

Departament of Informatics
University of Almeŕıa

Efficient Query Processing in Distributed
Spatial Data Management Systems

DOCTORAL THESIS

by

Francisco José Garćıa Garćıa

Supervisors

Dr. Antonio Corral Dr. Luis Iribarne
Associate Professor Associate Professor

Department of Informatics Department of Informatics
University of Almeŕıa, Spain University of Almeŕıa, Spain

Almeŕıa, June, 2021

Written by: Francisco José Garćıa Garćıa
Printed by: Murex (Almeŕıa, Spain)

June 2021

Departamento de Informática
Universidad de Almeŕıa

Procesamiento Eficiente de Consultas en
Sistemas de Gestión de Datos Espaciales

Distribuidos

TESIS DOCTORAL

by

Francisco José Garćıa Garćıa

Dirigida por

Dr. Antonio Corral Dr. Luis Iribarne
Profesor Titular de Universidad Profesor Titular de Universidad
Departamento de Informática Departamento de Informática

Universidad de Almeŕıa, España Universidad de Almeŕıa, España

Almeŕıa, Junio, 2021

Escrito por: Francisco José Garćıa Garćıa
Impreso por: Murex (Almeŕıa, Spain)

Junio 2021

This file has been generated using LATEX.

All Figures and Tables in this file are originals

E�cient Query Processing in
Distributed Spatial Data Management Systems

Francisco José Garćıa Garćıa
Departament of Informatics
Applied Computing Group (TIC-211)
University of Almeŕıa
Almeŕıa, June, 2021

http://acg.ual.es

To Susana,
to my parents, José and Bŕıgida,

to all my family and the people I love

Acknowledgements

This thesis is the end of a journey that would not have been possible without the
contribution and help of many people. A path that by walking has allowed me to meet
and learn from great people, visit incredible places, and that has also had its awful
moments due to the COVID pandemic.

In the first place, this journey in the world of research could not have started if it
was not for Associate Professor Antonio Corral. At a family meal, my brother-in-law
agreed to introduce me to the thrilling world of spatial data and their exciting queries.
His help has been essential since he has always been there to give me that push that I
needed, and among all that he has taught me, I have to highlight two things: that one
should never give up, and that in the research field, you have to write a lot, although
not I like it.

I would also thank Associate Professor Luis Iribarne for his supervision and advice
throughout this thesis. Not only has he provided me with the necessary means to attend
conferences and other research needs, but I have also been able to share experiences and
knowledge with the di↵erent members of the Applied Computing Group (TIC-211) to
enrich my research capabilities.

And speaking of families, I cannot forget the great Greek family. First of all, Professor
Yannis Manolopoulos, in addition to being an excellent researcher in so many fields,
taught me to appreciate good food and chiringuitos. As for Associate Professor Michael
Vassilakopoulos, he has always found and suggested new ideas that have considerably
improved the research work quality. Also, together with his wife, Eli, he showed me a
small and beautiful part of Greece, which I would like to visit again. Finally, it has been
a pleasure to meet Dr. Panagiotis Moutafis and Dr. George Mavrommatis that have
been available whenever needed and with whom we have combined our knowledge and
experience to obtain even better results.

I cannot forget Dr. Manolo Torres and Dr. José Antonio Mart́ınez for providing me
with an OpenStack infrastructure to carry out the experiments of this thesis. I swear
that one day I will free my resource quota.

Moreover, I am grateful for the funding given by the EU ERDF and the Spanish
Government under AEI Projects TIN2013-41576-R (“Evolving dynamic systems in the
cloud: A framework toward the smart user interfaces”) and TIN2017-83964-R (“Co-
Smart: Study of a holistic approach for the interoperability and coexistence of dynamic
systems: Implication in Smart Cities models”) in which I have had the honor to parti-
cipate.

And all this would not be possible without my parents, José and Bŕıgida, who are
the ones who started me on the journey of life. I am the person that I am thanks to
them, and I will always follow their main advice: ”My son, be good to people so that
they can always speak well of you.”

Nor could I have traveled this long road without the best travel companion you can
have in life, my wife, Susana. I knew it from the first moment I met her, and I hope
that destiny continues to provide us with good moments to enjoy her goodness and love.
I know that I have had to borrow a long time, which I will gladly return with interest.

To finish, I would like to thank all who have directly or indirectly done their bits,
such as my sister-in-law Rosa, Antonio Becerra, the people at breakfast, my coworkers,
Javi, Miguel, Sera, Cristo and many others whom I may leave unmentioned.

Francisco José Garćıa Garćıa
Departament of Informatics
Applied Computing Group

University of Almeŕıa
Almeŕıa, 2021

E�cient Query Processing in Distributed Spatial Data Management Systems

TABLE OF CONTENTS XIII

Table of Contents

SUMMARY . xxiii
RESUMEN . xxvii

1 INTRODUCTION 1

1.1 Research Objectives . 6
1.2 Research Methodology . 9

1.2.1 General Approach . 9
1.2.2 Implementations . 11
1.2.3 Experimental Evaluation . 11
1.2.4 Improvements Overview . 12
1.2.5 Challenges . 13

1.3 Thesis Contributions . 14
1.3.1 Summary of Contributions . 15
1.3.2 Software . 16
1.3.3 Publications . 17
1.3.4 Other Contributions . 19

1.4 Thesis Organization . 20

2 STATE OF THE ART 23

2.1 Distributed Spatial Data Management Systems 25
2.1.1 Disk-based DSDMSs . 25
2.1.2 In-memory-based DSDMSs . 28

2.2 Spatial Data Partitioning . 31
2.2.1 Space-based Partitioning Techniques 33
2.2.2 Data-based Partitioning Techniques 35
2.2.3 Space-Filling Curve-based Partitioning Techniques 37
2.2.4 Distance-based Partitioning Techniques 38

2.3 Distance-based Query Processing . 40
2.3.1 kNearest Neighbor Query . 40
2.3.2 "Distance Range Query . 41
2.3.3 Reverse kNearest Neighbor Query 42
2.3.4 kNearest Neighbor Join Query . 44
2.3.5 "Distance Range Join Query . 46
2.3.6 kClosest Pairs Query . 48

XIV TABLE OF CONTENTS

2.3.7 "Distance Join Query . 50
2.3.8 Other related Distance Join Queries 50

2.4 Conclusions . 51

3 SPATIAL PARTITIONING AND INDEXING IN SPATIALHADOOP 53

3.1 Spatial Partitioning and Indexing in SpatialHadoop 55
3.2 Spatial Partitioning Techniques in SpatialHadoop 57
3.3 Spatial Indexing in SpatialHadoop 61
3.4 Voronoi-Diagram based Partitioning 63

3.4.1 Sampling large datasets . 64
3.4.2 Pivot selection techniques for space subdivision 66
3.4.3 Indexing data . 67

3.5 Quadtree-based Local Index . 68
3.5.1 Implementing a Quadtree-based local index in SpatialHadoop . . 68
3.5.2 kNNQ and kCPQ MapReduce algorithms with Quadtrees in Spa-

tialHadoop . 69
3.6 Performance Evaluation . 70

3.6.1 Experimental Setup . 70
3.6.2 Voronoi-Diagram based Partitioning experiments 71

3.6.2.1 E↵ect of sampling methods 71
3.6.2.2 E↵ect of space subdivision and indexing 72
3.6.2.3 E↵ect of pivot selection techniques - kNNJQ 74
3.6.2.4 E↵ect of pivot selection techniques - kCPQ 75
3.6.2.5 Conclusions from the experimental results 76

3.6.3 Quadtree-based local index experiments 77
3.6.3.1 Conclusions from the experimental results 77

3.7 Conclusions . 79

4 SPATIAL QUERY PROCESSING IN SPATIALHADOOP 81

4.1 SpatialHadoop for Spatial Query Processing 85
4.1.1 MapReduce layer . 85
4.1.2 Operations layer . 86

4.2 Spatial Queries supported by SpatialHadoop 87
4.2.1 Range Query . 87
4.2.2 kNearest Neighbor Query . 88
4.2.3 Spatial Join Query . 89
4.2.4 Polygon Union Query . 90
4.2.5 Skyline Query . 91
4.2.6 Convex Hull Query . 92
4.2.7 Farthest Pair Query . 93
4.2.8 Closest Pair Query . 93
4.2.9 Voronoi-Diagram Query . 94

4.3 Enhancing SpatialHadoop with DBQs 95
4.3.1 "Distance Range Query . 95
4.3.2 kClosest Pairs Query . 96
4.3.3 "Distance Join Query . 97

E�cient Query Processing in Distributed Spatial Data Management Systems

TABLE OF CONTENTS XV

4.3.4 kNearest Neighbor Join Query . 99
4.3.5 "Distance Range Join Query . 101
4.3.6 Reverse kNearest Neighbor Query 103

4.3.6.1 MRSFT - SFT MapReduce algorithm 103
4.3.6.2 MRSLICE - SLICE MapReduce algorithm 104

4.4 Extensions and Improvements of DJQs 109
4.4.1 Extensions of the DJQ MapReduce algorithms for processing non-

points spatial objects . 110
4.4.2 Improvements for kCPQ in SpatialHadoop 110

4.4.2.1 Computing � by Global Sampling 112
4.4.2.2 Computing � by Local Processing 113
4.4.2.3 Computing � using Voronoi-Diagram based partitioning . 117

4.4.3 Improvements for kNNJQ in SpatialHadoop 119
4.4.3.1 Improvements for processing skewed data 119
4.4.3.2 Using Voronoi-Diagram based partitioning for kNNJQ . 121
4.4.3.3 Less Data Technique . 123

4.5 Performance Evaluation . 125
4.5.1 Experimental Setup . 125
4.5.2 "DRQ experiments . 127

4.5.2.1 The e↵ect of the increment of the dataset size 127
4.5.2.2 The e↵ect of the increment of " values 128
4.5.2.3 Speedup of the algorithm 128
4.5.2.4 Conclusions from the experimental results 129

4.5.3 kCPQ experiments . 129
4.5.3.1 The e↵ect of applying � computation 130
4.5.3.2 Comparison of di↵erent plane-sweep algorithms and the

use of local indices . 135
4.5.3.3 The e↵ect of using di↵erent spatial partitioning techniques136
4.5.3.4 The e↵ect of the increment of k values 137
4.5.3.5 The e↵ect of extending the algorithm for non-points spa-

tial objects . 138
4.5.3.6 Using Voronoi-Diagram based partitioning 139
4.5.3.7 Extensibility varying the P dataset area 141
4.5.3.8 Speedup of the algorithm 141
4.5.3.9 Conclusions from the experimental results 143

4.5.4 "DJQ experiments . 144
4.5.4.1 Comparison of di↵erent plane-sweep algorithms and the

use of local indices . 144
4.5.4.2 The e↵ect of using di↵erent spatial partitioning techniques145
4.5.4.3 The e↵ect of the increment of " values 146
4.5.4.4 The e↵ect of extending the algorithm for non-points spa-

tial objects . 147
4.5.4.5 Speedup of the algorithm 149
4.5.4.6 Conclusions from the experimental results 149

4.5.5 kNNJQ experiments . 150

© 2021 Garćıa-Garćıa, F.J.

XVI TABLE OF CONTENTS

4.5.5.1 The e↵ect of using repartitioning techniques 151
4.5.5.2 The e↵ect of using Voronoi-Diagram based partitioning . 155
4.5.5.3 The e↵ect of the improvements 157
4.5.5.4 Extensibility varying the P dataset area 158
4.5.5.5 Speedup of the algorithm 159
4.5.5.6 Conclusions from the experimental results 159

4.5.6 "DRJQ experiments . 161
4.5.6.1 Comparison with "DJQ 161
4.5.6.2 Speedup of the algorithm 162
4.5.6.3 Conclusions from the experimental results 162

4.5.7 Reverse k Nearest Neighbors experiments 163
4.5.7.1 The e↵ect of the number of regions 164
4.5.7.2 The e↵ect of the increment of the dataset size 164
4.5.7.3 The e↵ect of the increment of k values 165
4.5.7.4 Speedup of the algorithms 165
4.5.7.5 Conclusions from the experimental results 166

4.6 Conclusions . 167

5 SPATIAL QUERY PROCESSING IN LOCATIONSPARK 169

5.1 LocationSpark for Spatial Query Processing 171
5.2 Spatial Queries supported by LocationSpark 173

5.2.1 kNearest Neighbor Join Query 174
5.3 Enhancing LocationSpark with Distance-based Queries 175

5.3.1 kClosest Pairs Query . 175
5.3.2 "Distance Join Query . 176

5.4 Performance Evaluation . 178
5.4.1 Experimental Setup . 178
5.4.2 kCPQ and "DJQ experiments . 179
5.4.3 kNNJQ experiments . 183
5.4.4 "DRJQ experiments . 185
5.4.5 Speedup varying the number of computing nodes 186
5.4.6 Conclusions of the results . 187

5.5 Conclusions . 188

6 CONCLUSIONS AND FUTURE WORK 191

6.1 Conclusions . 193
6.2 Future Work . 198

ACRONYMS I-1

BIBLIOGRAPHY II-1

E�cient Query Processing in Distributed Spatial Data Management Systems

LIST OF FIGURES XVII

List of Figures

1.1 Multiple sources and layers that form part of the Big Spatial Data. . . . 4
1.2 Overview of a Distributed Spatial Data Management System architecture

(Spatial Operations and Spatial Storage layers). 7
1.3 High-level overview of the followed research methodology. 10
1.4 General scheme for kCPQ processing in SpatialHadoop. 13

2.1 ST-Hadoop system architecture [Alarabi et al., 2018]. 26
2.2 GeoSpark system architecture [Yu et al., 2015]. 29
2.3 Partitions of a spatial dataset that exhibit spatial data skew and boundary

objects. 32
2.4 Spatial dataset partitioned by a 3⇥ 4 grid. 33
2.5 Spatial dataset partitioned by a Quadtree with a maximum of two ele-

ments per leaf. 34
2.6 Spatial dataset partitioned by an R-tree. 35
2.7 Spatial dataset partitioned by a kd-tree where k = 2. 36
2.8 Z -curve-based partitioning with two number of partitions (4 vs. 16). . . . 38
2.9 H-curve-based partitioning with two number of partitions (4 vs. 16). . . . 38
2.10 Spatial dataset partitioned by a Voronoi-Diagram. 39
2.11 kNearest Neighbor query with k = 3. 41
2.12 "Distance Range query with distance ". 42
2.13 Reverse kNearest Neighbor query with k = 2. 43
2.14 kNearest Neighbor Join query with k = 2. 45
2.15 "Distance Range Join query with distance ". 47
2.16 kClosest Pairs query with k = 3. 48

3.1 Spatial Partitioning phase in SpatialHadoop. 56
3.2 Real-world dataset of 115M records of buildings with Quadtree-based par-

titioning. 58
3.3 Real-world dataset of 115M records of buildings with STR-based parti-

tioning. 59
3.4 A two-level index structure in SpatialHadoop for spatial indexing. 62
3.5 Overview of the Voronoi-Diagram based partitioning technique in Spa-

tialHadoop. 68

XVIII LIST OF FIGURES

3.6 Overview of a partition indexed by a Quadtree-based local index. 69
3.7 kNNJQ cost, the total execution time for the combination of the datasets,

LAKES ⇥ BUILDINGS, considering di↵erent sampling methods and
pivot selection techniques for k = 10. 72

3.8 kCPQ cost, total execution time for the combination of the datasets,
LAKES ⇥ BUILDINGS, considering di↵erent sampling methods and
pivot selection techniques for k = 100. 73

3.9 Partitioning cost, total execution time per phase, considering di↵erent
partitioning techniques and datasets. 74

3.10 kNNJQ cost, total execution time of di↵erent dataset combinations (left)
and varying the k values (right) for L⇥R. 75

3.11 kCPQ cost, total execution time of di↵erent partitioning techniques (left)
and varying the k values (right) for B ⇥RN 76

3.12 Experimental results comparing Quadtree and R-tree performance with
the top-k queries (kNNQ and kCPQ). 78

4.1 General spatial query processing scheme in SpatialHadoop. 87
4.2 Overview of the kNNQ MapReduce algorithm in SpatialHadoop. 89
4.3 Other spatial queries present in SpatialHadoop: Polygon Union, Skyline,

Convex Hull, Farthest Pair, Closest Pair and Voronoi-Diagram Queries. . 91
4.4 Overview of the "DRQ MapReduce algorithm in SpatialHadoop. 95
4.5 Overview of the kCPQ MapReduce algorithm in SpatialHadoop. 96
4.6 Overview of the "DJQ MapReduce algorithm in SpatialHadoop. 98
4.7 Uniform-based partitioning (Grid) vs. Non-uniform-based partitioning

(Quadtree) in SpatialHadoop. 100
4.8 Overview of the kNNJQ MapReduce algorithm in SpatialHadoop. 101
4.9 Overview of the "DRJQ MapReduce algorithm in SpatialHadoop. 102
4.10 Overview of MRSLICE algorithm in SpatialHadoop. 105
4.11 Example of two complex spatial objects (Lake vs. Building) with their

MBRs, reference points and minimum distance between their MBRs. . . 111
4.12 Schema for computing � by global sampling. 113
4.13 Schema for computing �. Global sampling (left) vs. local sampling

(right), with Grid partitioning technique. 116
4.14 Computation of �, using Voronoi-Diagram based partitioning by sampling

locally from both datasets (a), and partition refinement by its MBR,
U(PP

i) and L(PP
i) properties and maximum minimum distance calculation

(b). 117
4.15 Repartitioning phase in the kNNJQ MapReduce algorithm in Spatial-

Hadoop. 120
4.16 Voronoi-Diagram based partitioning on the initial partitioning of the

datasets (a) and in the repartitioning and kNNJ on Overlapping Par-
titions phases (b). 122

4.17 kNNJQ MapReduce algorithm (top) vs. the use of the less data technique
(bottom). 125

4.18 Synthetic dataset. Small area from a clustered dataset. 126

E�cient Query Processing in Distributed Spatial Data Management Systems

LIST OF FIGURES XIX

4.19 "DRQ cost, total execution time vs. dataset size for uniform (left) and %
of samples of BUILDINGS (right). 128

4.20 "DRQ cost, total execution time vs. " value (left) and number of com-
puting nodes ⌘ (right). 129

4.21 kCPQ cost without and with � computation (LAKES⇥PARKS), vary-
ing the sampling ratio ⇢. 131

4.22 kCPQ cost without and with � computation (BUILDINGS⇥PARKS),
varying the sampling ratio ⇢. 132

4.23 kCPQ cost using local sampling (left) and ↵-allowance approximate (right)
technique for � computation. 133

4.24 kCPQ cost, total execution time of di↵erent phases in the execution of
kCPQ MapReduce algorithm. 134

4.25 kCPQ cost, total execution time of di↵erent partition techniques, com-
bining real (left) and synthetic datasets (right). 136

4.26 kCPQ cost, total execution time vs. k values. 137
4.27 kCPQ cost, total execution time of di↵erent partitioning techniques, join-

ing points (left) and non-points spatial objects (right). 139
4.28 kCPQ cost (Quadtree-based partitioning), total execution time vs. k

values. 140
4.29 kCPQ cost, total execution time of di↵erent partitioning techniques, join-

ing real datasets (left) and varying the k values (right). 141
4.30 kCPQ cost, total execution time for the combination ofROADS⇥BUILDINGS,

considering di↵erent � (%) values for k = 100. 142
4.31 kCPQ cost with respect to the number of computing nodes ⌘ (Speedup). 142
4.32 "DJQ cost, total execution time of di↵erent partition techniques, combin-

ing real (left) and synthetic datasets (right). 145
4.33 "DJQ cost, total execution time vs. " values. 146
4.34 "DJQ cost, total execution time of di↵erent partitioning techniques for

points (left) and non-points spatial objects (right). 147
4.35 "DJQ cost (Quadtree), total execution time vs. " values. 148
4.36 "DJQ cost with respect to the number of computing nodes ⌘ (Speedup). 149
4.37 kNNJQ cost, total execution time of di↵erent datasets combinations (left)

and varying the k values (right). 151
4.38 kNNJQ cost per phase considering di↵erent repartitioning techniques on

the combination of the smallest datasets. Total execution time in sec
(left) and shu✏ed data in GBytes (right). 152

4.39 kNNJQ cost per phase considering di↵erent repartitioning techniques on
the combination with the biggest dataset. Total execution time in sec
(left) and shu✏ed data in GBytes (right). 153

4.40 kNNJQ cost (shu✏ed bytes) considering di↵erent datasets (left) and vary-
ing the k values (right). 154

4.41 kNNJQ cost, total execution time of di↵erent partitioning techniques for
several datasets combinations (left) and varying the k values (right). . . 156

4.42 kNNJQ cost, total execution time considering the improvements for datasets
combinations (left) and varying the k values (right). 157

© 2021 Garćıa-Garćıa, F.J.

