the

upper and the lower bound is lower than a given tolerance factor, which is,

UB ≤ LB + ε, where UB and LB are the upper and lower bounds respectively

and ε is a tolerance factor.

Figure 4: GBD algorithm.
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3.2. Model Predictive Control

The MPC strategy is one of the most widespread control methodologies used

in both industry and academia. The MPC is not an explicit control technique,

but rather comprises a wide range of control methods based on the use of a

model of the system for obtaining the control actions by minimizing an objective

function [30]. Specifically, the procedure used in MPC controllers is given by

(see Fig. 5):

Figure 5: MPC strategy.

1. The outputs of the process for a given prediction horizon N , are predicted

at each time k by using a model of the system. The predicted outputs,

denoted by ẑ(k+j|k) for j = 1, . . . , N , depend on past outputs, inputs and

disturbances, and on the value of future control actions u(k+ j − 1|k) for

j = 1, . . . , N . Note that the notation (k + j|k) is related to the predicted

value of a variable at the instant time k+j, calculated with the information

available at instant k.

2. The set of future control actions is calculated by minimizing a determined

objective function.

3. The control action u(k|k) is sent to the system while the rest of control

signals are rejected because at the next sampling time, ẑ(k + 1) will be
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known, allowing to repeat the first step with the updated information.

This methodology is known as the receding horizon concept.

It should be remarked that, the application of the MPC technique in the

problem concerning this work is specially suitable due to the presence of the

distillate tank. This method allows us to predict the level of the tank tak-

ing into account future water demands, and therefore, to induce the optimal

management and high performance of the desalination plant.

3.3. The GBD-based MPC algorithm

Once both techniques have been introduced, the decomposition of the overall

MINLP problem (see Eqs. (16)-(25)) is formulated according to them. It should

be pointed out that the problem treated in this work has the same structure of

the generic problem presented in Section 3.1, with a set of binary, δm, ∀m ∈M,

and continuous variables, Fm, ∀m ∈M. Therefore, the primal problem will be

the projection of the overall MINLP problem in the Fm-space, while the master

problem will be the projection of the problem in the δm-space.

It should be also taken into account that the variables αdm,1, αdm,2, αTm,1

and αTm,2 can be predicted along the prediction horizon, as they depend on the

measurable temperatures (see Section 2.3).

Thus, the feasible primal problem can cast:

min

N∑
j=1

∑
m∈M

c1 · Fm(k + j − 1|k) ·∆T̂m(k + j|k)

d̃m
l
(k + j − 1|k)

, (46)

subject to, ∀m ∈M and j = 1, . . . , N :

d̂m(k + j|k) = α̂dm,1(k + j|k) · δlm(k + j − 1|k)

+ α̂dm,2(k + j|k) · Fm(k + j − 1|k), (47)

d̃m
l
(k + j − 1|k) = d̂m

l−1
(k|k) + c2 ·

(
1− δlm(k + j − 1|k)

)
, (48)
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∆T̂m(k + j|k) = α̂Tm,1(k + j|k) · δlm(k + j − 1|k)

+ α̂Tm,2(k + j|k) · Fm(k + j − 1|k), (49)

δlm(k + j − 1|k) · FMin
m − Fm(k + j − 1|k) ≤ 0, (50)

Fm(k + j − 1|k)− δlm(k + j − 1|k) · FMax
m ≤ 0, (51)

FMin
T ≤ FT (k + j − 1|k) ≤ FMax

T , (52)

(d̂T (k + j|k)− D̂(k + j|k)) · c3 + L̂T (k + j − 1|k) ≥ L∗, (53)

LMin
T ≤ LT (k + j|k) ≥ LMax

T (54)

and

N∑
j=1

∑
m∈M

Fm(k + j − 1|k) = FT (k + j − 1|k), (55)

N∑
j=1

∑
m∈M

d̂m(k + j|k) = d̂T (k + j|k). (56)