XX LIST OF FIGURES

4.43 kNNJQ cost per phase considering the improvements on the combination
ROADS⇥BUILDINGS. Total execution time in sec (left) and shu✏ed
data in GBytes (right). 158

4.44 kNNJQ cost, total execution time for the combinationROADS⇥BUILDINGS,
considering di↵erent � values (% Dataset P = ROADS) and k = 10. . . . 159

4.45 kNNJQ cost with respect to the number of computing nodes ⌘ (Speedup). 160
4.46 "DRJQ cost, total execution time considering di↵erent datasets combina-

tions (left) and varying the " values (right). 162
4.47 "DRJQ cost with respect to the number of computing nodes ⌘ (Speedup). 163
4.48 MRSLICE total execution times considering di↵erent t values. 164
4.49 RkNNQ total execution times considering di↵erent datasets. 165
4.50 RkNNQ cost, total execution time vs. k values (left) and vs. number of

computing nodes ⌘ (right). 166

5.1 Architecture of LocationSpark by layers. 172
5.2 Spatial query processing in LocationSpark. 173
5.3 Execution Plan for kNNJQ in LocationSpark. 174
5.4 Execution Plan for kCPQ in LocationSpark. 176
5.5 Execution Plan for "DJQ in LocationSpark. 177
5.6 kCPQ cost, total execution time joining points (left) and non-points spa-

tial objects (right). 180
5.7 "DJQ cost, total execution time joining points (left) and non-points spa-

tial objects (right). 181
5.8 kCPQ cost, total execution time vs. k values (left). "DJQ cost, total

execution time vs. " values (right). 182
5.9 kNNJQ cost, total execution time considering di↵erent datasets (left) and

varying the k values (right). 184
5.10 "DRJQ cost, total execution time considering di↵erent datasets (left) and

varying the " values (right). 185
5.11 kCPQ, "DJQ, kNNJQ and "DRJQ cost with respect to the number of

computing nodes ⌘ (Speedup). 187

E�cient Query Processing in Distributed Spatial Data Management Systems

LIST OF TABLES XXI

List of Tables

1.1 The most important contributions of this thesis. 16

2.1 The most representative existing DSDMSs based on Hadoop. 27
2.2 The most representative existing DSDMSs based on Spark. 30

3.1 Symbols and their meanings. 64
3.2 Configuration parameters used in our experiments. 71
3.3 Information of data distribution (points per partition) of ROAD NETWORKS

dataset per partitioning technique. 73

4.1 Configuration parameters used in our "DRQ experiments. 127
4.2 Configuration parameters used in our kCPQ experiments. 130
4.3 kCPQ cost, number of considered pairs of partitions without or with

(global sampling (GS) or local sampling (LS)) � computation. 133
4.4 kCPQ cost, total execution time (in seconds) spent by each kCPQ algo-

rithm, plane-sweep without indices and with local indices (R-tree). . . . 135
4.5 Configuration parameters used in our "DJQ experiments. 144
4.6 Total execution time (in sec) spent by each "DJQ algorithm, plane-sweep

without indices and with local indices (R-tree). 145
4.7 Configuration parameters used in our kNNJQ experiments. 150
4.8 Configuration parameters used in our "DRJQ experiments. 161
4.9 Configuration parameters used in our RkNNQ experiments. 163

5.1 Configuration parameters used in our experiments to compare Spatial-
Hadoop and LocationSpark. 179

XXII LIST OF TABLES

E�cient Query Processing in Distributed Spatial Data Management Systems

ABSTRACT XXIII

Abstract

Spatial Computing covers ideas, solutions, tools, technologies, and systems that
transform our lives and society by creating a new understanding of spaces, locations,
places, and properties. Since the term Big Data was coined for the first time in 2005,
it has unleashed a worldwide revolution in scientific research and business. Big Spatial
Data (BSD), the Big Data associated with spatial information, is now one of the most
active research fields in spatial computing, mainly motivated by the rapid development
of smart, sensor, and mobile technologies. Current usage of the term Big Spatial Data
tends to refer to the process of capturing, storing, managing, analyzing, and visual-
izing huge amounts of spatial data, not using traditional tools and systems. Recent
big spatial data developments have motivated the emergence of novel technologies for
distributed processing of large-scale spatial data in shared-nothing clusters of comput-
ers, leading to Distributed Spatial Data Management Systems (DSDMSs). Distributed
cluster-based computing systems can be classified as Hadoop-based or Spark-based sys-
tems. Based on this classification, two of the most leading DSDMSs are SpatialHadoop
(disk-based DSDMS) and LocationSpark (in-memory-based DSDMS). These distributed
systems support several characteristics like spatial data partitioning, indexing methods,
and spatial query processing. An important aspect of these DSDMSs is to adopt a
layered architecture for distributed computing and inject spatial data awareness into
each layer. For example, the layers in SpatialHadoop are Language, Storage, MapReduce
and Operations. Considering that SpatialHadoop is a comprehensive extension to the
Hadoop ecosystem, it is a scalable and e�cient cloud computing framework that allows
distributed processing of large-scale spatial datasets using the MapReduce programming
model.

In this thesis, we study and enrich SpatialHadoop by implementing new Distance-
Based Query (DBQ) MapReduce algorithms in the Operations layer: "Distance Range
Query ("DRQ), kNearest Neighbor Query (kNNQ), kClosest Pairs Query (kCPQ),
kNearest Neighbor Join Query (kNNJQ), "Distance Join Query ("DJQ), "Distance
Range Join Query ("DRJQ), Reverse kNearest Neighbor Query (RkNNQ), etc. More-
over, we improve the Storage layer with a new spatial partitioning technique (Voronoi-
Diagram based partitioning), and a new local indexing structure (Quadtree) to optimize
the distributed spatial query processing in shared-nothing clusters. This study and the
knowledge of SpatialHadoop helps us identify new opportunities to enrich LocationSpark
(a spatial data processing system built on top of Spark ecosystem) too, with the design
and implementation of new distributed Distance-based Join Query (DJQ) algorithms
(kCPQ, "DJQ and "DRJQ), extensions, and improvements over them. Additionally, we

XXIV ABSTRACT

propose other enhancements and optimizations for distributed spatial query processing
that leverage both data and algorithmic properties. Furthermore, we compare these
DSDMSs by evaluating the performance of several distributed DJQ algorithms under
di↵erent settings with large spatial real-world datasets from OpenStreetMap.

To develop this thesis, we start by reviewing the most relevant DSDMSs (research
prototypes), the state-of-the-art spatial partitioning techniques in DSDMSs, and the
most representative and common DBQs. Then, we focus our study on the structure
and operations of spatial data partitioning methods and indexing structures in Spatial-
Hadoop, by proposing a spatial partitioning technique based on Voronoi-Diagrams and
including the Quadtree as a local index in such a DSDMS. Driven by an exhaustive anal-
ysis on the spatial query processing in SpatialHadoop, we identify and implement new
spatial queries ("DRQ, kCPQ, "DJQ, "DRJQ, kNNJQ, RkNNQ, etc.) with di↵erent
extensions (e.g., for non-points spatial data types) and improvements (e.g., repartition-
ing methods, less data technique, new pruning rules, etc.) in this DSDMS. Next, we
analyze the general spatial query processing scheme of LocationSpark to extend it with
new distributed DJQ algorithms and improvements. Afterward, we achieve an extensive
performance evaluation of such enhancements (distributed spatial query algorithms, ex-
tensions, and improvements) in SpatialHadoop and LocationSpark. Finally, we carry
out a comparative study between SpatialHadoop and LocationSpark by executing an
exhaustive set of experiments of several DJQs to identify which DSDMS is the most
appropriate for the distributed query processing on large volumes of spatial data.

Keywords: Big Spatial Data, Distributed Spatial Data Management Systems, Distance-
Based Queries, Distance-Based Join Queries, kClosest Pairs Query, kNearest Neighbor
Join, Spatial Indexes, Quadtree, Spatial partitioning, Voronoi-Diagrams, Spatial data
processing, SpatialHadoop, MapReduce, LocationSpark, Resilient Distributed Dataset,
Spatial query evaluation, OpenStreetMap.

E�cient Query Processing in Distributed Spatial Data Management Systems

ABSTRACT XXV

© 2021 Garćıa-Garćıa, F.J.

XXVI ABSTRACT

E�cient Query Processing in Distributed Spatial Data Management Systems

RESUMEN XXVII

Resumen

La Computación Espacial (Spatial Computing) engloba ideas, soluciones, herramien-
tas, tecnoloǵıas y sistemas que transforman nuestras vidas y la sociedad al crear una
nueva comprensión de los espacios, ubicaciones, lugares y propiedades. Desde que se
acuñó el término Big Data por primera vez en 2005, éste ha desencadenado una re-
volución mundial en la investigación cient́ıfica y en los negocios. Big Spatial Data (BSD),
el Big Data asociado con información espacial, es ahora uno de los campos de investi-
gación más activos en computación espacial, motivado principalmente por el rápido
desarrollo de tecnoloǵıas inteligentes, de sensores y móviles. El uso actual del término
Big Spatial Data tiende a referirse al proceso de capturar, almacenar, gestionar, analizar
y visualizar grandes cantidades de datos espaciales, sin utilizar herramientas y sistemas
tradicionales. El reciente desarrollo de sistemas que manipulen grandes volúmenes de
datos espaciales han motivado la aparición de nuevas tecnoloǵıas para el procesamiento
distribuido de datos espaciales a gran escala en clústeres shared-nothing (clústeres en
los que cada nodo es independiente y autosuficiente) de computadoras, surgiendo aśı
los sistemas de gestión de datos espaciales distribuidos (Distributed Spatial Data Man-
agement Systems — DSDMSs). Los sistemas de procesamiento distribuido basados en
clústeres se pueden clasificar como sistemas basados en Hadoop o en Spark. Según esta
clasificación, dos de los DSDMS más importantes son SpatialHadoop (DSDMS basado
en disco) y LocationSpark (DSDMS basado en memoria). Estos sistemas distribuidos
proporcionan varias caracteŕısticas, como el particionado de datos espaciales, métodos
de indexación y el procesamiento de consultas espaciales. Un aspecto importante de es-
tos DSDMS es que adoptan una arquitectura en capas para la computación distribuida
e inyectan la capacidad de manipular datos espaciales en cada una de ellas. Por ejem-
plo, las capas en SpatialHadoop son Language (Lenguaje), Storage (Almacenamiento),
MapReduce y Operations (Operaciones). Dado que SpatialHadoop es una extensión in-
tegral del ecosistema Hadoop, se trata de un marco de computación en la nube escalable
y eficiente que permite el procesamiento distribuido de conjuntos de datos espaciales a
gran escala utilizando el modelo de programación MapReduce.

En esta tesis, estudiamos y enriquecemos SpatialHadoop mediante la implementación
de algoritmos MapReduce para consultas basadas en distancia en la capa Operations:
"Distance Range Query ("DRQ), kNearest Neighbor Query (kNNQ), kClosest Pairs
Query (kCPQ), kNearest Neighbor Join Query (kNNJQ), "Distance Join Query ("DJQ),
"Distance Range Join Query ("DRJQ), Reverse kNearest Neighbor Query (RkNNQ),
etc. Además, mejoramos la capa Storage con una nueva técnica de particionado espacial
(particionado basado en diagramas de Voronoi) y una nueva estructura de indexación

XXVIII RESUMEN

local (Quadtree) para optimizar el procesamiento de consultas espaciales distribuidas
en clústeres shared-nothing. Este estudio, y el conocimiento adquirido sobre Spatial-
Hadoop, nos ayuda a identificar nuevas oportunidades para, también, enriquecer Lo-
cationSpark (un sistema de procesamiento de datos espaciales construido sobre el eco-
sistema Spark), con consultas de join basados en distancias (DJQ) mediante el diseño
e implementación de nuevos algoritmos distribuidos (kCPQ, "DJQ y "DRJQ), exten-
siones y mejoras sobre ellos. Además, proponemos otras mejoras y optimizaciones para el
procesamiento de consultas espaciales distribuidas que aprovechan tanto los datos como
las propiedades algoŕıtmicas. Por último, comparamos estos dos DSDMS evaluando el
rendimiento de varios algoritmos DJQ distribuidos según diferentes configuraciones con
grandes conjuntos de datos espaciales reales procedentes de OpenStreetMap.

Para desarrollar esta tesis, se revisan los DSDMS (prototipos de investigación) más
relevantes, el estado del arte de las técnicas de particionado espacial en DSDMS, y las
DBQ más representativas y comunes. Luego, se estudian la estructura y operaciones
de los métodos de particionado de datos espaciales y estructuras de indexación en Spa-
tialHadoop, proponiendo una técnica de particionado espacial basada en diagramas de
Voronoi y la incorporación del Quadtree como ı́ndice local en dicho DSDMS. Dirigidos
por un estudio exhaustivo sobre el procesamiento de consultas espaciales en Spatial-
Hadoop, identificamos e implementamos nuevas consultas espaciales ("DRQ, kCPQ,
"DJQ, "DRJQ, kNNJQ, R kNNQ, etc.) con diferentes extensiones (por ejemplo, para
tipos de datos espaciales que no son puntos) y mejoras (por ejemplo, métodos de repar-
ticionamiento, la técnica less data, nuevas reglas de poda, etc.) en este DSDMS. A
continuación, se analiza el esquema general de procesamiento de consultas espaciales de
LocationSpark para extenderlo con nuevos algoritmos DJQ distribuidos y diversas mejo-
ras. Posteriormente, se realiza una extensa evaluación del rendimiento de las diferentes
propuestas (algoritmos de consulta espacial, extensiones y mejoras) en SpatialHadoop
y LocationSpark. Finalmente, también se lleva a cabo un estudio comparativo entre
SpatialHadoop y LocationSpark mediante la ejecución de un conjunto exhaustivo de
experimentos de varias DBQ para identificar qué DSDMS es el más adecuado para el
procesamiento de consultas distribuidas sobre grandes volúmenes de datos espaciales.

Palabras clave: Big Spatial Data, Sistemas de gestión de datos espaciales distribui-
dos, Consultas basadas en distancia, Consultas de join basados en distancia, Consulta
de los k pares más cercanos, Join de los k vecinos más próximos, Índices espaciales,
Quadtree, Particionado espacial, Diagramas de Voronoi, Procesamiento de datos es-
paciales, SpatialHadoop, MapReduce, LocationSpark, Conjunto de datos distribuidos y
flexibles, Evaluación de consultas espaciales, OpenStreetMap.

E�cient Query Processing in Distributed Spatial Data Management Systems

RESUMEN XXIX

© 2021 Garćıa-Garćıa, F.J.

XXX RESUMEN

E�cient Query Processing in Distributed Spatial Data Management Systems

Chapter 1

Introduction

© 2021 Garćıa-Garćıa, F.J.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Contents
1.1 Research Objectives . 6

1.2 Research Methodology . 9

1.2.1 General Approach . 9

1.2.2 Implementations . 11

1.2.3 Experimental Evaluation . 11

1.2.4 Improvements Overview . 12

1.2.5 Challenges . 13

1.3 Thesis Contributions . 14

1.3.1 Summary of Contributions 15

1.3.2 Software . 16

1.3.3 Publications . 17

1.3.4 Other Contributions . 19

1.4 Thesis Organization . 20

2

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 1. INTRODUCTION 3

S patial Computing covers the ideas, solutions, tools, technologies, and systems that
transform our lives and society by creating a new understanding of spaces, locations,
places, and properties. Moreover, this computing paradigm helps us know, communicate,
and visualize our relation to places in a space of interest; and how to navigate through
those places [Evans et al., 2014].

Spatial data are discrete representations of continuous phenomena. Discretization of
continuous space is required by the nature of digital representation. There are three
basic models to represent spatial data: raster (images), vector (points, lines, regions),
and network (spatial networks). Spatial data types provide a fundamental abstraction
for modeling the geometric (or spatial) structure of objects in space as well as their
relationships, properties, and operations [Schneider, 2009]. Examples of 2d spatial data
types are points, lines, regions, spatial networks, etc., and examples of 3d spatial data
types are surfaces, volumes, etc. Spatial Big Data (SBD) are defined as simply instances
of these spatial data types that exhibit at least one of the 3 V’s: volume, velocity, and
variety [Evans et al., 2014]. Spatial data frequently demonstrate at least one of these
core features, given the variety of data types in spatial computing, such as points, lines,
regions, etc. Moreover, spatial analytics have shown to be more computationally ex-
pensive than the non-spatial ones as they need to account for spatial autocorrelation
and non-stationarity, among other properties. Examples of SBD can be: (1) tempo-
rally tagged road maps that provide tra�c speed values every minute for all roads in a
city, (2) global positioning system (GPS) trajectory data from smartphones, (3) engine
measurements of fuel consumption and gas emissions, (4) geotagged tweets issued from
Twitter, etc. [Evans et al., 2014]. Other authors refer to the term spatial big data as Big
Spatial Data (BSD) [Eldawy and Mokbel, 2017]. For instance, according to [Alam et al.,
2021], a huge volume of geo-referenced data (from sensor devices, GPS-enabled devices,
location-based services, spatial applications, etc.), generated every day, are often called
big spatial data (see Figure 1.1). In this thesis, we will use the term Big Spatial Data
to describe the process of capturing, storing, managing, analyzing, and visualizing huge
amounts of spatial data, not using traditional tools and systems [Alam et al., 2021].

Distributed Computing is a reference to computation on a platform with multiple
nodes, each with its own hardware (computers) and software (operating systems). The
nodes in a distributed computing platform could be in close proximity connected via a
local area network (LAN) or dispersed over a large geographic area connected via a wide
area network (WAN) [Sharker and Karimi, 2014]. One of the main features of distributed
computing is scalability, which means that the platform allows participation of a di↵erent
number of computing nodes as the demand changes (i.e., it can scale down or up).
Increasing the number of nodes in a distributed computing platform is one possible
approach for handling large-scale problems. Cluster Computing refers to commonly
distributed computing platforms, where nodes are connected through dedicated network
systems and protocols, all of them running under one centralized operating system.