As can be seen, for the calculation of the STEC in Eq. (46), an estimation of

the distillate production, d̃m
l
, is used instead of the actual distillate production,

d̂m(k + j|k). One should highlight that the objective function of the overall

MINLP problem, Eq. (16), can be rewritten as follows, by combining it with

Eq. (18):

min
∑
m∈M

c1 · Fm(k) · αTm,1(k) · δ(k)

dm(k)
+
∑
m∈M

c1 · αTm,2(k) · Fm(k)2

dm(k)
, (57)

where for dm(k) > 0, the right part of the equation is convex whereas the

left part is quasi-convex. The estimation of the distillate production allows

us to eliminate this quasi-convex part in the objective function, rendering the

objective function convex. Note that, the estimation is updated at each iteration

of the algorithm as shown in Eq. (48), where d̂m
l−1

(k|k) is the value of d̂m(k|k)

calculated in the previous iteration l − 1. In this way, in the last iterations,

d̃m
l

reaches a static value which is the optimum or very close to the optimum,

ensuring the stability of the solution. In addition, by using the estimation,
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Eq. (46) can be formulated as:

min

N∑
j=1

∑
m∈M

c1 · Fm(k + j − 1|k) · α̂Tm,1(k + j|k) · δlm(k + j − 1|k)

d̃m
l
(k + j − 1|k)

+

N∑
j=1

∑
m∈M

c1 · α̂Tm,2(k + j|k) · Fm(k + j − 1|k)2

d̃m
l
(k + j − 1|k)

, (58)

where all the parameters involved in the equation are constants, except Fm(k+

j − 1|k), what enables the problem to be solved with a simple QP solver.

The infeasible primal problem can be formulated as:

min

N∑
j=1

γ(k + j), (59)

subject to, ∀m ∈M and for j = 1, . . . , N :

d̂m(k + j|k)− [α̂dm,1(k + j|k) · δlm(k + j − 1|k)

+ α̂dm,2(k + j|k) · Fm(k + j − 1|k))]− γ(k + j) ≤ 0, (60)

− d̂m(k + j|k) + [(α̂dm,1(k + j|k) · δlm(k + j − 1|k)

+ α̂dm,2(k + j|k) · Fm(k + j − 1|k)]− γ(k + j) ≤ 0, (61)

δlm(k + j − 1|k) · FMin
m − Fm(k + j − 1|k)− γ(k + j) ≤ 0, (62)

Fm(k + j − 1|k)− δlm(k + j − 1|k) · FMax
m − γ(k + j) ≤ 0, (63)

FMin
T − FT (k + j − 1|k)− γ(k + j) ≤ 0, (64)

FT (k + j − 1|k)− FMax
T − γ(k + j) ≤ 0, (65)

L∗ − [(d̂T (k + j|k)− D̂(k + j|k)) · c3 + L̂T (k + j − 1|k)]− γ(k + j) ≤ 0, (66)

LMin
T − LT (k + j − 1|k)− γ(k + j) ≤ 0, (67)

LT (k + j − 1|k)− LMax
T − γ(k + j) ≤ 0, (68)

and

N∑
j=1

∑
m∈M

Fm(k + j − 1|k)− FT (k + j − 1|k)− γ(k + j) ≤ 0, (69)

FT (k + j − 1|k)−
N∑
j=1

∑
m∈M

Fm(k + j − 1|k)− γ(k + j) ≤ 0, (70)
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N∑
j=1

∑
m∈M

d̂m(k + j|k)− d̂T (k + j|k)− γ(k + j) ≤ 0, (71)

d̂T (k + j|k)−
N∑
j=1

∑
m∈M

d̂m(k + j|k)− γ(k + j) ≤ 0. (72)

This problem is proposed only with the constraints of the feasible primal prob-

lem according to the GBD theory. Also, the equality constraints have been

rewritten as inequality constraints for the sake of simplicity in the implementa-

tion of the method. It is worth noting that, this optimization problem can be

worked out with an LP solver.

Finally, the master problem is written as:

min

N∑
j=1

µ0(k + j), (73)

subject to, ∀j = 1...N , l1 = 1, . . . , L1, and l2 = 1, . . . , L2

µ0(k + j) ≥
∑
m∈M

λl
1

1,m(k + j) · [F l
1

m (k + j − 1|k)− δm(k + j − 1|k) · FMax
m ] +

∑
m∈M

λl
1

2,m(k + j) · [δm(k + j − 1|k) · FMin
m − F l

1

m (k + j − 1|k)] +

J l
1

primal(k + j|k), (74)