In the age of smart cities and mobile environments, the increase of the volume of
available spatial data (e.g., location, routing, etc.) is huge all over the world. Recent

© 2021 Garćıa-Garćıa, F.J.

4

Figure 1.1: Multiple sources and layers that form part of the Big Spatial Data.

developments of big spatial data systems have motivated the emergence of novel tech-
nologies for processing large-scale spatial data on shared-nothing clusters in a distributed
environment. A shared-nothing architecture of machines has proved to be a popular de-
sign choice for the implementation and deployment of big data platforms. Clusters of
machines are often favored over expensive infrastructure because of their low operational
costs. In such clusters, data are partitioned and distributed over several machines, usu-
ally leveraging the functionality of a distributed file system [Doulkeridis and Nørv̊ag,
2014]. The processing component is often deployed on the same cluster of machines in
order to leverage data locality; the incentive is to process data on the machine where it
is already stored and avoid expensive network transfers. For this reason, shared-nothing
clusters are generally preferable to other forms of clustering. Furthermore, the scal-
ability of shared-nothing clusters makes it optimal for intensive analytical and query
processing.

Recent big spatial data developments have motivated the emergence of novel tech-
nologies for distributed processing of large-scale spatial data in shared-nothing clusters
of computers, leading to Distributed Spatial Data Management Systems (DSDMSs) or
Big Spatial Data Analytics Systems (BSDASs) [Pandey et al., 2018]. These DSDMSs
(research prototypes) can be classified in disk-based [Li et al., 2014], which are char-
acterized by being Hadoop-based systems, and in-memory-based [Zhang et al., 2015],
generally based on Spark. Apache Hadoop1 is a reliable, scalable, and e�cient cloud

1
Available at https://hadoop.apache.org/

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 1. INTRODUCTION 5

computing framework allowing distributed processing of large datasets using the MapRe-
duce programming model. However, it is a kind of disk-based computing framework,
which writes all intermediate data to disk between map and reduce tasks. MapReduce
[Dean and Ghemawat, 2004] is a framework for processing and managing large-scale
datasets in a distributed cluster. It was introduced with the goal of providing a simple
yet powerful parallel and distributed computing paradigm, o↵ering good scalability and
fault tolerance mechanisms. Apache Spark2 is a fast, reliable and distributed in-memory
large-scale data processing framework. It takes advantage of the Resilient Distributed
Dataset (RDD), which allows us to transparently store data in memory and persisting
it to disk only if it is needed [Zaharia et al., 2012]. Hence, it can reduce a huge number
of disk writes and reads to outperform the Hadoop platform. Since Spark maintains
the status of assigned resources until a job is completed, it reduces time consumption in
resource preparation and collection.

Both Hadoop and Spark have weaknesses related to e�ciency when applied to spatial
data. One main shortcoming is the lack of any indexing mechanism that would allow
selective access to specific regions of spatial data, which would in turn yield more e�cient
query processing algorithms. A solution to this problem is an extension of Hadoop, called
SpatialHadoop [Eldawy and Mokbel, 2015], which is a framework that supports spatial
indexing on top of Hadoop, i.e., it adopts a two-level index structure (global and local)
to organize the stored spatial data. In this distributed framework, the spatial data
are partitioned and scattered to the nodes of the cluster so that objects with spatial
proximity are in the same partition. Besides, these generated partitions are indexed,
allowing e�cient query algorithms that access only a part of the data while still returning
the correct result. In Spark, there are similar solutions like LocationSpark [Tang et al.,
2016, Tang et al., 2020], which is a spatial data processing system built on top of Spark
that employs various spatial indexes for in-memory data. It provides a wide range of
spatial features and supports a rich set of spatial queries. Moreover, it samples the input
dataset and partitions data accordingly by using several spatial partitioning schemes.
It also provides flexibility for local indices, where the data are locally indexed within a
concrete partition.

DSDMSs are cluster-based systems that support spatial data management, query
processing, and analytics over distributed data using a cluster of commodity machines.
Several characteristics are supported in these systems, like spatial data partitioning, in-
dexing schemes, and spatial queries. An important aspect of these DSDMSs is to adopt
a layered architecture for distributed computing and inject spatial data awareness into
each layer. For example, SpatialHadoop [Eldawy and Mokbel, 2015] is a comprehensive
extension to Hadoop that injects spatial data awareness in each Hadoop layer, namely,
the language, storage, MapReduce, and operations layers. In the Language layer, Spa-
tialHadoop adds a simple and expressive high-level language for spatial data types and
operations. In the Storage layer, SpatialHadoop adapts traditional spatial index struc-
tures as Grid, R-tree, Quadtree, etc., to form a two-level spatial index. SpatialHadoop
enriches the MapReduce layer by two new components, SpatialFileSplitter and Spatial-
RecordReader, for e�cient and scalable spatial data processing. At the Operations layer,

2
Available at https://spark.apache.org/

© 2021 Garćıa-Garćıa, F.J.

6 1.1. RESEARCH OBJECTIVES

SpatialHadoop is also equipped with several spatial operations, including range query,
nearest neighbor query, and spatial join.

In this thesis, we study and enrich two of the most leading DSDMSs, Spatial-
Hadoop [Eldawy and Mokbel, 2015] (disk-based DSDMS) and LocationSpark [Tang
et al., 2016] (in-memory-based DSDMS), by implementing new distance-based queries
("Distance Range Query — "DRQ, kNearest Neighbor Query — kNNQ, kClosest Pairs
Query — kCPQ, kNearest Neighbor Join Query — kNNJQ, "Distance Join Query —
"DJQ, "Distance Range Join Query — "DRJQ and Reverse kNearest Neighbor Query
— RkNNQ), new spatial partitioning techniques (Voronoi-Diagram based partitioning)
and new local indexing structures (Quadtree) for distributed spatial query processing in
shared-nothing clusters. Furthermore, we propose and implement additional improve-
ments and optimizations for distributed spatial query processing that leverage both
data and algorithmic properties. Besides, we compare both DSDMSs by evaluating the
performance of several new distributed distance-based query algorithms under various
settings with large spatial real-world datasets. We start our study by reviewing the most
relevant DSDMSs, the state-of-the-art spatial data partitioning techniques in DSDMSs,
and the most representative distance-based queries (DBQ). Then, we focus our study
on the structure and operations of spatial partitioning techniques and indexing methods
in SpatialHadoop, by proposing a spatial data partitioning technique based on Voronoi-
Diagrams and including the Quadtree as a local index in SpatialHadoop. Driven by
an exhaustive study on the spatial query processing in SpatialHadoop, we identify and
implement new spatial queries (kCPQ, "DJQ, kNNJQ, RkNNQ, etc.) in SpatialHadoop
and, di↵erent extensions and improvements of these spatial query algorithms are also
incorporated. Next, the general spatial query processing scheme of LocationSpark is
studied and, new DBQs, extensions, and improvements are also implemented in Loca-
tionSpark. Finally, an extensive performance evaluation of the di↵erent enhancements
(spatial query algorithms, extensions, and improvements) in SpatialHadoop is achieved,
and a comparative study between these two DSDMSs (SpatialHadoop and Location-
Spark) is also carried out.

1.1 Research Objectives

We thoroughly research two of the most leading DSDMSs: SpatialHadoop and Loca-
tionSpark, and we enhance them by including new spatial data partitioning techniques,
new local spatial indexing methods, and new DBQ algorithms for processing large real-
world spatial datasets. In particular, we aim at making existing DSDMSs more valuable
and complete by implementing Voronoi-Diagram based partitioning technique in Spa-
tialHadoop, Quadtree as a local index in SpatialHadoop and new distance-based queries
("DRQ, kNNQ, kCPQ, kNNJQ, RkNNQ, "DJQ, "DRJQ, etc.) in SpatialHadoop and
LocationSpark. Our main goal is to enrich current DSDMSs, concerning the distributed
storage for spatial query processing and the number of supported spatial queries (see
Figure 1.2). To this end, we analyze existing DSDMSs, identify lacks and limitations,
and implement specific data partitioning techniques and local indexes (Spatial Storage
layer) and spatial queries (Spatial Operations layer), which can be easily integrated into

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 1. INTRODUCTION 7

these popular distributed platforms.

Figure 1.2: Overview of a Distributed Spatial Data Management System architecture
(Spatial Operations and Spatial Storage layers).

To achieve this main goal, several specific objectives must be addressed. These are
described below:

– Analysis of existing DSDMSs. In the first stage of this thesis, a detailed
analysis of the state-of-the-art of di↵erent DSDMSs (Hadoop-based and Spark-
based) is carried out. Next, we choose the options that can be considered more
mature and robust for further study in terms of physical and logical architectures,
spatial data types, partitioning techniques, indexing methods, and spatial queries
supported.

– Generation of spatial datasets for the experimental evaluation. We study
and identify the best spatial data sources to test the proposed enhancements. The
information identified as relevant must be converted into spatial data (accord-
ing to the available spatial data types, e.g., Points, Lines, Rectangles, Polygons,
etc.) that can be stored to be processed by the chosen DSDMS. These datasets
can be of two types: (1) synthetic data (following distributions like uniform or
clustered) that allow us to generate baseline scenarios with configurable parame-
ters of interest, and (2) real-world data obtained from open-data sources such as

© 2021 Garćıa-Garćıa, F.J.

8 1.1. RESEARCH OBJECTIVES

OpenStreetMap3 to check the performance of new DBQs in real-world contexts.

– Implementation of new spatial partitioning techniques. Spatial data par-
titioning is a powerful mechanism for improving the e�ciency of DSDMSs since it
improves the overall manageability of large datasets, and it also speeds up spatial
query performance. By partitioning large datasets into smaller units, it enables
the processing of a spatial query in parallel and reduces the I/O activity by only
scanning a few partitions that contain data relevant to the query constraints. The
use of the most appropriate spatial partitioning technique will improve the e�-
ciency of the proposed spatial query algorithms in a particular DSDMS. In this
thesis, we have implemented in SpatialHadoop a new data partitioning technique
based on Voronoi-Diagrams.

– Implementation of new spatial indexing methods. Spatial indexing is a
robust mechanism for enabling fast access to spatial data and accelerate spatial
query processing. In a particular DSDMS, the spatial storage level is adapted to
include spatial indexes and use them to support spatial queries e�ciently. To tackle
the building of spatial indexes, a two-layers (global and local) indexing approach is
commonly used. The implementation of a two-level index structure in a DSDMS
could lead to e�cient distributed algorithms for processing spatial queries over
large-scale real-world spatial datasets. In this thesis, the Quadtree is included, as
a local index, in SpatialHadoop to speed up the spatial query processing.

– Implementation of new spatial queries. In this objective, popular spatial
queries, which are not present in the selected DSDMSs, will be implemented. The
traditional spatial query algorithms will be optimally adapted to a distributed pro-
gramming model (MapReduce or Resilient Distributed Datasets — RDD), taking
into account the advantages and characteristics that the distributed environment
provides us. DBQs have received considerable attention from the database commu-
nity due to their importance in numerous applications, such as spatial databases
and geographic information systems (GIS), data mining, multimedia databases,
etc. In this thesis, we have implemented the most representative DBQs like "DRQ,
kNNQ, kCPQ, kNNJQ, RkNNQ, "DJQ, "DRJQ, among others in the selected DS-
DMSs. An example of these DBQs could be the kCPQ in a transportation moni-
toring and moving objects scenario, considering two spatial datasets: locations of
users of a taxi app and positions of free taxis. kCPQ could find the 10 pairs of app
users and taxis with the shortest distances between them, to be able to o↵er these
users fast service at a reduced price (as a promotion strategy), or for analysis by
the taxi service.

– Comparison of DSDMSs. The evaluation of the experimental results obtained
after executing spatial queries is key to identify the DSDMSs that are the most
suitable for the distributed processing of large volumes of spatial data. Therefore,
the creation of a reference framework that allows us to compare DSDMSs, which
can be so heterogeneous, is crucial to choose the DSDMS that best adapts to the

3
Available at https://www.openstreetmap.org/

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 1. INTRODUCTION 9

characteristics of the spatial data and the spatial query that we are examining.
Furthermore, this objective will try to define a series of performance metrics and
experiments that, through di↵erent dimensions, allow us to define what are the
advantages and disadvantages of using one DSDMS or another. In this thesis, we
compare SpatialHadoop and LocationSpark using several performance measures
with respect to the most significant distance-based join queries (DJQs).

1.2 Research Methodology

In this section, we provide an overview of the methodology used in this thesis. We give
a brief description of the general principles we have followed for the design, implementa-
tion, and optimization of the main contributions of this thesis. We also discuss several
challenges we faced and how we decided to overcome each of them.

1.2.1 General Approach

Among the wide variety of data-intensive applications and platforms, we focus mainly on
spatial query algorithms and DSDMSs for two reasons. First, spatial query algorithms
are crucial in modern DSDMSs since the analysis of spatial data is a core issue for
companies that use geographic location to support strategic decisions and to enhance
the user experience. These companies have a massive advantage over their competitors
and are able to react quickly to business conditions changes. Second, DSDMSs present
interesting research challenges and open issues. They provide specialized functionalities
(complex and hard to implement) to manage and process huge volumes of spatial data
using parallel and distributed data processing frameworks (e.g., Hadoop and Spark).

As in [Hassani, 2017], we consider a research methodology as a scientific approach
that investigates, compares, contrasts, and explains the di↵erent ways that research
could be conducted alongside several methods that could be used in these processes.
That is, a methodology discusses the alternative approaches and methods to tackle the
research problem. It discusses the advantages/disadvantages, properness/improperness,
feasibility, practicality, ethical issues, and such parameters for the approaches to do
the research. A research method can be considered as an approach, procedure, and
guidelines that are used in conducting research. A method might require di↵erent tools,
instruments, equipment, etc. As a result, research in computing might be of theoretical
or experimental nature or a combination of them; it appreciates di↵erent paradigmatic
views and utilizes best-suited tools and approaches from both quantitative and qualita-
tive methods.

Experimental methodologies are broadly used in Computer Science to evaluate new
solutions to problems. Experimental evaluation is often divided into two phases. First,
an exploratory phase where the researcher takes measurements that will help identify
what are the questions that should be asked about the system under evaluation. Second,
an evaluation phase will attempt to answer these questions. A well-designed experiment
will start with a list of the questions that the experiment is expected to answer.

© 2021 Garćıa-Garćıa, F.J.

10 1.2. RESEARCH METHODOLOGY

In this thesis, we adopt an experimental approach, common to computer systems re-
search, instead of using a theoretical methodology. A high-level overview of our research
methodology is shown in Figure 1.3 (the numbers represent chronological order).

Figure 1.3: High-level overview of the followed research methodology.

First, we identify functionality gaps and limitations in DSDMSs, and then we design
and implement new algorithms to overcome these shortcomings. We start by conducting
a literature study of recent research results on existing DSDMSs, spatial data partition-
ing techniques, and the most representative DBQs (Chapter 2). The result of this
thorough study provides us an overview of the state-of-the-art in the research field and
reveals open issues. For instance, which are the best Hadoop-based and Spark-based
DSDMSs to choose for spatial query processing, and which are the most popular DBQs
to be included in these distributed platforms.

Next, we study the SpatialHadoop system architecture and the implementations in
each layer. In particular, the spatial partitioning techniques and the indexing meth-
ods included in the Storage layer are examined. This study helps us identify the new
opportunities for enhancing this layer of SpatialHadoop, with the design and implemen-
tation of a spatial partitioning technique based on Voronoi-Diagrams and the use of the

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 1. INTRODUCTION 11

Quadtree as a local index. To prove the performance and e�ciency of both propos-
als, a set of experiments has been carefully designed, implemented, and executed using
real-world datasets (Chapter 3).

In order to continue enriching SpatialHadoop in the Operations layer, we center
our research around the design and implementation of new distributed algorithms of
distance-based queries ("DRQ, kNNQ, kCPQ, kNNJQ, RkNNQ, "DJQ, etc.). Further-
more, we describe and discuss the implementation of di↵erent extensions (for non-points
spatial data types) and improvements. To show the performance and e�ciency of all
DBQ MapReduce algorithms (extensions and improvements), an exhaustive experimen-
tal evaluation has been run in SpatialHadoop (Chapter 4).

For the next experimental target, we study the LocationSpark system architecture
(it is built as a library on top of Spark) and the implementation of the layers (Mem-
ory Management, Spatial Index, and Spatial Operators) that most a↵ect spatial query
processing. This study and the knowledge of SpatialHadoop helps us identify the new
opportunities for enriching LocationSpark, with the design and implementation of sev-
eral new distributed DBQ ("DRQ, kCPQ, "DJQ, and "DRJQ) algorithms, extensions,
and improvements over them. To report the performance and e�ciency of all distributed
distance-based query algorithms (extensions and improvements), a comprehensive ex-
perimental evaluation has been executed in LocationSpark, and a comparison with Spa-
tialHadoop has been also carried out (Chapter 5). The main performance measures
that we have taken into account in our experiments are: total execution time (i.e., total
running time or total response time), shu✏ed data (for read and write operations) and
peak execution memory.

1.2.2 Implementations

We have used open-source, widely-used, and mature systems and libraries to implement
and evaluate the distributed spatial query algorithms and techniques proposed in this
thesis. Essentially, we have used SpatialHadoop4 for the implementation of spatial par-
titioning techniques and indexing methods discussed in Chapter 3 and the new DBQ
MapReduce algorithms described in Chapter 4. For the development of our Voronoi-
Diagram based partitioning method, the ELKI library [Schubert and Zimek, 2019] has
been used, which has provided various clustering algorithms (Sort-Means, k-means++,
OPTICSxi, etc.) for the pivot selection. On the other hand, LocationSpark5 has been
used to develop distributed DBQ algorithms in Spark-based environments, whose perfor-
mance and comparison with SpatialHadoop appear in Chapter 5. The implementations
of our algorithms and techniques are free to use, open-source, and documented. They
are available at the next github repository: https://github.com/acgtic211

1.2.3 Experimental Evaluation

For our experiments, we always choose the latest stable released version of the considered
DSDMSs (SpatialHadoop and LocationSpark). We have used real-world datasets from

4
Available at https://github.com/aseldawy/spatialhadoop2

5
Available at https://github.com/merlintang/SpatialSpark

© 2021 Garćıa-Garćıa, F.J.

12 1.2. RESEARCH METHODOLOGY

OpenStreetMap6, and when using synthetic datasets, we have described in detail each
data distribution (uniform or clustered) and parameters used in the creation process.
Moreover, we have shared our detailed setup configuration in each of our works in order
to facilitate reproducibility. All experiments were conducted on a cluster of virtual
machines in an OpenStack environment, where each computing node has 4 vCPUs with
8 GBs of main memory running Linux operating systems. Therefore, we are able to
create a clean and isolated environment with only the necessary tools installed. We
choose representative performance metrics for our evaluation (total execution time or
total response time, shu✏ed read/write cost, and peak execution memory) by using the
ones that appear often in related research to show the e�ciency and scalability of our
distributed DBQ algorithms and techniques.

1.2.4 Improvements Overview

In this section, we present a brief overview of the most relevant improvements that
have been applied to the first original solution of the problems. Most of the available
improvements have been inspired by our previous knowledge in the context of distributed
computing and spatial query processing. First of all, to improve the Voronoi-Diagram
based partitioning technique in SpatialHadoop, we have used three sampling methods
(random, k-means++, and DENDIS) to sample large spatial datasets in the sampling
phase, and three clustering algorithms (random, k-means++ and OPTICS) for the pivot
selection in the space subdivision phase. The experimental results showed that the use
of k-means++ in both phases (sampling and space subdivision) is the best choice.