0 ≥
∑
m∈M

λ̄l
2

1,m(k + j) · [d̂l
2

m(k + j|k)− (α̂dm,1(k + j|k) · δm(k + j − 1|k) +

α̂dm,2(k + j|k) · F l
2

m (k + j − 1|k))] +
∑
m∈M

λ̄l
2

2,m(k + j) · [−d̂l
2

m(k + j|k) +

(α̂dm,1(k + j|k) · δm(k + j − 1|k) + α̂dm,2(k + j|k) · F l
2

m (k + j − 1|k))] +∑
m∈M

λ̄l
2

3,m(k + j) · [F l
2

m (k + j − 1|k)− δm(k + j − 1|k) · FMax
m ] +

∑
m∈M

λ̄l
2

4,m(k + j) · [δm(k + j − 1|k) · FMin
m − F l

2

m (k + j − 1|k)], (75)

where J l
1

primal(k + j|k) is the value of the objective function of the feasible

primal problem, λl
1

1,m(k + j) and λl
1

2,m(k + j) are the Lagrange multipliers of

the constraints Eqs. (50) and (51) at iteration l1, obtained from the solution

of the feasible primal problem, and λ̄l
2

1,m(k + j), λ̄l
2

2,m(k + j), λ̄l
2

3,m(k + j) and
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λ̄l
2

4,m(k+ j) are the ones related to Eqs. (60), (61), (62) and (63) obtained from

the solution of the infeasible primal problem at iteration l2. Observe also that

Eq. (74) is related with the optimallity cuts and Eq. (75) with the feasibility

ones. It should be also remarked that this problem is an MILP problem that

can be worked out with a suitable algorithm.

The algorithm is solved according to the resolution method presented in

Fig. 4. In addition, Fig. 6 shows the variables shared between problems at each

iteration. Note that, the prediction of variables α̂dm,1, α̂dm,2, α̂Tm,1 and α̂Tm,2 is

global information, and, therefore, it is known for all the problems.

Figure 6: Information shared between problems. The variables shared are ∀m ∈ M. Observe

that the MPC nomenclature has not been included in the figure for the sake of simplicity.

4. Results and discussion

4.1. Case study

The case study adopted in this work is based on two real facilities located

in Almeŕıa (southeast Spain). On the one hand, for the desalination unit, the

SMD facility of the Plataforma Solar de Almeŕıa (PSA, www.psa.es) was used as

reference [4]. Among the different commercial MD modules usable at PSA, the

Aquastill unit and the Solar Spring one were chosen (see Fig. 7) to be part of the

array of MD modules. These two modules were selected since they have different

behaviours in terms of distillate production and thermal efficiency, what adds

complexity to the problem. The Aquastill module has a lower thermal energy

consumption and a higher distillate production than the Solar Spring one, as was
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stated in [28]. One should bear in mind that the models of these two modules

were already presented and validated in literature in [10, 18] for the Solar Spring

and Aquastill module respectively. These models can be formulated according

to the generic method described in Section 2.2 and 2.3. Table 1 presents the

value of the polynomial coefficients of the RSM models of each MD module.

Figure 7: Commercial MD modules at PSA. From left to right: Solar Spring and Aquastill

modules.

Module

Coefficient Aquastill Solar Spring

p1 (L/h) 3.24 -10.88

p2 (L/(h·oC)) 0.072 0.24

p3 (L/(h·oC)) -0.4896 -0.18

p4 (-) -0.024 -0.01

p5 (1/oC) 0.0096 0.0006

p6 (oC) -0.739 -0.2018

p7 (-) 0.078 0.1385

p8 (-) -0.067 -0.158

p9 (h/(L·oC)) 0.0019 0.0049

Table 1: Polynomial coefficients of the RSM models of the Aquastill and Solar Spring modules.

On the other hand, a greenhouse was selected as consumer agent. Note that

the combination of greenhouses and SMD plants is a potential industrial applica-
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tion of MD technology [28], and of thermal powered desalination technologies in

general [31]. Besides, a greenhouse presents a variable water demand according

to the meteorological conditions [31], which makes the use of optimal manage-

ment techniques in the desalination unit essential. In this way, a multi-span

“Almeria-type” greenhouse (see Fig. 8) located at the Experimental Station

of the Cajamar Foundation (also in the southeast of Spain) was employed in

the simulations. The dynamical model of the greenhouse, the validation of the

model, and a detailed description of the greenhouse environment were presented

in [32].