The main improvement for the computation of the k closest pairs, both in Spatial-
Hadoop and LocationSpark, has been related to the computation of � (i.e., the upper
bound of the distance value of the k-th closest pair of the joined datasets). The compu-
tation of � can be carried out (1) by sampling globally both large datasets and executing
a kCPQ plane-sweep algorithm over the two samples, or (2) by appropriately selecting a
specific pair of partitions to which the two large datasets are partitioned and either (2.a)
by sampling locally the partitions of this pair and executing a kCPQ plane-sweep algo-
rithm over the two samples, or (2.b) by applying an approximate variation (↵-allowance
approximate technique) of a kCPQ plane-sweep algorithm over the selected pair of parti-
tions. After an exhaustive experimental study, the fastest and the most accurate method
to compute � is by local sampling (2.a). In Figure 1.4, we can see the general scheme for
kCPQ processing in SpatialHadoop consists of four steps: Preprocessing, Pruning, Local
Spatial Query Processing, and Global Processing. The aforementioned improvement in
the � computation is carried out in the Pruning step, as we can observe in Figure 1.4.

For the computation of all k nearest neighbors (kNearest Neighbor Join query) both
in SpatialHadoop and LocationSpark, several improvements can be applied. The first
improvement is related to solve the problem of skewed data. For this purpose, we can
apply the repartitioning technique by splitting again the densest partitions using once
more any spatial partitioning method. From our experimental results, the best method
to make the algorithms faster is to use the Quadtree-based repartitioning technique,

6
Available at http://spatialhadoop.cs.umn.edu/datasets.html

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 1. INTRODUCTION 13

Figure 1.4: General scheme for kCPQ processing in SpatialHadoop.

and it also reduces the shu✏ed data. Another improvement for this DJQ is to use less
data technique in order to reduce the size of the shu✏ed data between computing nodes
(shu✏ed read/write costs) and the size of the output data of the kNNJ on Overlapping
Partitions phase in the distributed kNNJQ algorithm.

One of the most important improvements in DBQ processing is the use of e↵ective
pruning rules to avoid unnecessary distance computations. Several e�cient pruning
rules have been presented for both kCPQ and kNNJQ in this thesis. For kCPQ, we
have proposed a new pruning rule called Pair of Partitions Pruning to apply in the
filter function for pruning combinations of partitions from the two datasets in order to
reduce the number of map tasks that the distributed kCPQ algorithm needs to perform
to get the final query result. For kNNJQ, several pruning rules have been used to reduce
the number of distance computations and, they are based on concepts like core-distance
and support-distance of a Voronoi-cell.

1.2.5 Challenges

In this section, we highlight the challenges found in the development of this thesis. These
are described in more detail in their corresponding chapters.

When implementing DBQs in SpatialHadoop, a series of challenges appeared inher-
ent to the distributed platform in question. On the one hand, the size of shu✏ed data
must be minimized to obtain e�cient and scalable algorithms. This performance metric
refers to the amount of information that travels between computing nodes in the clus-
ter, especially between the map and reduce phase tasks. Therefore, if the shu✏ed data
increase, the execution time of the algorithms will also grow by increasing both trans-
mitted and processed data. To tackle this challenge, we must wisely use the filtering
capabilities provided by SpatialHadoop along with heuristics and indexes that allow us
to quickly discard data that are not part of the final solution. On the other hand, since
SpatialHadoop is a disk-based DSDMS, both the size of the intermediate files and the
size of the result files must be taken into account, especially in join queries. For example,
when performing a kNNJ query, the output size is equal to the size of the first set times
k. Therefore, sophisticated techniques must be applied to reduce intermediate file sizes,
and also the disk resources of the distributed cluster could be increased if needed.

© 2021 Garćıa-Garćıa, F.J.

14 1.3. THESIS CONTRIBUTIONS

The design of e�cient distributed DBQ algorithms that perform optimally on Spark-
based DSDMSs, like LocationSpark, is a crucial target in the context of this thesis.
For this reason, the reduction of the size of the shu✏ed data is also essential for the
reduction of the total execution time of the distributed algorithms. In this case, the
shu✏ed data represents the amount of information that is redistributed across partitions
that may or may not cause moving data across processes, executors, or nodes. To this
end, we must reduce the use of Spark transformation operations that produce wide
dependencies, such as groupByKey, which also increases the stages of the algorithm.
Therefore, we should encourage the use of operations that generate narrow dependencies,
such as zipPartitions, aggregate, or union, which do not require data redistribution.
Furthermore, the configuration and tuning of nodes in Spark-based systems are quite
complex. Access to guides, provided by the community, such as Tuning Spark7, Set up
your Apache Spark cluster8 and research works like [Gounaris and Torres, 2018], can
help to generate a correct configuration of the distributed environment for conducting
experiments in the best possible way.

Finally, there are some challenges and di�culties that are common to both DSDMSs.
First, it was necessary to set up the hardware and software infrastructure on which to
run the experiments. For this aim, OpenStack has been used for the creation of virtual
machines, and Apache Ambari for the creation and administration of the Hadoop and
Spark clusters. These tools have allowed us to set up the experimentation environments
in a simple way, with e�cient administration and flexibility of being able to modify
the characteristics of the cluster, depending on the type of experiment to be executed.
Another problem was the great diversity in the characteristics of the execution environ-
ments that appear in the studied research works. Indeed, some of these configurations
are di�cult to access, as they have been made in high-capacity and costly payment
clusters. In this way, it is not possible to directly use the results found in these studies,
and therefore, we had to repeat the experiments in our own (local) cluster. To conclude,
and perhaps the most important challenge in this thesis is the di�culty in debugging
the distributed algorithms due to a large number of nodes (machines) and the use of
large spatial datasets. Depending on the algorithm to be debugged, the execution can
take a long time, and finding why an error has occurred is very laborious. To solve this
problem, it has been necessary to rely on local execution with reduced datasets and the
use of writing in logs that have allowed us to correct and advance in the development of
the distributed DBQ algorithms.

1.3 Thesis Contributions

This section summarizes the most important contributions of this thesis from di↵erent
points of view. First, we synthesize the main contributions of this research work by a
brief description of each of them. Next, we list the github repositories where the source
code of this dissertation is open-access available. Afterward, all publications (conferences
and journals) that support the research of this thesis are detailed, highlighting the qual-

7
Available at https://spark.apache.org/docs/latest/tuning.html

8
Available at http://sedona.apache.org/download/cluster/

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 1. INTRODUCTION 15

ity parameters of such publications. Finally, other contributions (publications closely
related) that are not included in this thesis but the author has actively participated
during the course of the author’s Ph.D. studies are also outlined.

1.3.1 Summary of Contributions

The main contributions of this thesis are the following:

– A survey of the state-of-the-art in Hadoop-based and Spark-based DSDMSs. We
explore the most representative DSDMSs (research prototypes) that appear in the
literature and compare them based on features like spatial index and spatial queries
they support. Moreover, we also review the most common spatial partitioning
techniques and classify them by how they use data or space properties. Finally, a
thorough overview of the most studied and known DBQs in the context of spatial
databases. In particular, we emphasize the review on distance-based join queries
(kCPQ, kNNJQ, "DJQ, "DRJQ and other distance-based joins).

– We have proposed a new spatial data partitioning technique based on Voronoi-
Diagrams in SpatialHadoop. This data partitioning scheme is especially suitable
for DBQs as kNNQ and kNNJQ. An extensive experimental evaluation of the
spatial partitioning methods that are implemented in SpatialHadoop and a com-
parison with the Voronoi-Diagram based technique for kCPQ and kNNJQ is also
accomplished [Garćıa-Garćıa et al., 2018a, Garćıa-Garćıa et al., 2020b].

– We have studied and included the Quadtree as a local index in SpatialHadoop since
this spatial access method is widely used in commercial spatial database systems.
A comparative study between R-tree and Quadtree as local indexes for kNNQ and
kCPQ has been carried out and has demonstrated the excellent performance of the
Quadtree for these top-k queries in SpatialHadoop [Garćıa-Garćıa et al., 2020a].

– We have proposed new MapReduce algorithms in SpatialHadoop to perform ef-
ficient distance range queries ("Distance Range query and "Distance Range Join
query) on large-scale spatial datasets. We have also evaluated the performance of
the proposed algorithms in distinct scenarios with large synthetic and real-world
datasets [Garćıa-Garćıa et al., 2016a].

– One of the main and original contributions of this thesis has been the design and
implementation of new MapReduce algorithms to perform e�ciently kCPQ and
"DJQ in SpatialHadoop. For this aim, we have utilized plane-sweep-based kCPQ
algorithms and improved them to compute an upper bound of the distance of the
k-th closest pair and make the original version of kCPQ MapReduce algorithm
much more e�cient and faster. We have evaluated the performance of the proposed
algorithms in several situations with large real-world as well as synthetic datasets.
The experimental results have demonstrated the e�ciency and scalability of our
proposed MapReduce algorithms [Garćıa-Garćıa et al., 2016b, Garćıa-Garćıa et al.,
2018b].

© 2021 Garćıa-Garćıa, F.J.

16 1.3. THESIS CONTRIBUTIONS

– Another distinguished contribution of this thesis has been to compare two of
the most leading DSDMSs, SpatialHadoop (Hadoop-based) and LocationSpark
(Spark-based), by evaluating the performance of several existing and newly pro-
posed distributed distance-based join query (kCPQ, kNNJQ, "DJQ, "DRJQ, etc.)
algorithms under various settings with large real-world datasets. We have also
extended the distributed DBQ algorithms for managing spatial objects more com-
plex than points, like polygons or line-segments. Moreover, improved kNNJQ and
"DRJQMapReduce algorithms have been also implemented by using repartitioning
techniques in dense areas (skewed data handling). Several interesting conclusions
have been obtained after an exhaustive experimental study. For instance, while
SpatialHadoop is a robust and e�cient system when large spatial datasets are
joined (since it is built on top of the mature Hadoop platform), LocationSpark is
the clear winner in total execution time when small-medium spatial datasets are
combined (due to in-memory processing provided by Spark) [Garćıa-Garćıa et al.,
2017a, Garćıa-Garćıa et al., 2020c].

– The Reverse kNearest Neighbor (RkNN) query has been recently studied very thor-
oughly since it is of particular interest in a wide range of applications, such as deci-
sion support systems, resource allocation, profile-based marketing, location-based
services, etc. In this thesis, we have proposed the design and implementation of
new RkNNQ MapReduce algorithms, MRSFT and MRSLICE, in SpatialHadoop.
We have also evaluated and compared their performances with large real-world
datasets, showing interesting conclusions and demonstrating the e�ciency and
scalability of MRSLICE in comparison with the other proposal [Garćıa-Garćıa
et al., 2017b, Garćıa-Garćıa et al., 2019].

DSDMS Spatial Partitioning Spatial Indexing Spatial Query

SpatialHadoop Voronoi-Diagram based
partitioning

Quadtree "DRQ, kNNQ, RkNNQ,
kCPQ, kNNJQ, "DJQ,
"DRJQ - points and non-
points (line-segments and
polygons) - computing of
�, repartitioning, less data,
new pruning rules

LocationSpark — — kCPQ, "DJQ, "DRJQ
SpatialHadoop vs.
LocationSpark

Quadtree — kCPQ, kNNJQ, "DJQ,
"DRJQ

Table 1.1: The most important contributions of this thesis.

1.3.2 Software

The following software was developed in the course of this thesis:

– A distributed spatial partitioning algorithm based on Voronoi-Diagrams has been
implemented in SpatialHadoop. We describe the spatial partitioning method in
detail in Chapter 3. The technique uses several clustering algorithms (Sort-Means,

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 1. INTRODUCTION 17

OPTICSxi, etc.) from the ELKI library [Schubert and Zimek, 2019] for the
pivot selection step. The code is available at https://github.com/acgtic211/
spatialhadoop2/tree/voronoi under the Apache 2.0 license.

– A new local index based on Quadtree has been implemented in SpatialHadoop.
It allows us to accelerate the local computation phase of several spatial query
algorithms, and it is fully described in Chapter 3. The code is available at https://
github.com/acgtic211/spatialhadoop2/tree/quadtree under the Apache 2.0
license.

– Several DBQs have been implemented in SpatialHadoop: "DRQ, kCPQ, "DJQ,
kNNJQ, "DRJQ and RkNNQ. We describe their implementations in detail in
Chapter 4, together with various extensions and improvements of the initial ver-
sions of the algorithms. The code is available at https://github.com/acgtic211/
spatialhadoop2/ under the Apache 2.0 license.

– Several DBQs have been also implemented in LocationSpark: kCPQ, "DJQ, and
RkNNQ. The implementation details of each of these distributed DBQ algorithms
are found throughout Chapter 5. The code is available at https://github.com/
acgtic211/LocationSpark/tree/DJQ.

1.3.3 Publications

Results presented in this thesis have been published as papers in international and
national conference proceedings (2 ADBIS, 3 MEDI, 1 JISBD, 1 PCI) and in prestigious
international journals (GeoInformatica, Information Sciences and Future Generation
Computer Systems) as follows.

– [Garćıa-Garćıa et al., 2016b] Garćıa-Garćıa, F., Corral, A., Iribarne, L., Vassi-
lakopoulos, M., and Manolopoulos, Y. (2016). Enhancing spatialhadoop with

closest pair queries. In ADBIS Conference, pages 212–225. ADBIS (Advances
in Databases and Information Systems) is a prestigious European conference on
the fields of databases and information systems. In 2016, the conference attracted
85 paper submissions and, after a rigorous review process, only 21 papers were
accepted (25%) to be included in LNCS proceedings. CORE B.

– [Garćıa-Garćıa et al., 2016a] Garćıa-Garćıa, F., Corral, A., Iribarne, L., and Vas-
silakopoulos, M. (2016). Distance range queries in spatialhadoop. In JISBD
Conference, pages 1–14. JISBD (Jornadas de Ingenieŕıa del Software y Bases
de Datos) is the most important Spanish conference in databases and software
engineering. In 2016, this paper was published in the Data Management track.

– [Garćıa-Garćıa et al., 2017b] Garćıa-Garćıa, F., Corral, A., Iribarne, L., and Vas-
silakopoulos, M. (2017). Rknn query processing in distributed spatial in-

frastructures: A performance study. In MEDI Conference, pages 200–207.
MEDI (Model and Data Engineering) is an emerging international conference on
models and data engineering, the development of advanced technologies related to

© 2021 Garćıa-Garćıa, F.J.

18 1.3. THESIS CONTRIBUTIONS

models and data, as well as their advanced applications. MEDI 2017 received 69
paper submissions, and only 27 (20 full papers and 7 short papers) were accepted
(39%) to be included in LNCS proceedings.

– [Garćıa-Garćıa et al., 2017a] Garćıa-Garćıa, F., Corral, A., Iribarne, L., Mavrom-
matis, G., and Vassilakopoulos, M. (2017). A comparison of distributed spa-

tial data management systems for processing distance join queries. In
ADBIS Conference, pages 214–228. ADBIS 2017 conference attracted 107 pa-
per submissions and only 26 papers were accepted (24%) to be included in LNCS
proceedings. CORE B.

– [Garćıa-Garćıa et al., 2018a] Garćıa-Garćıa, F., Corral, A., Iribarne, L., and Vas-
silakopoulos, M. (2018). Voronoi-diagram based partitioning for distance

join query processing in spatialhadoop. InMEDI Conference, pages 251–267.
MEDI 2018 conference received 86 paper submissions and only 27 (23 full papers
and 4 short papers) were accepted (31%) to be included in LNCS proceedings.

– [Garćıa-Garćıa et al., 2018b] Garćıa-Garćıa, F., Corral, A., Iribarne, L., Vassi-
lakopoulos, M., and Manolopoulos, Y. (2018). E�cient large-scale distance-

based join queries in spatialhadoop. GeoInformatica, 22(2): 171–209. GeoIn-
formatica (ISSN: 1384:6175, Springer) is a prestigious journal on advances of com-
puter science for geographic information systems (GISs), covering research fields
like spatial modeling and databases; parallelism, distribution and communication
through GIS; spatio-temporal reasoning; etc. In 2018, GeoInformatica journal had
a JCR Impact Factor of 1.317; Computer Science, Information Systems 118/155
Q4.

– [Garćıa-Garćıa et al., 2019] Garćıa-Garćıa, F., Corral, A., Iribarne, L., and Vas-
silakopoulos, M. (2019). MRSLICE: e�cient rknn query processing in

spatialhadoop. In MEDI Conference, pages 235–250. MEDI 2019 conference
received 41 paper submissions, and only 21 (11 full papers, 7 short papers, 2 ap-
plication papers, and 1 vision paper) were accepted (51%) to be included in LNCS
proceedings.

– [Garćıa-Garćıa et al., 2020a] Garćıa-Garćıa, F., Corral, A., and Iribarne, L. (2020).
Including the quadtree index in spatialhadoop. In Pan-hellenic Conference
on Informatics, pages 376–379. PCI (Pan-Hellenic Conference on Informatics) is
the most important Greek conference on computer science and emerging fields of
informatics. PCI 2020 conference received 171 paper submissions, and only 93 (80
full papers and 13 short papers) were accepted (54%) to be included in PCI 2020
proceedings volume. This paper was accepted in the special session on Parallel
and/or Distributed Databases (PDDB).

– [Garćıa-Garćıa et al., 2020c] Garćıa-Garćıa, F., Corral, A., Iribarne, L., Vassi-
lakopoulos, M., and Manolopoulos, Y. (2020). E�cient distance join query

processing in distributed spatial data management systems. Informa-
tion Sciences, 512:985–1008. Information Sciences (ISSN: 0020:0255, Elsevier)

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 1. INTRODUCTION 19

is a prestigious multidisciplinary journal that publishes high-quality and refereed
articles and, it emphasizes a balanced coverage of both theory and practice. In
2019, Information Sciences journal had a JCR Impact Factor of 5.910; Computer
Science, Information Systems 9/156 Q1.

– [Garćıa-Garćıa et al., 2020b] Garćıa-Garćıa, F., Corral, A., Iribarne, L., and Vas-
silakopoulos, M. (2020). Improving distance-join query processing with

voronoi-diagram based partitioning in spatialhadoop. Future Generation
Computer Systems, 111:723–740. Future Generation Computer Systems (ISSN:
0167:739X, Elsevier) is a prestigious journal that aims to lead the way in advances
in the fields of distributed systems, Big Data, clouds, among others. In 2019, Fu-
ture Generation Computer Systems journal had a JCR Impact Factor of 6.125;
Computer Science, Theory & Methods, 8/108 Q1.

1.3.4 Other Contributions

Other related contributions that are not included in this thesis, but have been developed
during the course of the author’s PhD studies, are the following:

– [Mavrommatis et al., 2017] Mavrommatis, G., Moutafis, P., Vassilakopoulos, M.,
Garćıa-Garćıa, F., and Corral, A. (2017). SliceNBound: Solving closest pairs

and distance join queries in apache spark. In ADBIS Conference, pages
199–213. This paper addresses the problem of answering the kCPQ in Apache
Spark, by presenting a specialized and fast algorithm (SliceNBound) that can easily
be imported in any, spatial-oriented or general, Spark-based system. Furthermore,
it presents a variant of this algorithm that solves the "DJQ. Experiments and
comparison to other solutions indicate that this new method is fast and e�cient.
ADBIS 2017 conference attracted 107 paper submissions and only 26 papers were
accepted (24%) to be included in LNCS proceedings. CORE B.