Figure 8: Greenhouse environment. From left to right and from top to bottom: the greenhouse,

the dropper and the tomato crop lines.

4.2. Simulation set-up

The simulations were performed following the scheme deployed in Fig. 9. As

can be observed, the real facility in the simulation loop was composed by the

model of the array of MD modules, the model of the heat exchanger connecting

the solar field and the desalination unit, and the model of the greenhouse. Note

that, for these two last elements, the same models from [28] were employed.

Also, in the simulations, the array of MD modules was composed by the same

number of Solar Spring and Aquastill modules, placing the Solar Spring modules

in the odd numbers of the array and the Aquastill modules in the even ones. In

addition, the maximum and minimum feed flow rate (FMin
m and FMax

m ) of each
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MD module was stated as 400 and 600 L/h respectively, in accordance with the

operating range of these commercial MD modules (see [10, 18] for more details).

The minimum range of the feed water pump (FMin
T ) was fixed at zero and the

maximum (FMax
T ) at Nm · 600, where Nm is the number of MD modules in the

array.

It should be highlighted that, real data were used to feed the models men-

tioned above, what adds reliability to the simulations. In order to simplify the

simulation loop, a temperature profile at the entrance of the heat exchanger

was used (Ths,in in Fig. 9) instead of including the complete heat generation

model. These profiles were obtained by simulating the complete model of the

heat generation circuit (which was presented in [25]) with real meteorological

data, similar to the ones used as input of the greenhouse model, and with the

operational strategy presented in [7]. The model of the greenhouse was directly

fed with real meteorological data (see Fig. 9), which were obtained from Exper-

imental Station of the Cajamar Foundation. It should be remarked that, in the

prediction model of the MPC strategy, the meteorological conditions as well as

inlet temperature at the hot side of the heat exchanger (Ths,in) were maintained

constant along the prediction horizon. Also, the feed temperature (Tfeed) was

fixed at 20 oC (average temperature of the Mediterranean sea).

Figure 9: Simulation scheme.
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In the simulation loop, the MPC controller received the states from the dif-

ferent models comprising the real simulating facility, and sent the corresponding

control action u (i.e., δm and Fm,∀m ∈M) to the array of MD modules at each

sampling time. The sampling time of the system was established in 10 minutes

according to the representative time constant of the greenhouse water demand

and the desired closed loop behaviour [28].

All the simulations were performed using MATLAB code [33] (MATLAB

version 2018a) running on a PC with an Intel Core i5-6500T CPU 2.50 GHz

with 8 GB of RAM. Moreover, it should be noted that the overall MINLP

problem was solved with the BARON solver (version 1.88) [34], whereas the

optimization problems of the GBD method were solved with the CPLEX solver

[35] (version 12.6.1).

4.3. Study of efficiency of the proposed algorithm

One of the main benefits of the developed management method is that sim-

pler optimization problems, such as QP, LP and MILP, are solved instead of

an overall MINLP one. This fact directly influences the time spent in reaching

an optimal solution of the problem. So that, in this section, the GBD based

method and MINLP solver are analyzed in terms of computational time. To do

this, several simulations were carried out, increasing the number of agents (i.e.,

the number of MD modules in the array). The time spent by each resolution

method to work out the overall MINLP problem in a single sampling time was

measured.

Table 2 summerizes the results of the different simulations and Fig. 10 graph-

ically represents these results. As can be observed, five cases were simulated,

with 4, 8, 16, 32 and 64 MD modules. For the two first cases, in which the

number of MD modules was small, both algorithms solved the problem quickly,

reaching the same value in the objective function. In the third case, the time

required by the MINLP solver was doubled in comparison with the two first

cases, whereas the one of the GBD based approach remained almost constant.

In the two last cases, the time spent by the MINLP solver increased exponen-

26



tially (see Fig. 10). Note that with 64 MD modules, the time spent by the

MINLP solver is much longer than the system’s sampling time (600 s). This

fact means that the MINLP solver cannot be used when considering a plant

equal or larger than that size. It is worth noting that, this also happens when

using the MPC strategy with long prediction horizons, since for the purpose of

the optimization problem, it has the same effect as using a large number of MD

modules in the array.

Finally, it should be remarked that the GBD algorithm reached almost the

same values that the global MINLP solver in the objective function (see Table 2),

which indicates convergence to optimal solutions.