– [Moutafis et al., 2019a] Moutafis, P., Garćıa-Garćıa, F., Mavrommatis, G., Vassi-
lakopoulos, M., Corral, A., and Iribarne, L. (2019). Mapreduce algorithms for

the K group nearest-neighbor query. In SAC Conference, pages 448–455.
This paper presents a multi-phased algorithm, consisting of alternating local and
parallel phases, which can be used to e↵ectively process the Group Nearest Neigh-
bor (GNN) query when the query dataset fits in memory, but the training one
belongs to the Big Data category. Moreover, some pruning heuristics and e↵ective
calculation techniques are used, as well as di↵erent indexing methods. Finally,
some comparative benchmarks with several synthetic and real-world datasets are
performed. SAC (Symposium on Applied Computing) is a prestigious multidis-
ciplinary conference to present the results of strategic research and experimenta-
tion (innovative application fields, technology transfer, experimental computing,
strategic research, management of computing, etc.). In 2019, the SAC confer-
ence attracted 1067 paper submissions and, after a rigorous review process, only
258 papers were accepted (24.2%) for inclusion in the conference proceedings and
presented during the symposium. CORE B.

© 2021 Garćıa-Garćıa, F.J.

20 1.4. THESIS ORGANIZATION

– [Moutafis et al., 2021] Moutafis, P., Garćıa-Garćıa, F., Mavrommatis, G., Vassi-
lakopoulos, M., Corral, A., and Iribarne, L. (2021). Algorithms for processing

the group k nearest-neighbor query on distributed frameworks. Dis-
tributed and Parallel Databases, In Press. This paper presents a significantly
improved version of the GkNNQ MapReduce algorithm presented in SAC 2019
conference that incorporates a new high-performance refining method, a fast way
to calculate distance sums for pruning purposes, and several other coding and
algorithmic improvements. Moreover, this algorithm is transformed to Spatial-
Hadoop, using a novel two-level partitioning method. A thorough experimental
study of the Hadoop and SpatialHadoop versions of the algorithm is also pre-
sented for synthetic and real-world datasets, including a backstage analysis of the
algorithm’s performance, using metrics that highlight its internal functioning. Fi-
nally, an experimental comparison of the Hadoop, the SpatialHadoop versions,
and the version of our previous work (SAC 2019 conference) is presented, showing
that the improved versions are the big winners, being the SpatialHadoop version
faster than its Hadoop counterpart. Distributed and Parallel Databases (ISSN:
0926:8782, Springer) is a prestigious journal in the fields of distributed and paral-
lel database technology. In 2019, Distributed and Parallel Databases journal had
a JCR Impact Factor of 0.757; Computer Science, Theory & Methods, 84/108
Q4.

– [Garćıa-Garćıa et al., 2021] Garćıa-Garćıa, F., Corral, A., Iribarne, L., and Vas-
silakopoulos, M. (2021). Enhancing sedona (formerly geospark) with e�-

cient k nearest neighbor join processing. In MEDI Conference, Accepted.
This paper investigates how to design and implement an e�cient distributed
kNNJQ algorithm in Sedona (formerly GeoSpark), using the most appropriate
spatial partitioning technique and other improvements. Finally, the results of an
extensive set of experiments with real-world datasets are presented, demonstrating
that the proposed kNNJQ algorithm in Sedona is e�cient, scalable, and robust.
This paper has been accepted in the MEDI 2021 conference. MEDI 2021 received
47 paper submissions and only 16 full papers have been accepted (34%) to be
included in LNCS proceedings.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 details the state-of-the-art and
the needed background on Distributed Spatial Data Management Systems (DSDMSs),
spatial data partitioning techniques, and the most representative DBQs, paying special
attention to DJQs.

Chapter 3 describes the structure and operations of spatial partitioning and indexing
in SpatialHadoop. Then, this chapter proposes a data partitioning technique based on
Voronoi-Diagrams to split the spatial dataset into smaller units, enabling the processing
of a spatial query in parallel and reducing the I/O activity by only scanning a few
partitions that contain the relevant data to the query constraint. Moreover, the Quadtree
is included, as a local index, in SpatialHadoop. Finally, a set of experiments evaluates the

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 1. INTRODUCTION 21

performance and e�ciency of both proposals with respect to other spatial partitioning
techniques implemented in SpatialHadoop and R-tree local index.

Chapter 4 focuses on a detailed description of the spatial query processing in Spa-
tialHadoop. It presents the general scheme for distributed spatial query processing,
built-in queries, and tools in SpatialHadoop. Next, it describes and discusses the imple-
mentation of new DBQs and several extensions and improvements. Finally, it shows an
experimental evaluation of the proposed DBQ MapReduce algorithms and a comparison
with their extensions and improvements.

Chapter 5 details the di↵erent spatial capabilities and spatial queries that Location-
Spark provides to Spark. Next, this chapter proposes several new DJQs, extensions, and
improvements over it. Finally, it presents the most representative results of an extensive
set of experiments and a comparison with SpatialHadoop.

Chapter 6 provides the conclusions arising from the research of this thesis and dis-
cusses related future work on open research lines.

Finally, a list of Acronyms to describe those initials used in the document, and a
Bibliography section, that contains the references used in this research work, is included
at the end of this thesis.

© 2021 Garćıa-Garćıa, F.J.

22 1.4. THESIS ORGANIZATION

E�cient Query Processing in Distributed Spatial Data Management Systems

Chapter 2

State of the Art

© 2021 Garćıa-Garćıa, F.J.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 2. STATE OF THE ART 23

Chapter 2

State of the Art

Contents
2.1 Distributed Spatial Data Management Systems 25

2.1.1 Disk-based DSDMSs . 25

2.1.2 In-memory-based DSDMSs 28

2.2 Spatial Data Partitioning . 31

2.2.1 Space-based Partitioning Techniques 33

2.2.2 Data-based Partitioning Techniques 35

2.2.3 Space-Filling Curve-based Partitioning Techniques 37

2.2.4 Distance-based Partitioning Techniques 38

2.3 Distance-based Query Processing 40

2.3.1 kNearest Neighbor Query . 40

2.3.2 "Distance Range Query . 41

2.3.3 Reverse kNearest Neighbor Query 42

2.3.4 kNearest Neighbor Join Query 44

2.3.5 "Distance Range Join Query 46

2.3.6 kClosest Pairs Query . 48

2.3.7 "Distance Join Query . 50

2.3.8 Other related Distance Join Queries 50

2.4 Conclusions . 51

24

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 2. STATE OF THE ART 25

T his chapter introduces a detailed description of the state-of-the-art and the
needed background. First, the most outstanding Distributed Spatial Data Management
Systems (DSDMSs) are exposed in Section 2.1. Next, the state-of-the-art of spatial
partitioning techniques used in DSDMSs is discussed in Section 2.2. Finally, the most
representative Distance-based Queries (DBQs) are described and formally defined in
Section 2.3.

2.1 Distributed Spatial Data Management Systems

Nowadays, researchers, developers and practitioners worldwide have started to take ad-
vantage of parallel and distributed computing using shared nothing clusters. The most
relevant processing frameworks for these Big Data environments are Apache Hadoop
and Apache Spark.

However, both Hadoop and Spark are less e�cient when are applied to spatial data
[You et al., 2015, Yu et al., 2015]. The main shortcoming is that there is no indexing
mechanism for selective access to specific regions of spatial data, which would make
query processing algorithms more e�cient. This problem could be solved by the use of
novel technologies for the distributed processing of large-scale spatial data on clusters
of computers [Chen and Zhang, 2014], leading to Distributed Spatial Data Manage-
ment Systems (DSDMSs), also called Big Spatial Data Analytics Systems (BSDASs)
[Pandey et al., 2018]. These DSDMSs can be classified as disk-based [Li et al., 2014]
or in-memory-based [Zhang et al., 2015], as we can see in [Pandey et al., 2018, de Car-
valho Castro et al., 2020, Velentzas et al., 2021]. For instance, in [de Carvalho Castro
et al., 2020], a comparative study of both DSDMSs (Hadoop and Spark) based on the
user-centric view is presented. These comparisons help users to understand how the
characteristics of DSDMSs are useful to meet the specific requirements of their spatial
applications.

2.1.1 Disk-based DSDMSs

The disk-based DSDMSs are characterized as Hadoop-based systems. Apache Hadoop1

is a reliable, scalable, and e�cient cloud computing framework enabling distributed
processing of large datasets using the MapReduce programming model [Bechini et al.,
2016]. MapReduce [Dean and Ghemawat, 2004] is a framework for processing and
managing large-scale datasets in a distributed cluster. In fact, the MapReduce pro-
gramming paradigm has become a de-facto standard for processing large amounts of
data (Big Data). It was introduced to provide a simple yet powerful parallel and dis-
tributed computing paradigm, o↵ering good scalability and fault tolerance mechanisms.
However, Hadoop is a type of disk-based computing framework, which writes to disk all
intermediate data between map and reduce tasks.

1
Available at https://hadoop.apache.org/

© 2021 Garćıa-Garćıa, F.J.

26 2.1. DISTRIBUTED SPATIAL DATA MANAGEMENT SYSTEMS

Figure 2.1: ST-Hadoop system architecture [Alarabi et al., 2018].

The most representative disk-based DSDMSs are the following research prototypes:

– Parallel-Secondo [Lu and Güting, 2012] is a parallel spatial DBMS that uses
Hadoop as a distributed task scheduler. It integrates Hadoop with SECONDO
[Güting et al., 2010], a database that can handle non-standard data types, like
spatial data, usually not supported by standard systems. It only supports uniform
spatial data partitioning techniques, which cannot e�ciently handle the spatial
data skewness problem.

– Hadoop-GIS2 [Aji et al., 2013] extends Hive [Thusoo et al., 2009], a data warehouse
infrastructure built on top of Hadoop with a uniform grid index for range queries,
spatial joins and other spatial operations. It adopts the Hadoop Streaming frame-
work and integrates several open-source software packages for spatial indexing and
geometry computation. It utilizes SATO spatial partitioning [Vo et al., 2014] (sim-
ilar to kd-tree [Bentley, 1975]) and local spatial indexing to achieve e�cient spatial
query processing.

– SpatialHadoop3 [Eldawy and Mokbel, 2015] is a full-fledged MapReduce frame-
work with native support for spatial data. It tightly integrates well-known spatial
operations (including range queries, kNN query, spatial join and CG Hadoop [El-
dawy et al., 2013]) into Hadoop. It supports various spatial data types (point,

2
Available at https://github.com/bunnyg/Hadoop-GIS

3
Available at https://github.com/aseldawy/spatialhadoop2

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 2. STATE OF THE ART 27

line string, polygon, multi-point, etc.), several spatial partitioning techniques [El-
dawy et al., 2015] (uniform Grids, STR (Sort-Tile-Recursive algorithm), Quadtree
[Finkel and Bentley, 1974], kd-tree [Bentley, 1975], Hilbert-curve [Faloutsos and
Roseman, 1989] and Z -curve [Orenstein and Merrett, 1984]) and local spatial in-
dexes (Grid file [Nievergelt et al., 1984], R-tree [Guttman, 1984] and R+-tree [Sellis
et al., 1987]). In addition, SpatialHadoop has an excellent performance and it is
one of the best maintained Hadoop-based DSDMS [Pandey et al., 2018]. For all
these reasons, we have focused on SpatialHadoop and no in others Hadoop-based
DSDMSs.

– ST-Hadoop4 [Alarabi et al., 2018] extends Hadoop and SpatialHadoop by adding
spatio-temporal data awareness to their language, indexing and operation layers as
shown in Figure 2.1. It supports several spatio-temporal operations (including ST-
range query, ST-join, ST-aggregates, and kNNQ). It adds various spatio-temporal
data types (STPoint, TIME, INTERVAL, etc.) and uses a spatio-temporal index
that consists of two layers of temporal slices and then spatial partitions. Finally,
ST-Hadoop replicates its index into a temporal hierarchy index structure where
the same data is replicated on distinct levels but with di↵erent spatio-temporal
granularities.

According to [Yao and Li, 2018, Alam et al., 2021], Table 2.1 lists the most repre-
sentative existing DSDMSs based on Hadoop, which are compared from three aspects,
namely spatial partitioning, spatial indexing, and spatial query.

DSDMS Spatial Partitioning Spatial Indexing Spatial Query

Parallel-Secondo 3D Grid B-tree, R-tree range query, spatial join
Hadoop-GIS SATO framework Two-Level (Global,

Local) R*-tree
range query, spatial join

ST-Hadoop Time-slice, Data-slice Two-Level (Temporal,
Spatial) ST-index

ST-range query, ST-
join, ST-aggregates,
kNNQ

SpatialHadoop Grid, STR, STR+,
Quadtree, kd-tree, H-
curve, Z-curve

Two-Level (Global,
Local) Grid File, R-
tree, R+-tree

range query, kNNQ,
spatial join

Table 2.1: The most representative existing DSDMSs based on Hadoop.

Finally, there are other DSDMSs that show some interesting features. For instance,
CloST [Tan et al., 2012] is a MapReduce-based storage system for big spatio-temporal
data analytics on Hadoop. It uses a simple data model composed of three main attributes
(id, location and time) and a hierarchically partitioning method that enables e�cient
parallel processing of spatio-temporal range scans and both single-object and all-object
queries.

4
Available at http://st-hadoop.cs.umn.edu/

© 2021 Garćıa-Garćıa, F.J.

28 2.1. DISTRIBUTED SPATIAL DATA MANAGEMENT SYSTEMS

2.1.2 In-memory-based DSDMSs

Considering in-memory-based DSDMSs, they are characterized as Spark-based systems.
Apache Spark5 is a fast, reliable and distributed in-memory large-scale data processing
framework. It takes advantage of Resilient Distributed Datasets (RDDs) that allow data
to be stored transparently in memory and persisted to disk only if necessary [Zaharia
et al., 2012]. Hence, it can avoid a huge number of disk writes and reads, and outperform
the Hadoop platform. Since Spark maintains the status of assigned resources until a job
is completed, it reduces the consumed time in resource preparation and collection [Karim
et al., 2018].

The most remarkable in-memory research prototypes are the following:

– SpatialSpark6 [You et al., 2015] is a lightweight implementation of several spatial
operations on top of Spark in-memory big data system. It targets at in-memory
processing for higher performance. SpatialSpark adopts data partition strategies,
like fixed grid or kd-tree on data files in HDFS and builds an index to accelerate
spatial operations. It supports range queries and spatial joins over geometric
objects using spatial conditions, like intersect and within.

– GeoSpark7 [Yu et al., 2015, Yu et al., 2019], currently Sedona, extends Spark for
processing spatial data. It provides a new abstraction, called Spatial Resilient
Distributed Datasets (SRDDs), and a few spatial operations. It allows an index
(e.g., Quadtree and R-tree) to be the object inside each local RDD partition. From
the query processing point of view, GeoSpark supports range query, kNNQ, spatial
joins, and distance join over SRDDs. Figure 2.2 summarizes its architecture and
the relations between layers.

– Simba8 (Spatial In-Memory Big data Analytics) [Xie et al., 2016] o↵ers scalable
and e�cient in-memory spatial query processing and analytics for big spatial data.
Simba is based on Spark and runs over a cluster of commodity machines. In
particular, Simba extends the Spark SQL engine to support rich spatial queries
and analytics through both SQL and the DataFrame API. It introduces spatial
partitioning techniques (e.g., Sort-Tile-Recursive (STR) algorithm [Leutenegger
et al., 1997]), spatial indexes (global and local) based on R-trees over RDDs to
work with big spatial data, and complex spatial operations (e.g., range query,
kNNQ, distance join and kNNJQ).

– STARK 9 [Hagedorn and Räth, 2017] is a framework that adds spatio-temporal
support to Spark, includes spatial partitioners, several modes for indexing, as
well as filter, join, and clustering operators. More precisely, STARK includes
spatial partitioning (grid and binary space) and indexing techniques (R-tree) for
fast and e�cient execution of the data analysis tasks. STARK also supports spatial

5
Available at https://spark.apache.org/

6
Available at https://github.com/syoummer/SpatialSpark

7
Available at http://sedona.apache.org/

8
Available at http://www.cs.utah.edu/~dongx/simba/

9
Available at https://github.com/dbis-ilm/stark

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 2. STATE OF THE ART 29

Figure 2.2: GeoSpark system architecture [Yu et al., 2015].

operations like intersect, contains, containedBy, spatial join, skyline, kNNQ, and
a density-based clustering operator that allows us to find groups of similar events.

– LocationSpark10 [Tang et al., 2016, Tang et al., 2020] is an e�cient in-memory
distributed spatial query processing system that is characterized as a Spark-based
system. It provides promising features for the e�ciency of query processing, like
data and query skew components to improve load balancing while executing spatial
operators (e.g., spatial range, kNN search, spatial range join, and kNN join),
by generating cost-optimized query execution plans over in-memory distributed
spatial data. Moreover, LocationSpark builds two layers of spatial indexes: global
and local. The global index partitions the entire dataset equally between the
available processing nodes, and it uses Grid, R-tree, or Quadtree. Each data
partition has a local spatial index (e.g., a Grid local index, an R-tree, a variant of
the Quadtree, or an IR-tree [Li et al., 2011]).

Note that [Pandey et al., 2018] explores the availability of spatial analytics systems
(based on Spark) and compares their features and queries by running experiments that
evaluate their performance and other metrics using real-world datasets. For kNNJQ,
only LocationSpark and Simba support it, and LocationSpark obtains the best results in
terms of performance, scalability and shu✏e cost. As a conclusion, the authors highlight

10
Available at https://github.com/purduedb/LocationSpark

© 2021 Garćıa-Garćıa, F.J.

30 2.1. DISTRIBUTED SPATIAL DATA MANAGEMENT SYSTEMS

that LocationSpark is a very interesting option since it has a very good query scheduler
and optimizer. Also, it has a spatial bloom filter (sFilter) which brings the query costs
down. Moreover, they also suggest that these features could be incorporated in the other
studied Spark-based systems.

According to [Yao and Li, 2018, Alam et al., 2021], Table 2.2 lists the most repre-
sentative existing DSDMSs based on Spark, which are compared with the same aspects
as in Table 2.1.

DSDMS Spatial Partitioning Spatial Indexing Spatial Query

SpatialSpark Grid, Binary-split, STR R-tree range query, spatial join
GeoSpark Grid, Voronoi, R-tree,

Quadtree, kDB-tree
R-tree, Quadtree range query, kNNQ,

spatial join, distance
join

Simba STR R-tree (multi-level) range query, kNNQ,
distance join, kNNJQ

STARK Grid, Binary-split R-tree (live and persis-
tent)

range query, kNNQ,
spatial join

LocationSpark Grid, R-tree, Quadtree R-tree, Quadtree, IR-
tree (multi-level)

range query, kNNQ,
spatial range join, dis-
tance join, kNNJQ

Table 2.2: The most representative existing DSDMSs based on Spark.

In addition to the previous in-memory-based DSDMSs, there are others that present
some quite promising characteristics:

– Magellan [Sriharsha, 2021] is a distributed execution engine on top of Apache
Spark that optimizes spatial queries over big data. It extends SparkSQL with
spatial datatypes, geometric predicates and, range and join queries on top of a
Z-curve index.

– SparkGIS [Baig et al., 2017] is a distributed, in-memory spatial data process-
ing framework that combines the in-memory distributed processing capabilities
of Apache Spark and the e�cient spatial query processing of Hadoop-GIS. Ex-
periments with medical images and geographical data from OpenStreetMap have
proved its performance in real scenarios.

– GeoTrellis [Kini and Emanuele, 2014] is an open-source library focused on the
management of large spatial raster datasets over Apache Spark. It relies on files
written using the GeoTIFF11 format and the use of multi-dimensional space-filling
curves for indexing.

– GeoMatch [Zeidan et al., 2018] is a scalable and e�cient big-data pipeline for
large-scale map matching on Apache Spark. It leverages an e↵ective indexing
technique based on the Hilbert space-filling curve and a load balancing algorithm
that evenly distributes the dataset across compute nodes.

– SciSpark [Wilson et al., 2016] is a big data framework focused on scientific com-
putations built on top of Apache Spark. In its current state, it provides time and

11
Available at https://www.ogc.org/standards/geotiff

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 2. STATE OF THE ART 31

space partitioning, n-dimensional array operations, parallel computation of time-
series statistical metrics, and a frontend interface that uses Apache Zeppelin12

notebook software.

Finally, there are other in-memory-based DSDMSs whose main contribution is the
support for spatio-temporal data handling:

– BinJoin [Whitman et al., 2017, Whitman et al., 2019] is a spatio-temporal at-
tribute join implementation in Apache Spark that uses a local index and a query
optimizer to increase its performance. Two interesting conclusions can be ex-
tracted from its experimental study: the e�ciency of a distributed spatial join
algorithm depends on the characteristics of the two input datasets, and the tem-
poral conditions decrease the e↵ects of spatial skew.

– GeoMesa [Hughes et al., 2015] provides spatio-temporal indexing on top of dif-
ferent distributed data storage systems. It supports range and spatial join queries
optimized by the use of an R-tree spatial partitioning technique and a Grid-based
local index.

2.2 Spatial Data Partitioning

Data partitioning is a powerful mechanism to improve the e�ciency of data management
systems, and it is a standard feature in modern database systems. Aside from the
fact that data partitioning improves the overall manageability of large datasets, it also
speeds up query performance. Partitioning such datasets into smaller units enables
the processing of a query in parallel and reduces the I/O activity by only scanning a
few partitions that contain relevant data to the query constraints. When we partition
spatial data in a distributed framework, we are talking about spatial data partitioning.
DSDMSs have to take into account several factors of their execution environment and the
characteristics of real-world spatial objects. Therefore, the following factors [Yao et al.,
2017] must be analyzed for the spatial partitioning techniques to get better algorithms
with optimal performance:

F.1 Spatial Objects. They are the smallest unit of non-divisible / non-splittable spatial
information (e.g., points, line-segments, polygons, regions, etc.).

F.2 Spatial Location. The chosen representation to store the Spatial Object. Normally,
instead of using a complex geometry, exactly describing the spatial object, an
approximation is used (e.g., center, centroid, MBR, etc.).

F.3 Spatial Distribution. By the nature of spatial objects, they usually show localiza-
tion patterns that tend to show skew. In addition, adjacent spatial objects must
be partitioned in the same blocks as much as possible while seeking a balance that
reduces skew problems. For complex spatial objects, we also have to decide how
to handle spatial objects that are within the boundaries between partitions.

12
Available at https://zeppelin.apache.org/

© 2021 Garćıa-Garćıa, F.J.

32 2.2. SPATIAL DATA PARTITIONING

F.4 Object Volume. Size of the spatial object (bytes) in the physical storage layer (disk
or memory).

F.5 Block Size. It determines when a block of data in HDFS is subdivided or merged
(e.g., the default value for Hadoop 2 is 128 MB). Optimally, the size of the parti-
tions should approximate this value.

Moreover, spatial data partitioning is challenging due to several important properties
that are particular to spatial data and query processing, especially spatial data skew and
boundary object handling [Aji et al., 2015].

Figure 2.3: Partitions of a spatial dataset that exhibit spatial data skew and boundary
objects.

In general, the problem of data skew is that some partitions contain more data
elements, and their processing creates a delay in obtaining the final result of the query.
As shown in Figure 2.3, in spatial applications, we can find regions or countries, similar
to cell B, that have more density because they contain a greater number of spatial
objects than others. Furthermore, these most populated areas will normally have a
high number of other space entities, such as buildings, that will increase the magnitude
of the problem when they are part of a join-type query. Therefore, to increase the
performance of the spatial queries, the di↵erent partitioning techniques must take into
account this characteristic presented by the spatial data when dividing the space into
partitions and/or using a preprocessing prior to the spatial query that performs some
re-distribution to adjust the data in units of work as uniform as possible.

As for boundary objects, spatial partitioning techniques should treat them in a special
way. Complex spatial objects, unlike points, fill a certain area that can involve multiple
partitions. For example, Figure 2.3 shows two rectangles that are in the boundary
between cells B and C. Some partitioning techniques use replication methods that copy
each geometry in all partitions with which it interacts. Therefore, it is necessary to
eliminate possible duplicate results using techniques such as the reference-point duplicate
avoidance technique [Eldawy and Mokbel, 2015], which consists of fixing a single point
of the geometry and working only with the partition in which it is located. However,
this causes both an increase in the physical size of the spatial dataset and a rise in the

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 2. STATE OF THE ART 33

processing time. Other partitioning methods, such as partitioning based on Z-curve or
Voronoi-Diagrams, associate each spatial object to exactly one partition avoiding this
problem.

The subsequent sections describe the most important spatial data partitioning tech-
niques [Eldawy and Mokbel, 2015] classified by how they use spatial data or space
properties. More specifically, di↵erent data structures are presented, along with the
procedures used to obtain the final partitions and auxiliary indexes.

2.2.1 Space-based Partitioning Techniques

Space-based partitioning techniques perform the division of space through an algorithm
that uses some of the geometric characteristics of the space of the dataset to be parti-
tioned. Among the most important partitioning techniques are:

– Grid-based partitioning. It consists of the division of space into a matrix of
m ⇥ n cells of the same size. The main advantage of this partitioning method
is that no previous preprocessing is necessary to divide a dataset into a certain
number of columns and rows. Given the Minimum Bounding Rectangle (MBR)
(xmin, ymin, xmax, ymax) of a dataset P and the number of columns m and rows n,
the corresponding cell c of a point p 2 P is given by the following equations:

dx = (xmax � xmin)/m

dy = (ymax � ymin)/n

i = (px � xmin)/dx

j = (py � ymin)/dy

c = i+ j ⇤ n

Figure 2.4: Spatial dataset partitioned by a 3⇥ 4 grid.

© 2021 Garćıa-Garćıa, F.J.

34 2.2. SPATIAL DATA PARTITIONING

For instance, SpatialHadoop has an index based on an uniform Grid [Eldawy et al.,
2015], where m = n, which performs the partitioning of the spatial dataset based
on their MBR without using any sampling or other preprocessing method. Fur-
thermore, given a particular cell, neighboring cells are also easily located. Figure
2.4 shows a dataset partitioned by a grid of m = 3 and n = 4 where the bottom
right cell c is identified by i = 2 and j = 2.

– Quadtree-based partitioning. It uses a Quadtree [Finkel and Bentley, 1974] for the
partitioning of the data through the recursive decomposition of a two-dimensional
space in 4 quadrants or regions. According to [Samet, 1984], a Quadtree is a set
of hierarchical data structures that present a series of common properties such
as recursive subdivision and the use of 2 types of nodes: internal nodes and leaf
nodes. Each internal node of the tree has 4 children, representing the 4 result-
ing regions: NW(North West), NE(North East), SW(South West), and SE(South
East). Moreover, internal nodes are often accompanied by information about the
region they represent, such as the MBR. Normally, Quadtree-based partitioning
techniques recursively divide the nodes/regions that contain a larger number of
elements until a certain condition or restriction is satisfied. For example, until
the number of elements contained in the leaf nodes occupy a certain size of main
memory or disk (capacity). In the case of SpatialHadoop, a sampling of s ele-
ments of the input spatial dataset is performed previously, which are inserted one
by one in a Quadtree with a node capacity of s/n, where n is the desired number
of partitions [Eldawy et al., 2015].

Figure 2.5: Spatial dataset partitioned by a Quadtree with a maximum of two
elements per leaf.

Finally, these space-based partitioning techniques can store the complete structure
of the tree as an index or only use the boundaries of the leaf nodes or some level, which
represent the final partitions. Figure 2.5 shows the final partitions of a dataset by means
of a Quadtree based on a maximum of 2 elements per leaf.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 2. STATE OF THE ART 35

2.2.2 Data-based Partitioning Techniques

Data-based partitioning techniques are defined as those partitioning methods that use
characteristics of the data, such as their number or position, to divide the space in which
they are located. The most outstanding techniques are:

– R-tree-based partitioning. This technique partitions the data using the R-tree
resulting from the insertion of the elements of a dataset. An R-tree [Guttman,
1984] is a height-balanced tree similar to a B-tree [Comer, 1979] whose structure
is designed to perform spatial searches by visiting as few nodes as possible. To
this end, each node contains entries with a pointer to a children node and its
MBR that is tested with a geometric operation (intersection, contains, etc.) to
traverse the tree during the spatial query. This data structure divides the space
hierarchically into sets, possibly overlapping, with the data elements on the leaf
nodes. In contrast to a Quadtree, nodes are divided by balancing the number
of elements using di↵erent element/node heuristics without explicitly dividing the
space. Moreover, the degree of an R-tree is the maximum number of entries per
node. There are several methods for its creation, such as one-by-one insertion or
bulk loading. The techniques based on bulk loading consider all data to be inserted
as a whole to take advantage of their joint properties. Therefore, they usually
have higher creation, storage, and query performance than one-by-one insertion
methods. When adapting the partitioning to the various factors discussed in the

Figure 2.6: Spatial dataset partitioned by an R-tree.

previous section, we can use the R-tree degree to limit the number of children per
node. Furthermore, we can select a tree-level or elected nodes as we go through
it to obtain the partitions based on some restrictions. For instance, the STR
partitioning method in SpatialHadoop [Eldawy et al., 2015] bulk loads a sample
of s elements from the spatial dataset into an R-tree using the Sort-Tile-Recursive
(STR) algorithm [Leutenegger et al., 1997]. The degree of the R-tree used is s/n,
where n is the number of partitions, to ensure that there are at least n partitions

© 2021 Garćıa-Garćıa, F.J.

36 2.2. SPATIAL DATA PARTITIONING

on the second level. Then the MBRs of these nodes are used as boundaries of the
final partitions.

As with Quadtree, the STR partitioning technique can preserve the complete struc-
ture of the R-tree as an index, as SpatialHadoop does. Figure 2.6 shows the result
of applying R-tree-based partitioning to a dataset and also limiting the number
of elements per leaf to 4. Notice that there are overlaps between partitions, and
their size is less regular compared to Quadtree-based partitioning.

– kd-tree-based partitioning. It uses a kd-tree [Bentley, 1975] to partition a spatial
dataset by the result of its construction. A kd-tree is a multidimensional binary
tree where each node contains a point with k dimensions and two pointers to each
child node. Therefore, for k = 2 it splits a two-dimensional space into two half-
spaces by using planes defined by the inserted points. Moreover, for each level of
the binary tree the reference dimension/axis for inserting/searching is swapped,
that is, for two-dimensional spaces, it switches between horizontal and vertical
planes. To obtain a well-balanced tree there are di↵erent techniques mainly based
on median-finding algorithms. In these methods, the median from the dataset
is chosen as the root and the algorithm is recursively applied to the two new
generated splits. For spatial partitioning, the recursive algorithm stops when there
are no more elements to split or some restriction is reached, such as the number of
partitions. For instance, kd-tree-based partitioning in SpatialHadoop starts with
the MBR of the full dataset and inserts n � 1 median elements from a sample of
the dataset into the kd-tree in order to get n partitions [Eldawy et al., 2015].

Figure 2.7: Spatial dataset partitioned by a kd-tree where k = 2.

Finally, the partitions correspond to the divisions of the spatial space generated
by the planes present in the tree. Figure 2.7 shows the final partitions of a dataset
partitioned by a kd-tree with k = 2 and with a limit on the number of elements
per leaf of 2. Notice that the size of the partitions is still irregular, but in this
case, there are no overlaps between them.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 2. STATE OF THE ART 37

There are other Data-based partitioning techniques that use variations of these data
structures. For instance, in [Elashry et al., 2018] the 2DPR-tree partitioning method for
SpatialHadoop is presented, and it combines properties of both R-tree and kd-tree. This
method uses a two-dimensional Priority R-tree (PR-tree) [Arge et al., 2008] which is an
R-tree that presents optimal performance when answering window queries. Basically,
it is just a kd-tree that stores the partitions as four-dimensional points, except that
four extra leaves are added below each internal node with the actual points arranged by
maximum / minimum values in each axis, e.g., one leaf has points with the lowest X-axis
values. Given a node capacity and starting with the root, the partitioning algorithm
generates two more child nodes with the exceeding elements once the node is filled, and
then it starts sorting the elements in the four leaves. This bulk-loading process is done
recursively.

2.2.3 Space-Filling Curve-based Partitioning Techniques

The space-filling curve-based partitioning techniques [Sagan, 2012, Mokbel et al., 2003]
map each multi-dimensional element of the input dataset using a mathematical function
to a one-dimensional space that will be used to obtain the final partitions. In the case of
two-dimensional space, a space-filling curve is a continuous curve that contains the entire
2-dimensional unit square in the unit interval [0, 1], that is, a curve that passes through
every point of the 2-dimensional region. An important feature about space-filling curves
is that it allows one-dimensional techniques to be applied to data of multidimensional
origin. Therefore, we can use much less complex processing methods and algorithms that
are independent of the dimensionality of the data. The main di↵erence between the types
of space-filling curves is how the mapping is done towards one-dimensional space, that
is, its way of going through the multi-dimensional space. They can also be classified
into recursive and non-recursive, according to their construction. If we call I the one-
dimensional interval that maps to square Q, if we partition I into 4 intervals and Q into 4
subsquares, each subinterval (I 0)i can be mapped into its corresponding subsquare (Q0)i.
Furthermore, the squares can be arranged in such a way that the adjacent subintervals
correspond to subsquares that have a common edge. This process allows us to preserve
locality by transforming data from multidimensional to one-dimensional space, a very
important characteristic when measuring the quality of a space-filling curve. Finally,
partitioning techniques, which use this type of curve, usually order the elements of the
input dataset based on their mapping and then divide them into sets that meet some
restrictions to create the final partitions based on their centroids or MBRs.

Some of the most common Space-Filling Curves are:

– Z-curve-based partitioning. Z-curve (Z-order curve) [Peano, 1890] maps the unit
square using an interval that goes through it in the form of a Z. They are charac-
terized by the fact that algorithms for performing the mapping between parameter
space and curve indexes should be time-e�cient. For instance, in order to par-
tition a spatial dataset with this spatial partitioning technique, SpatialHadoop
sorts the elements of a sample by their order on the Z-curve and takes n equally
sized splits to get n partitions defined by the MBR of the points inside each split

© 2021 Garćıa-Garćıa, F.J.

38 2.2. SPATIAL DATA PARTITIONING

[Eldawy et al., 2015]. Figure 2.8 shows how the interval maps with two numbers
of partitions (4 vs. 16) for the Z-curve.

Figure 2.8: Z -curve-based partitioning with two number of partitions (4 vs. 16).

– H-curve-based partitioning. H-curve (Hilbert-curve) [Hilbert, 1891] maps the unit
square using an interval that runs through it in a U -shape and reorder the subin-
tervals to present good locality. Therefore, if two elements are together on the H-
curve, the corresponding elements of the multidimensional dataset are also close.
For example, SpatialHadoop uses the same process as with Z-curve partitioning
but considering the order of the sampled elements in the H-curve [Eldawy et al.,
2015]. Figure 2.8 shows how the interval maps with two numbers of partitions (4
vs. 16) for the H-curve.

Figure 2.9: H-curve-based partitioning with two number of partitions (4 vs. 16).

2.2.4 Distance-based Partitioning Techniques

Distance-based partitioning techniques use several distance metrics and geometric re-
lationships between the spatial objects to partition the input dataset. They can be
considered as a constrained version of the space-based partitioning techniques.

The most important distance-based partitioning technique is the Voronoi-Diagram-
based partitioning. A Voronoi-Diagram divides space into disjoint partitions where the
nearest neighbor of any point inside a partition is the generator or pivot of the partition.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 2. STATE OF THE ART 39

Each partition of the Voronoi-Diagram, called Voronoi-Cell, is associated with a point
p (pivot), such that any point inside p’s cell has p as its nearest neighbor [Okabe et al.,
2000, Aurenhammer, 1991]. The resulting data structure from the Voronoi-Diagram is
very e�cient in exploring a local neighborhood in a geometric space. Voronoi-Diagrams
are used in many algorithmic applications, like closest-site problems (nearest neighbor
queries and closest pairs), clustering point sites (partitioning and hierarchical clustering
methods), placement and motion planning, triangulating sites, connectivity graphs for
sites, etc. [Aurenhammer, 1991].

In order to partition a spatial dataset, it is divided into partitions based on a Voronoi-
Diagram with a careful method for selecting a set of suitable pivots. Then, these data
partitions (Voronoi-Cells) are clustered into groups only if the distances between them
are restricted by a specific distance bound. The pivot selection strategy is crucial for the
creation of Voronoi-Diagrams [Lu et al., 2012, Garćıa-Garćıa et al., 2020b] and therefore
for the query processing. Hence, the use of a clustering algorithm improves the quality of
the selected pivots, which separate the whole dataset more evenly and also improves the
performance of queries. This is because clustering algorithms aim at grouping objects in
such a way that similar ones belong to the same cluster and are di↵erent from the ones
belonging to other clusters [Jain et al., 1999, Xu and Tian, 2015]. Figure 2.10 shows a
dataset example where each element is selected as a pivot and the resulting Voronoi-Cells
or partitions. Finally, to optimize and speed up existing clustering algorithms, sampling

Figure 2.10: Spatial dataset partitioned by a Voronoi-Diagram.

is a very interesting technique when large datasets are managed [Ros and Guillaume,
2017]. It can be considered as a preprocessing step for clustering algorithms, and it
should provide a representative and relevant set of samples from the input dataset.

Voronoi-Diagrams can partition spatial datasets into set spaces and are e↵ective in
the study of local neighborhoods for each partition. For this reason, Voronoi-Diagrams
are used as a spatial partitioning technique in distributed environments. At the same
time, Voronoi-Diagrams can help improve the performance of MapReduce distance-based
join queries [Akdogan et al., 2010, Lu et al., 2012, Kim et al., 2016, Kuhlman et al.,
2017, Garćıa-Garćıa et al., 2018a, Hu et al., 2020, Garćıa-Garćıa et al., 2020b].

© 2021 Garćıa-Garćıa, F.J.

40 2.3. DISTANCE-BASED QUERY PROCESSING

2.3 Distance-based Query Processing

Distance-based Queries (DBQs) in spatial databases have received considerable attention
from the database community due to their importance in numerous applications, such as
geographical information systems (GIS), location-based systems, continuous monitoring
in streaming data settings, and processing of road network constrained data, among
others. DBQs are especially costly queries when they combine two or more datasets,
considering a certain distance metric as the main query constraint. These DBQs could
require the use of special query processing techniques, for example, the plane-sweep
technique [Jacox and Samet, 2007] is used when the datasets are not indexed. Besides,
several research works have been devoted to improving the performance of these DBQs
by proposing e�cient algorithms or designing new complex spatial index structures.
However, all these approaches focus on methods that are to be executed in a centralized
environment. Furthermore, with the fast increase in the generation of large datasets
from spatial applications, processing large-scale data in a parallel and distributed way is
becoming a popular practice. For this reason, a considerable number of parallel and dis-
tributed DBQ algorithms in MapReduce have been recently designed and implemented.
A special case of DBQs is the Distance-based Join Query (DJQ) [Li and Taniar, 2017]
where two datasets are combined, taking into account a distance metric. These DJQs
could be very costly when the size of the datasets is huge, and for this reason, they have
lately been thoroughly investigated.