GBD algorithm MINLP algorithm

Number of Time V-obj Time V-obj

MD units [s] [kWh/m3] [s] [kWh/m3]

4 0.29 112.25 1.50 112.25

8 0.29 112.30 1.60 112.28

16 0.30 224.50 3.77 224.50

32 1.56 382.40 102.23 382.06

64 5.67 455.20 1619.72 451.55

Table 2: Results reached with each resolution method when increasing the number of MD

modules in the array. V-obj is the value of the objective function.

4.4. Simulation study

To assess the running of the proposed algorithm during a daily operation of

the facility, different tests were executed with several values of the prediction

horizon N . For these tests, the desalination unit was configured with four MD

modules, and the greenhouse with a size of 308 m2, as in the tests performed

in [28]. It should be highlighted that, this small scale plant was chosen for

being representative of the system and allowing to visualize the results on a

easy way. Besides, the tests were performed with meteorological data from the

Experimental Station of the Cajamar Foundation on the day of June 6th, 2017.
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Figure 10: Results reached with each resolution method when increasing the number of MD

modules in the array.

It should be also remarked that, as the array of modules included identical

modules (i.e., two of Aquastill and two of Solar Spring), a term in the objective

function was added to prevent chattering problems in the switching on and off

of the modules between one sampling time and the next. The term added to

the primal and master problems consisted of
∑
m∈M(δm(k+ j− 1|k)− δm(k+

j − 2|k))2.

Figs. 11 and 12 show two representative tests with N = 1 and N = 4

respectively. Please note that the global irradiance has not been included in

the figures for the sake of simplicity. However, it should be remarked that the

dynamical behaviour of both, the inlet temperature at the hot side of the heat

exchanger (Ths,in) and the water demand (D) depends directly on this variable.

In this way, in the simulations, the water consumption of the greenhouse was

maximum around the solar midday (see Figs. 11-(4) and 12-(4)). Nevertheless,

Ths,in reached the maximum value later (see Figs. 11-(1) and 12-(1)) because of

the volume of water accumulated in the solar field storage tank (see Fig. 1).

As can be observed in Figs. 11-(5) and 12-(5), the simulations started with

a level in the distillate tank equal to the setpoint level, which was set as 1500 L.

Therefore, as soon as the water demand was higher than zero, the controller

turned on one of the Aquastill modules (which are the most efficient) at its

minimum feed flow rate, 400 L/h (see Figs. 11-(2) and 12-(2)). This fact caused
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Figure 11: Simulation results obtained during a daily operation of the plant with the proposed

approach with N=1. (1) Temperature at the inlet of the hot side of the heat exchanger (Ths,in),

(2) feed flow rates of each MD module included in the desalination unit (F1, F2, F3 and F4),

(3) STEC of each module (S1, S2, S3 and S4) and total STEC of the whole system (total

STEC), (4) water demand (D) and total distillate production (dT ), and (5) actual water level

of the tank (LT ) and desire level (L∗).

the level of the tank to increase as the production was higher than the demand,

and therefore, at the next sampling time, the module was turned off again. From

sample 55, there were differences between the performance of the management

method in both tests, which were caused by the value of the prediction horizon.

In general terms, it can be seen how the controller with N = 1 (see Fig. 11),

which means to take into account a prediction of ten minutes at each sampling

time, used more modules than in the case with N = 4 because of the low predic-

tion horizon. This was especially relevant around midday when the controller

with N = 1 (see Fig. 11-(2)) turned on one of the less efficient modules twice

for three and four sampling times respectively. Regarding the controller with
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Figure 12: Simulation results obtained during a daily operation of the plant with the proposed

approach with N=4. (1) Temperature at the inlet of the hot side of the heat exchanger (Ths,in),

(2) feed flow rates of each MD module included in the desalination unit (F1, F2, F3 and F4),

(3) STEC of each module (S1, S2, S3 and S4) and total STEC of the whole system (total

STEC), (4) water demand (D) and total distillate production (dT ), and (5) actual water level

of the tank (LT ) and desire level (L∗).