The next sections describe the semantic details of the most representative DBQs,
along with the corresponding notation and processing paradigms. Moreover, their most
important characteristics are reviewed, assuming that the Euclidean distance, dist, is
the distance used in these DBQs.

2.3.1 kNearest Neighbor Query

Given a set of points, the kNearest Neighbor Query (kNNQ) [Roussopoulos et al., 1995]
discovers the k closest points to a given query point (i.e., it reports only the top k points).
It is one of the most important and studied spatial operations, where one spatial dataset
and a distance function are involved. The formal definition of the kNNQ for points is
the following:

Definition 2.1. kNearest Neighbor query, kNN query

Let P = {p1, p2, · · · , pn} a set of points in Ed (d-dimensional Euclidean space), a query
point q in Ed, and a number k 2 N+ (k > 0). Then, the result of the kNearest Neighbor
Query with respect to the query point q is an ordered collection, kNN(P, q, k) ✓ P, which
contains the k (1 k |P|) di↵erent points of P, with the k smallest distances from q:
kNN(P, q, k) = (p1, p2, · · · , pk) 2 P, such that for any pi 2 P \ kNN(P, q, k) we have
dist(p1, q) dist(p2, q) · · · dist(pk, q) dist(pi, q).

One application case (Accommodation Services), with a spatial dataset of loca-
tions of hotels and the position of a conference center, kNNQ could find the 3 nearest
possible hotels to the conference center in order to select the hotel (k = 1) closest to
the conference where the user is attending. Figure 2.11 illustrates this example with the

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 2. STATE OF THE ART 41

Figure 2.11: kNearest Neighbor query with k = 3.

numbered circles being the hotels (P) and the q circle is the conference center and the
result of the query is kNN(P, q, 3) = (3, 6, 5).

There are several works on kNNQ in MapReduce. For instance, in [Zhang et al.,
2009a] a brute force approach calculates the distance to each point and selects the
nearest k points, while another approach [Akdogan et al., 2010] partitions points using
a Voronoi-Diagram and finds the answer in partitions close to the query point.

2.3.2 "Distance Range Query

The "Distance Range Query ("DRQ), given a set of points, finds all points in the dataset
that fall on the circular shape, centered in a query point (q) with radius a distance
threshold ". Note that this query is also called circle range query or circular query. It is
a special case of Regional Query [Shekhar and Chawla, 2003], which allows us to search
regions that have arbitrary orientations and shapes. The formal definition of the "DRQ
for points is as follows.

Definition 2.2. "Distance Range query, "DR query

Let P = {p1, p2, · · · , pn} a set of points in Ed, a query point q in Ed, and a distance
threshold " 2 R+ (" > 0). Then, the result of the "Distance Range query with respect to
the query point q is a set, "DR(P, q, ") ✓ P, which contains all points pi 2 P that fall on
the circular shape, centered in q with radius ":
"DR(P, q, ") = {pi 2 P : dist(pi, q) "}

One application case (Fitness Finding Service), with a spatial dataset of fitness
centers and a position given by the user, "DRQ could find all fitness centers at 2 kilome-

© 2021 Garćıa-Garćıa, F.J.

42 2.3. DISTANCE-BASED QUERY PROCESSING

Figure 2.12: "Distance Range query with distance ".

ters from my home. Figure 2.12 shows this situation by making circle q the home and
using an " value of 2 kilometers, and the result of the query is "DR(P, q, 2) = {3, 4, 5, 6}.

This spatial query has been extensively studied in centralized environments, however,
when the dataset resides in a parallel and distributed framework, it has not received the
same attention. Examples of such distributed works are [Zhang et al., 2009a, Ma et al.,
2009], where the input file is scanned, and each record is compared against the query
range.

2.3.3 Reverse kNearest Neighbor Query

For Reverse kNearest Neighbor Query (RkNNQ), given a set of points P and a query
point q, a point p is called the Reverse kNearest Neighbor of q, if q is one of the k nearest
points of p. That is, a RkNNQ issued from point q returns all points of P whose k nearest
neighbors include q. Note that, this query is also called Monochromatic RkNNQ [Korn
and Muthukrishnan, 2000].

Definition 2.3. Reverse kNearest Neighbor query, RkNN query [Wu et al.,
2008]
Let P = {p1, p2, · · · , pn} a set of points in Ed, a query point q in Ed, and a number
k 2 N+ (k > 0). Then, the result of the Reverse kNearest Neighbor query with respect
to the query point q is a set, RkNN(P, q, k) ✓ P, which contains all points of P whose
k nearest neighbors include q:
RkNN(P, q, k) = {pi 2 P : q 2 kNN(P [q, pi, k)}

One application case (Wi-Fi Signal Coverage), with a spatial dataset of locations of
Wi-Fi access points in a university campus and the location of a new Wi-Fi access point,

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 2. STATE OF THE ART 43

Figure 2.13: Reverse kNearest Neighbor query with k = 2.

RkNNQ could find which access points would connect with the new one if each access
point can connect only with 2 other access points in order to select the best location for
the new access point. Figure 2.11 represents this example with the numbered circles
being the actual Wi-Fi access points (P) and the q circle the new one and the result of
the query is RkNN(P, q, 2) = {4, 6, 7}.

The RkNN problem has been studied extensively in the past few years. As shown
in a recent experimental study [Yang et al., 2015], which is the state-of-the-art RkNN
algorithms for two-dimensional location data in centralized environments, and the most
relevant contributions are the following. In [Korn and Muthukrishnan, 2000], RkNNQ
was first introduced and its processing is based on a pre-computation step (for each
data point p 2 P the kNearest Neighbor, kNN(p), is pre-computed and its distance is
denoted by kNNdist(p)) and has three phases: pruning, containment and verification.
In the pruning phase, for each p 2 P a circle centered at p with radius kNNdist(p)
is drawn, and the space that cannot contain any RkNN is pruned by using the query
point q. In the containment phase, the objects that lie within the unpruned space
are the RkNN candidates. Finally, in the verification phase, a range query is issued
for each candidate to check if the query point is one of its kNN or not. That is, for
the query point q, it determines all circles (p, kNNdist(p)) that contain q and return
their centers p. In [Stanoi et al., 2000], the Six-Regions algorithm is presented, and
the need for any pre-computation is eliminated by utilizing some interesting properties
of RkNN retrieval. The authors solve RkNNQ by dividing the space around the query
point into six equal partitions of 60� each (R1 to R6). In each partition Ri, the k-th
nearest neighbor of the query point defines the pruned area. In [Singh et al., 2003]

© 2021 Garćıa-Garćıa, F.J.

44 2.3. DISTANCE-BASED QUERY PROCESSING

the multistep SFT algorithm is proposed. It: (1) finds (using an R-tree) the kNNs
of the query point q, which constitute the initial candidates; (2) eliminates the points
that are closer to some other candidate than q; and (3) applies boolean range queries
on the remaining candidates to determine the actual RNNs. In [Tao et al., 2004], the
TPL algorithm, which uses the property of perpendicular bisectors located between the
query point for facilitating pruning the search space, is presented. In the containment
phase, TPL retrieves the objects that lie in the area not pruned by any combination
of k bisectors. Therefore, TPL has to consider each combination of k bisectors. To
overcome the shortcomings of this algorithm, a new method named FINCH is proposed
in [Wu et al., 2008]. Instead of using bisectors to prune the objects, the authors use a
convex polygon that approximates the unpruned area. Influence Zone [Cheema et al.,
2011] is a half-space based technique proposed for RkNNQ, which uses the concept of
influence zone to significantly improve the verification phase. Influence zone is the
area, such that a point p is an RkNN of q if and only if p lies inside it. Once the
influence zone is computed, RkNNQ can be answered by locating the points lying inside
it. In [Yang et al., 2014], the SLICE algorithm is proposed, which improves the filtering
power of Six-Regions approach while utilizing its strength of being a cheaper filtering
strategy. In [Yang et al., 2015] a comprehensive set of experiments to compare some
of the most representative and e�cient RkNNQ algorithms under various settings is
presented, and the authors propose an optimized version of TPL (called TPL++) for
arbitrary dimensionality RkNNQs. One of the main conclusions of this comparative
research study is that SLICE is the state-of-the-art RkNNQ algorithm since it is the
best for all considered performance parameters in terms of CPU cost.

With the fast increase in the scale of large input datasets, processing such datasets
in parallel and distributed frameworks is becoming a popular practice. However, there
is not much work in developing e�cient RkNNQ algorithms in DSDMSs. The only
contributions that have been implemented in MapReduce frameworks are [Akdogan
et al., 2010, Ji et al., 2013, Ji et al., 2015]. In [Akdogan et al., 2010], the MRVoronoi
algorithm is presented, which adopts the Voronoi-Diagram partitioning-based approach
and applies MapReduce to answer RNNQ and other spatial queries. In [Ji et al., 2013],
the Basic MapReduce RkNNQ method based on the inverted grid index over large-scale
datasets is investigated. An optimization method, Lazy-MapReduce RkNNQ algorithm,
that prunes the search space when all data points are discovered, is also proposed. In [Ji
et al., 2015] several improvements of [Ji et al., 2013] have been presented. For instance, a
novel decouple method is proposed to decomposes pruning-verification into independent
steps, and it can increase opportunities for parallelism. Moreover, new optimizations
to minimize the network and disk input/output cost of distributed processing systems
have been also investigated.

2.3.4 kNearest Neighbor Join Query

The kNearest Neighbor Join Query (kNNJQ) [Böhm and Krebs, 2004] is a type of DJQ
where, given two datasets of points (P and Q) and a positive number k, it finds for each
point of P, its k nearest neighbors in Q. The formal definition of this kind of DJQ is
given below.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 2. STATE OF THE ART 45

Definition 2.4. kNearest Neighbor Join query, kNNJ query

Let P = {p1, p2, · · · , pn} and Q = {q1, q2, · · · , qm} be two sets of points in Ed, and a
natural number k 2 N+ (k > 0). Then, the result of the kNearest Neighbor Join query is
a set kNNJ(P,Q, k) ✓ P⇥Q, which contains for each point of P (pi 2 P) its k nearest
neighbors in Q:
kNNJ(P,Q, k) = {(pi, qj) : 8 pi 2 P, qj 2 kNN(Q, pi, k)}

The most important properties of kNNJQ are the following:

1. kNNJQ is asymmetric, i.e., kNNJ(P,Q, k) 6= kNNJ(Q,P, k), since kNNQ is
asymmetric (i.e., if kNN(P, q, 1) = {p}, there may exist another q0 2 Q (q0 6= q)
such that dist(p, q0) < dist(p, q) and kNN(Q, p, 1) = {q0}). Moreover, given P 6= Q
(|P| 6= |Q|), the cardinality of kNNJ(P,Q, k) is k⇥ |P| (similarly |kNNJ(Q,P, k)|
= k⇥ |Q|), and therefore the results are di↵erent. In the case of |P| = |Q| (P 6= Q),
although the cardinalities of the results are the same, the content is di↵erent,
kNNJ(P,Q, k) 6= kNNJ(Q,P, k), due to kNNQ is asymmetric.

2. Given k ⌧ |Q|, the cardinality of kNNJ(P,Q, k) is predictable (|P|⇥ k), since it
returns k nearest neighbors in Q for each point of P.

3. The distance from each point of P to its k nearest neighbors is unknown a priori.

Figure 2.14: kNearest Neighbor Join query with k = 2.

One application case (Mobile Location Services), with two spatial datasets, loca-
tions of shopping centers and positions of possible customers using a smart phone with
mobile data and GPS enabled. kNNJQ could find the 100 nearest possible customers
to each shopping center for sending an advertising SMS about a fashion brand avail-
able there. Figure 2.14 represents this example with the numbered circles being the

© 2021 Garćıa-Garćıa, F.J.

46 2.3. DISTANCE-BASED QUERY PROCESSING

customers (P) and the lettered circles being the shopping centers (Q). To reduce com-
plexity, k value is 2 and the result of the query is kNNJ(P,Q, 2) = {(7, A), (6, A), (8,
B), (2, B), (7, C), (6, C), (4, D), (3, D), (8, E), (5, E), (8, F), (2, F), (7, G), (1, G),
(2, H), (4, H), (6, I), (3, I), (3, J), (8, J), (8, K), (5, K)}.

Since, the kNNJ(P,Q, k) returns for each point in P, its kNNs in Q; it is equivalent
to the query called All-k-Nearest Neighbor (AkNN) query [Zhang et al., 2004, Chen and
Patel, 2007] in the context of DJQs. Several research works have been devoted to improve
the performance of this DJQ by proposing e�cient algorithms and specialized index
structures in centralized environments [Xia et al., 2004, Chen and Patel, 2007, Emrich
et al., 2010].

The kNNJQ MapReduce algorithm has been extensively studied in the literature
[Nodarakis et al., 2016b], and the most representative contributions are the following.
In [Lu et al., 2012], the problem of answering the kNNJ using MapReduce is exten-
sively analyzed and solved. This is achieved by exploiting the Voronoi-Diagram based
partitioning method, which divides the input datasets into groups, such that kNNJ can
answer by only checking object pairs within each group. Moreover, several pruning rules
to reduce the shu✏ing cost as well as the computation cost are developed in the PGBJ
(Partitioning and Grouping Block Join) algorithm, which works with two MapReduce
phases. In [Zhang et al., 2012], the authors propose novel (exact and approximate)
algorithms in MapReduce to perform e�cient parallel kNNJQ on large datasets, and
they use the R-tree, and Z-value-based partition joins to implement them. In [Song
et al., 2016], the existing solutions that perform the kNNJ operation in the context of
MapReduce are reviewed and studied from the theoretical and experimental point of
view. In [Yokoyama et al., 2012], a kNNJQ MapReduce algorithm for 2d spatial data
is presented. It decomposes the data space into small equal cells (Grid), and afterward,
it merges some neighboring cells, always in 2 ⇥ 2 sets, if they do not contain k points
or more in total. In this way, the algorithm creates bigger cells so that the kNN list
of a query point will always be complete. In [Nodarakis et al., 2016a], the algorithm
of [Yokoyama et al., 2012] is improved by replacing the merging step with a circle of
increasing radius around the query point so that it checks for candidate neighbors in
nearby cells. In this way, the merging step is not needed, and the number of distance
calculations may be significantly reduced. In [Moutafis et al., 2019b], the work presented
in [Nodarakis et al., 2016a] has been extended. The information distribution phase has
been implemented by Quadtrees, utilizing dataset sampling to capture the skewness of
data distribution, to balance the load, and to free the end-user from having to refine
parameters of data partitioning. The primitive computation phase has employed plane-
sweep to reduce distance calculations. The update lists and the unify lists phases have
been restructured to reduce network tra�c.

2.3.5 "Distance Range Join Query

The "Distance Range Join Query ("DRJQ), given two datasets of points (P and Q) and
a distance threshold ", finds, for each point pi 2 P, all points in Q that fall on the
circular shape, centered in pi with radius ". This query is also called spatial range join
query. The formal definition is as follows.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 2. STATE OF THE ART 47

Definition 2.5. "Distance Range Join query, "DRJ query

Let P = {p1, p2, · · · , pn} and Q = {q1, q2, · · · , qm} be two sets of points in Ed, and a
distance threshold " 2 R+ (" > 0). Then, the result of the "Distance Range Join query
is a set, "DRJ(P,Q, ") ✓ P ⇥ Q, which contains for each point of P (pi 2 P) all points
from Q (qj 2 Q) that fall on the circular shape, centered in pi with radius ":
"DRJ(P,Q, ") = {(pi, qj) : 8 pi 2 P, 8qj 2 "DR(Q, pi, ")}

This query is also related to the similarity join in multidimensional databases, where
the problem of deciding if two objects are similar is reduced to the problem of determin-
ing if two multidimensional points are within a certain distance of each other. In the
MapReduce framework, the most representative work is [Silva and Reed, 2012], where a
partition-based similarity join for MapReduce is proposed (called MRSimJoin). This
approach is based on the QuickJoin algorithm [Jacox and Samet, 2008], and iteratively
partitions the data until each partition can be processed on a single reducer (i.e., it
partitions and distributes the data until the subsets are small enough to be processed
in a single node).

One application case (Resource Management in Agriculture), authorities planning
the sustainable exploitation of water resources are considering two spatial datasets,
locations of water wells and areas of cultivable lands, "DRJQ could find all land areas
within 3 Km from every water well (the borders or the centroid of each land area could be
used for processing this query). Figure 2.15 represents this example with the numbered
circles (Q) being the cultivable lands, the lettered circles (P) being the water wells, and
" value is 3 Km. Therefore, the result of the query is "DRJ(P,Q, 3) = {(I, 6), (F, 8)}.

Figure 2.15: "Distance Range Join query with distance ".

© 2021 Garćıa-Garćıa, F.J.

48 2.3. DISTANCE-BASED QUERY PROCESSING

2.3.6 kClosest Pairs Query

The kClosest Pairs Query (kCPQ) discovers the k pairs of points formed from two
datasets (P and Q) having the k smallest distances between them (i.e., it reports only
the top k pairs). This query is also called kDistance Join Query. The formal definition
of this DJQ is as follows.

Definition 2.6. kClosest Pairs query, kCP query

Let P = {p1, p2, · · · , pn} and Q = {q1, q2, · · · , qm} be two sets of points in Ed, and
a natural number k 2 N+ (k > 0). Then, the result of the kClosest Pairs query is
an ordered collection, kCP (P,Q, k), containing k di↵erent pairs of points from P ⇥ Q,
ordered by distance, with the k smallest distances between all possible pairs:
kCP (P,Q, k) = ((p1, q1), (p2, q2), · · · , (pk, qk)), (pi, qi) 2 P ⇥ Q, 1 i k, such that
for any (p, q) 2 P ⇥ Q \ kCP (P,Q, k) we have dist(p1, q1) dist(p2, q2) · · ·
dist(pk, qk) dist(p, q).

kCPQ has the following properties:

1. kCPQ is symmetric, i.e., kCP (P,Q, k) = kCP (Q,P, k), since it discovers the k
pairs of points with the k smallest distances from all possible pairs that can be
formed from the join of two datasets, and the Euclidean distance is symmetric
dist(pi, qj) = dist(qj , pi).

2. The cardinality of the result is known beforehand |kCP (P,Q, k)| = k.

3. The distance of the k closest pairs of points is unknown a priori.

Figure 2.16: kClosest Pairs query with k = 3.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 2. STATE OF THE ART 49

One application case (Transportation Monitoring and Moving Objects), consid-
ering two spatial datasets, locations of users of a taxi app and positions of free taxis,
kCPQ could find the 3 pairs of app users and taxis with the shortest distances between
them, to be able to o↵er these users fast service at a reduced price (as a promotion
strategy), or for analysis by the taxi service. Figure 2.16 represents this example with
the numbered circles (Q) being the taxis and the lettered circles (P) being the users.
For k = 3 the result of the query is kCP (P,Q, 3) = ((I, 6), (J, 3), (F, 8)).