N = 4 (which means to consider a prediction of 40 minutes at each sampling

time), it can be seen that (see Fig. 12), thanks to a longer prediction horizon,

the controller anticipated the increase in water demand better. In this way, it

augmented the production of one of the aquastill modules progressively by in-

creasing its feed flow rate (see Fig. 12-(2) from sample 55 to sample 66). Then,

it turned on the other Aquastill module, and in the solar midday, it activated

one of the Solar Spring modules only once during a single sampling time. Note

that, the advantages achieved by operating the facility this way were directly

reflected in the thermal energy consumption of the desalination unit. This fact

can be seen in Figs. 11-(3) and 12-(3). Observe as the total STEC (which is the

sum of the STEC of the four MD modules, the value of the objective function)
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in the case with N = 1 was higher than the one of the controller with N = 4

from sample 62 to sample 66, due to the use of two MD modules. This happened

also in the solar midday from sample 80 to 88.

Moreover, Table 3 summerizes the results obtained in the operation with dif-

ferent values of N . Observe as both, the total thermal energy consumption and

the mean STEC of the operation decreased as the prediction horizon increased

from N = 1 to N = 4. On the contrary, for higher horizons, the value of these

two metrics was worse. This was caused by errors in the predictions. It is worth

noting that, the water demand decreased at the end of the solar day according

to the global irradiance. However, the water demand was fixed constant along

the prediction horizon. This caused the production to be greater than necessary,

what penalized the thermal energy consumption of the desalination unit when

using a larger prediction horizon than N = 4.

DP [L] M-STEC [kWh/m3] TTEC [kWh]

N=1 691.86 261.03 180.59

N=2 692.19 258.54 178.95

N=3 692.94 257.80 178.78

N=4 693.51 257.22 178.38

N=5 694.26 258.11 179.19

N=6 695.36 259.30 180.30

Table 3: Results obtained in the operation with different values of N . DP is the total distillate

production, M-STEC is the mean STEC of the MD facility during the operation and TTEC

is the total thermal energy consumption.

4.5. Comparison with previous non-optimal approaches

In this section, three representative days with different meteorological con-

ditions were used to compare a manual operation, an operation performed with

the approach presented in [28], and an operation with the management method

presented in this paper. The data corresponded to July 10th, 2017, June 6th,

2017 and March 4th, 2015 (test 1, 2 and 3 respectively). The first day was
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a sunny day, similar to the one presented in the previous section but with a

higher level of irradiance (see the cumulative global irradiance, CTI, for test 1

in Table 4). This fact caused the water consumption of the greenhouse to be

higher, and the desalination unit to operate around 80 % of its capacity to cover

the needs when the demand was maximum. The second day corresponded to

the test presented in the previous section. Note that, in that test, the water

needs required the operation of the desalination unit to be around 50 % of its

capacity in the moments of maximum consumption. The third test was a cloudy

day, so that, the water requirements of the greenhouse were low, which could

be covered with the operation of the desalination unit at less than 30 % of its

capacity.

It should be remarked that in both, the manual method and the one pre-

sented in [28], the four modules included in the desalination unit were turned

on as long as the water demand was higher than zero. On the one hand, the

manual operation were performed with the feed flow rate of each MD module

fixed at 500 L/h. On the other hand, with the method presented in [28], the

feed flow rate of each MD module was manipulated according to the water needs

trying to reduce the STEC.

Table 4 shows the results obtained with each technique. As can be seen, in

the first test, the manual procedure required 1213.57 kWh of thermal energy,

whereas the approach presented in [28] 982.48 kWh (see Table 4). The amount

of thermal energy saved by using the proposed technique is considerable, around

65 and 55 % with respect to the manual operation and the one performed with

procedure presented in [28] respectively. This was the result by two main facts.

First, the total distillate production (1015.10 L) was almost totally adjusted to

the water demand (1013.03 L), which was achieved by manipulating the number

of MD modules turned on at each sampling time according to the water needs.

This allowed the controller to use only the most efficient MD modules at the

beginning and at the end of the day (when the water demand was low), thus

saving a large amount of thermal energy. Second, when a module was turned

on, its STEC was minimized, which also allowed to reduce the total thermal
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energy consumption. In the second test, the performance was similar to the

previous one, but in this case, as the water needs were lower, the amount of

thermal energy saved was even higher, around 85 and 80 % in comparison with

the manual procedure and the method proposed in [28] respectively. In the third

test, the level of irradiance was lower, and therefore, the water requirements too.

In this case, the benefits attained by using the proposed technique were greater

as the water needs could be met using only the most efficient modules in the

array during the whole operation. Thus, less than the 5 % of the thermal energy

required by the manual operation and the one performed with the approach in

[28] was used with the application of the proposed method.
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5. Conclusions

This paper proposes a general optimal operating strategy aimed at reduc-

ing the total thermal energy consumption of commercial membrane distillation

facilities. The proposed approach is based on the Generalized Benders De-

composition (GBD) method, which allows us to solve the MINLP optimization

problem associated to the management of the facility in a simple and efficient

way. In addition, a Model Predictive Control (MPC) strategy is employed to

reflect the operational strategy in real time. The developed method was applied

in a practical case study, in which an SMD plant was connected to a green-

house with a variable water demand. The obtained results allow us to draw the

following conclusions:

• The developed strategy can be applied in any commercial desalination

facility based on membrane distillation as long as the MD modules are

modelled with the RSM method.

• The efficiency analysis performed showed as the developed technique reaches

the same results of an MINLP solver. However, the resolution time was

considerable improved. For example, for a facility with 64 MD modules,

an MINLP solver required 1619.72 s for solving the problem in a single

sampling time, whereas the proposed approach only 5.67 s.

• Regarding the operation, the proposed method was able to manage the

facility optimally when coupled to a variable water demand, deciding at

each sampling time the number of MD modules turned on and their op-

erating feed flow rate, reducing the total thermal energy consumption of

the desalination unit and ensuring the water needs.

• The comparison performed with a manual operation and with a previous

proposed approach in literature showed how, in a sunny day, around the

65 and 55 % of the thermal energy used by these methods can be saved

with the application of the developed technique. In a cloudy day, the ben-

efits are even higher, so that, the proposed approach used less than 5 %
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of the energy required by the other operating methods. These improve-

ments could be very important for both the design of SMD commercial

facilities and their daily operation, especially if non-renewable sources are

also taken into account to feed the desalination unit or as a backup for

cloudy days.
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Appendix A. Nomenclature

Variable Description Units

c1 Constant used in the STEC kWh/oC·m3

calculation

c2 Constant for the GBD algorithm 106

c3 Conversion factor for the 0.16 h

tank level calculation

cf Conversion factor to the STEC 3.6·106 s·W/h·kW

cp Specific heat capacity of sea water J/kg·oC

CTI Cumulative global irradiance kJ/m3

D Water demand L/h

dm Distillate production of MD m-module L/h

DP Total cumulative distillate production L

dT Total distillate production L/h

Fm Feed flow rate of MD m-module L/h

FMax
m Maximum feed flow rate of MD m-module L/h

FMin
m Maximum feed flow rate of MD m-module L/h

FT Feed water source flow rate L/h

FMax
T Maximum feed flow rate of feed pump L/h

FMin
T Minimum feed flow rate of feed pump L/h

LT Water level of the distillate tank L

LMax
T Maximum water level of the distillate tank L

LMin
T Minimum water level of the distillate tank L

L∗ Setopint level of the distillate tank L

M-STEC Mean STEC of the MD facility kWh/m3

pi with i = 1, . . . , 9, Polynomial coefficients -

Sm Specific thermal energy consumption kWh/m3

of MD m-module

Tcin,m Inlet temperature of the condenser channel oC
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of MD m-module

Tcout,m Outlet temperature of the condenser channel oC

of MD m-module

Tcs,in Inlet temperature at the cold side oC

of the heat exchanger

Tcs,out Outlet temperature at the cold side oC

of the heat exchanger

Tein,m Inlet temperature of the evaporator channel oC

of MD m-module

TFeed Feed water source temperature oC

Ths,in Inlet temperature at the hot side oC

of the heat exchanger

Ths,out Outlet temperature at the hot side oC

of the heat exchanger

TTEC Total thermal energy consumption kWh

Vm Valve aperture %

WD Total cumulative water demand L

αdm,j with j= 1,. . .,2, Auxiliary variable 1 -

for the MILP model

αTm,j with j= 1. . .2, Auxiliary variable 2 -

for the MILP model

δm Valve position 0-1

∆Tm Temperature difference between the inlet of the oC

evaporator channel and the outlet of the

condenser channel of the MD m-module

ρ Density of sea water kg/m3
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