This spatial query has been actively studied in centralized environments, regardless
whether both spatial datasets are indexed or not [Corral et al., 2004a, Roumelis et al.,
2014, Roumelis et al., 2016, Corral et al., 2000, Corral, 2002, Corral et al., 2006, Hjalta-
son and Samet, 1998, Shin et al., 2003, Yang and Lin, 2002, Kim and Patel, 2010, Gutier-
rez and Sáez, 2013]. If both P and Q are indexed by R-trees, the concept of synchronous
tree traversal and Depth-First (DF) or Best-First (BF) traversal order can be com-
bined for the query processing [Hjaltason and Samet, 1998, Corral et al., 2000, Corral,
2002, Corral et al., 2004a]. For a more detailed explanation of the processing of kCPQ-
DF and kCPQ-BF algorithms on two R*-trees from the non-incremental point of view,
see [Corral et al., 2004a]. In [Hjaltason and Samet, 1998], incremental and non-recursive
algorithms based on Best-First traversal using R-trees and additional priority queues for
DJQs were presented. In [Shin et al., 2003], sophisticated techniques, such as sorting
and application of plane-sweep during the expansion of node pairs and the use of the
estimation of the distance of the k-th closest pair to avoid the computations of unneces-
sary MBR distances, are included to improve the algorithms proposed in [Hjaltason and
Samet, 1998]. In [Yang and Lin, 2002], a new index structure, the bichromatic Rddn-
tree (bRddn-tree), is proposed for improving kCPQ and related DJQs by keeping track
of the nearest neighbor distance for each data point. Consequently, this index prunes
the search path more e�ciently and allows the implementation of several algorithms
in a non-incremental (DF) way. This new index, similar to Rddn-tree [Yang and Lin,
2001] for the RkNNQ, outperformed R*-tree for kCPQ with respect to the number of
disk accesses. In [Corral and Almendros-Jimenez, 2007], a Recursive Best-First Search
(RBF) algorithm for DBQs (kNNQ, "DRQ, kCPQ, "DJQ) between spatial objects in-
dexed in R-trees is presented with an exhaustive experimental study that compares DF,
BF, and RBF for several DBQs. In [Kim and Patel, 2010], an extensive experimental
study comparing the R*-tree and Quadtree-like index structures for kNNJQ and kCPQ
(also called kDistance Join query) together with index construction methods (dynamic
insertion and bulk-loading algorithm) is presented. It was shown that when spatial data
are static, the R*-tree shows the best performance. However, when spatial data are
dynamic, a bucket-Quadtree begins to outperform the R*-tree. This is due to, once the
dynamic R*-tree algorithm is used, the overlap among MBRs grows with the increment
of the dataset sizes, and the R*-tree performance decreases.

In the case where just only one dataset is indexed (P or Q), in [Gutierrez and Sáez,
2013] an algorithm has been proposed for kCPQ. The main idea is to partition the space
occupied by the dataset without an index into several cells or subspaces (according to
the VA-File index structure [Weber et al., 1998]) and to make use of the properties of a
set of distance functions defined between two MBRs [Corral et al., 2004a].

When the two datasets are not indexed and stored in main-memory or disk, a new

© 2021 Garćıa-Garćıa, F.J.

50 2.3. DISTANCE-BASED QUERY PROCESSING

plane-sweep algorithm for kCPQ, called Reverse Run, was proposed in [Roumelis et al.,
2014, Roumelis et al., 2016]. Two improvements on the Classic plane-sweep algorithm
for this spatial query were presented as well. Experimentally, the Reverse Run plane-
sweep algorithm proved to be faster since it minimized the number of Euclidean distance
computations. However, when the datasets reside in a parallel and distributed framework
like SpatialHadoop, the Classic and Reverse Run plane-sweep algorithms had similar
results in terms of execution times [Garćıa-Garćıa et al., 2016b, Garćıa-Garćıa et al.,
2018b].

2.3.7 "Distance Join Query

The "Distance Join Query ("DJQ) finds all possible pairs of points from two datasets
that are within a distance threshold " of each other. The formal definition of this query
is given below.

Definition 2.7. "Distance Join query, "DJ query

Let P = {p1, p2, · · · , pn} and Q = {q1, q2, · · · , qm} be two sets of points in Ed, and a
distance threshold " 2 R+ (" > 0). Then, the result of the "Distance Join query is the
set, "DJ(P,Q, ") ✓ P ⇥ Q, containing all possible di↵erent pairs of points from P ⇥ Q
that have a distance of each other smaller than, or equal to ":
"DJ(P,Q, ") = {(pi, qj) 2 P ⇥Q : dist(pi, qj) "}

Note that "DJQ can be considered as an extension of the kCPQ, where the distance
threshold of the pairs (") is known beforehand. Therefore, studying the results of "DRJQ
and "DJQ, we note that they are equivalent [Garćıa-Garćıa et al., 2020c], i.e., both DJQs
report the same result set ("DJ(P,Q, ") ⌘ "DRJ(P,Q, ")). The main di↵erence resides
in the order of the pairs returned in the final result. While "DRJ(P,Q, ") reports pairs in
a clustered way around every point of P (i.e., for each point pi 2 P, it returns all points in
Q overlapping with a circular shape, centered in pi with radius "), "DJ(P,Q, ") reports
pairs of points without any relationship among them (i.e., it returns a sequence of pairs
of points within a distance threshold (") of each other). Another di↵erence between both
DJQs is the algorithmic technique used to solve them. While the processing method of
"DRJQ is based on multiple executions of "DRQ on Q for every point in P, the algorithm
to solve "DJQ is based on a sort-merge join approach (i.e., it is a plane-sweep algorithm
between P and Q).

2.3.8 Other related Distance Join Queries

Other related DJQs can be deduced from the previous ones. For instance,

– "Distance Range k Query, that returns the k points from Q with the smallest
distances within the specified distance threshold " around each query point pi 2 P.

– "Distance Join k Query, that returns only the k pairs with the smallest distances
from all possible di↵erent pairs of points, having a distance less than or equal to "
of each other.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 2. STATE OF THE ART 51

– Iceberg Distance Join Query [Shou et al., 2003], that returns object pairs (pi, qj)
such pi 2 P and qj 2 Q, within distance " of each other, provided that pi appears
at least k times in the join result.

– Closest Pair Queries with Spatial Constraints [Papadopoulos et al., 2006], that
studies constrained closest-pair queries, between two distinct datasets P and Q,
where objects from P must be enclosed by a spatial region R.

– kMulti-Way Distance Join Query (kMWDJQ) [Corral et al., 2004b] is a multi-way
spatial join that finds the k n-tuples of points among n spatial datasets that have
the k smallest Ddistance values. An n-tuple is a set of n points from n di↵erent
datasets that obeys a query graph. TheDdistance value of an n-tuple is the result of
a linear function of distances of the n points that make up this n-tuple, according
to the edges of the query graph. Finally, the query graph, in this case, is a weighted
directed graph where the nodes represent datasets of points, and edges correspond
to distance functions.

– An interesting extension of RkNNQ is the Reverse kNearest Neighbor Join Query
(RkNNJQ), where the query does not consist of a single query point but a whole
set of query points, and for each of which an RkNNQ has to be performed [Emrich
et al., 2013b]. Despite the potential applications of this kind of join operation,
in the context of databases and decision-making applications, it has only received
little attention in the literature [Emrich et al., 2013b, Emrich et al., 2013a, Emrich
et al., 2015].

– In a similar situation that RkNNJQ, we find the Spatial Reverse Top-k Query
(SRTkQ) [Yang et al., 2017], which is also an interesting extension of RkNNQ
that, given a linear scoring function W that computes the score of a facility f for
a given point p. A SRTkQ returns every point p 2 P for which q is one of the
top-k facilities according to the scoring function W .

All these DJQs are considered extensions of the main DBQs studied in the previous
sections, and they could be regarded as a target of further research in the context of
DSDMSs.

2.4 Conclusions

This section summarizes the main conclusions of this chapter. It introduces a detailed
description of the state-of-the-art and the needed background. First, the most relevant
Distributed Spatial Data Management Systems (DSDMSs) are exposed in Section 2.1.
These DSDMSs are classified as disk-based (DSDMSs based on Hadoop) or in-memory-
based (DSDMSs based on Spark). Next, we review the most relevant spatial partitioning
techniques used in DSDMSs. These partitioning techniques are organized into four cat-
egories: space-based, data-based, space-filling curve-based, and distance-based. Finally,
we describe and formally define the most representative distance-based queries (DBQs).
These DBQs can be classified if only one dataset is involved in the query or two datasets

© 2021 Garćıa-Garćıa, F.J.

52 2.4. CONCLUSIONS

are combined, taking into account a distance metric. For instance, "DRQ, kNNQ, and
RkNNQ are DBQs where only one dataset is taken in, while "DRJQ, kCPQ, kNNJQ,
and "DJQ are clear examples of Distance-based Join Queries (DJQs) where two datasets
are combined. Furthermore, several application cases have been shown to help in the
understanding of each query.

E�cient Query Processing in Distributed Spatial Data Management Systems

Chapter 3

Spatial Partitioning and

Indexing in SpatialHadoop

© 2021 Garćıa-Garćıa, F.J.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 3. SPATIAL PARTITIONING AND INDEXING IN SPATIALHADOOP 53

Chapter 3

Spatial Partitioning and
Indexing in SpatialHadoop

Contents
3.1 Spatial Partitioning and Indexing in SpatialHadoop . . . 55

3.2 Spatial Partitioning Techniques in SpatialHadoop 57

3.3 Spatial Indexing in SpatialHadoop 61

3.4 Voronoi-Diagram based Partitioning 63

3.4.1 Sampling large datasets . 64

3.4.2 Pivot selection techniques for space subdivision 66

3.4.3 Indexing data . 67

3.5 Quadtree-based Local Index 68

3.5.1 Implementing a Quadtree-based local index in SpatialHadoop 68

3.5.2 kNNQ and kCPQ MapReduce algorithms with Quadtrees in
SpatialHadoop . 69

3.6 Performance Evaluation . 70

3.6.1 Experimental Setup . 70

3.6.2 Voronoi-Diagram based Partitioning experiments 71

3.6.2.1 E↵ect of sampling methods 71

3.6.2.2 E↵ect of space subdivision and indexing 72

3.6.2.3 E↵ect of pivot selection techniques - kNNJQ 74

3.6.2.4 E↵ect of pivot selection techniques - kCPQ 75

3.6.2.5 Conclusions from the experimental results 76

3.6.3 Quadtree-based local index experiments 77

3.6.3.1 Conclusions from the experimental results 77

3.7 Conclusions . 79

54

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 3. SPATIAL PARTITIONING AND INDEXING IN SPATIALHADOOP 55

I n this chapter, the structure and operations of spatial partitioning and indexing
in SpatialHadoop are detailed. First, Section 3.1 presents the general spatial partition-
ing scheme in SpatialHadoop together with its spatial indexing mechanism for enabling
fast access to spatial data in Hadoop. Next, Section 3.2 exposes the spatial partitioning
techniques already implemented in SpatialHadoop. Moreover, the spatial indexes avail-
able in SpatialHadoop are described in Section 3.3. Then, Section 3.4 proposes a data
partitioning technique based on Voronoi-Diagrams in SpatialHadoop. Furthermore, the
motivation and the process to include the Quadtree as a local index in SpatialHadoop
is discussed in Section 3.5. Finally, Section 3.6 o↵ers an experimental evaluation of the
Quadtree-based partitioning technique and a comparison with the new Voronoi-Diagram
based technique for kNNJQ and kCPQ, and Quadtree-based local index for top-k query
algorithms (kNNQ and kCPQ).

3.1 Spatial Partitioning and Indexing in Spatial-
Hadoop

Spatial Partitioning is a powerful and crucial mechanism for enabling fast access to spa-
tial data in a distributed system like Hadoop. SpatialHadoop implements several spatial
partitioning techniques adapted to HDFS (Hadoop Distributed File System), so they can
be used to support spatial queries in MapReduce. Moreover, the use of Spatial Indexing
is one of the most common techniques employed to accelerate spatial query processing.
Therefore, to tackle the building of spatial indexes in Hadoop, SpatialHadoop uses a
two-layers indexing approach of global and local indexes. Each index contains one global
index, stored in the master node, that partitions the spatial dataset across a set of par-
titions. Each partition is stored in slave nodes with a local index, organizing the data
of such partition. The main advantage of this structure is that each partition can be
treated in parallel by a slave node. To make this two-level index structure accessible to
MapReduce programs, SpatialHadoop introduces two new components in the MapRe-
duce layer: SpatialFileSplitter and SpatialRecordReader. The SpatialFileSplitter allows
us to access to the global index to select only the partitions needed for the current query,
and the SpatialRecordReader provides the local index of each selected partition as input
to the map task to enable quick access to spatial data. Therefore, in order to e↵ectively
process a spatial dataset in SpatialHadoop, the following preliminary phases must be
carried out: Partitioning, Local Indexing and Global Indexing.

Firstly, the Partitioning phase splits the input dataset into several partitions by
a particular partitioning method. Moreover, each partition must meet a series of re-
strictions, based on the factors presented in Section 2.2, to obtain the best possible
performance:

1. Spatial objects that are close to each other (F.3) must be assigned to the same
partition, and partitions that are close to each other will contain objects close to
each other.

© 2021 Garćıa-Garćıa, F.J.

56 3.1. SPATIAL PARTITIONING AND INDEXING IN SPATIALHADOOP

2. Partitions should be approximately the same size (F.3) to avoid skew problems
and balance the workload as best as possible.

3. The size of each partition must be less than the HDFS block size (F.5) to prevent
it from being split by Hadoop in its block duplication process.

Figure 3.1: Spatial Partitioning phase in SpatialHadoop.

Considering these restrictions, Figure 3.1 shows the four steps of the Spatial Parti-
tioning phase in SpatialHadoop [Eldawy and Mokbel, 2015, Eldawy et al., 2015]:

1. Computing the number of partitions. The first step computes the number of desired
partitions x based on file size and HDFS block capacity, which are both fixed for
all spatial partitioning techniques.

2. Sampling. The second step reads a random sample, with a sampling ratio ⇢, from
the input file.

3. Space subdivision. The third step uses the sample to partition the space into x
cells or partitions, such that the number of sample points in each partition is at
most bs/xc, where s is the sample size.

4. Indexing. The fourth step partitions the input file by assigning each point to one
or more partitions, i.e., every partition becomes a file that is duplicated to the
number of nodes defined by the Hadoop cluster replication factor.

Next, the Local Indexing phase builds the requested spatial index as a local index
(e.g., Grid file or R-tree) on the spatial data contents of each physical partition. Finally,
the Global Indexing phase merges the information of all local indexes to generate the
required global index.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 3. SPATIAL PARTITIONING AND INDEXING IN SPATIALHADOOP 57

3.2 Spatial Partitioning Techniques in SpatialHa-
doop

The Partitioning phase in SpatialHadoop divides the input dataset into serveral par-
titions (Space subdivision in Figure 3.1) by a particular spatial partitioning technique.
In [Eldawy et al., 2015], seven di↵erent spatial partitioning techniques in SpatialHadoop
are presented, and an extensive experimental study on the quality of the generated par-
titions and the performance of range and spatial join queries is reported. They are clas-
sified as space-based (Grid and Quadtree), data-based (STR, STR+ and kd-tree) and
space-filling curve-based (Z -curve and Hilbert-curve) partitioning strategies. Further-
more, these seven partitioning techniques are also classified in two categories according
to boundary object handling: replication-based techniques (Grid, Quadtree, STR+ and
kd-tree) and distribution-based techniques (STR, Z -curve and Hilbert-curve) [Eldawy
et al., 2015]. The distribution-based techniques assign an object to exactly one over-
lapping partition and the partition has to be expanded to enclose all contained points.
The replication-based techniques avoid expanding partitions by replicating each point to
all overlapping partitions, but the query processor has to employ a duplicate avoidance
technique to account for replicated elements.

SpatialHadoop supports seven spatial partitioning strategies to handle large-scale
spatial data:

– Grid-based partitioning. It consists of the division of the spatial dataset into a
uniform grid of x cells of the same size. The main advantage of this method is
that the Partitioning phase does not need any Sampling step or other preprocess-
ing methods. Therefore, in order to obtain the partition boundaries, the Space
subdivision step splits the MBR of the spatial dataset in

p
x rows ⇥

p
x columns.

Finally, the Indexing step replicates each spatial object to the partitions it overlaps
using a Grid file for each partition.

– Quadtree-based partitioning. This method employs a Quadtree to recursively par-
tition a two-dimensional dataset in 4 quadrants or regions. First, the Sampling
step takes a sample of spatial objects from the input dataset. Next, in the Space
subdivision step, the centroid of each sampled spatial object is bulk loaded into an
in-memory Quadtree, with a leaf node capacity of bs/xc, using the PR-Quadtree
bulk loading algorithm [Hjaltason and Samet, 1999], which works in a bottom-up
fashion. This technique sorts the centroids using a Z -curve so that spatial objects
found on a leaf node appear consecutively. Then, the algorithm considers that
all spatial objects belong to the root node and checks whether there are nodes to
divide. A node is divided into its four children quadrants if the current number of
spatial objects exceeds the established node capacity. Once the Quadtree is built
using the sample, the spatial dataset is partitioned using the boundaries of the leaf
nodes. Therefore, the Indexing step uses the Quadtree to find the leaf nodes or
partitions a spatial object overlaps with and replicates it using a Grid file for each
partition. Figure 3.2 shows the partitions of a real-world dataset of 115M records
(points) of buildings with Quadtree-based partitioning. Note that the partitions

© 2021 Garćıa-Garćıa, F.J.

58 3.2. SPATIAL PARTITIONING TECHNIQUES IN SPATIALHADOOP

are not exactly quadrants due to the MBRs being adjusted to the existing records.

Figure 3.2: Real-world dataset of 115M records of buildings with Quadtree-based
partitioning.

– STR-based partitioning. It gets the partitions from the spatial dataset by using an
in-memory R-tree. To do this, it uses the Sort-Tile-Recursive (STR) bulk loading
algorithm [Leutenegger et al., 1997] with the centroids of the sample obtained in
the Sampling step. The degree of the R-tree to build in the Space subdivision step
is set to

p
x in order to get at least x nodes in the second level of the tree. Next,

using the MBRs of the latter as the actual partitions, the Indexing step assigns
each spatial object to the partition that has a larger intersection area to avoid
replication. Moreover, the boundaries of each of the partitions are enlarged to
contain all spatial objects they have assigned. Finally, this partitioning technique
receives two di↵erent names depending on the local index used: STR when using
a Grid file for each partition, or R-tree when an individual R-tree is populated per
partition. Figure 3.3 shows the partitions of a real-world dataset of 115M records
(points) of buildings with STR-based partitioning. Note that the partitions are
less regular than those of Quadtree-based partitioning.

– STR+-based partitioning. This method performs a similar process to the STR-
based partitioning but using an R+-tree [Sellis et al., 1987]. The main di↵erence
of this type of tree is that it allows us to have disjoint nodes at each level of
the tree. Also, spatial objects that overlap with multiple nodes or partitions are
replicated to them because it is a replication-based technique. Therefore, the
Indexing step does not make any modification of the partition boundaries. In
the same way, as for STR-based partitioning, this technique presents two di↵erent
variants depending on the local index used: STR+ when using a Grid file for each
partition, or R+-tree when an individual R+-tree is populated per partition.

– kd-tree-based partitioning. This technique partitions a spatial dataset by means
of a kd-tree [Bentley, 1975]. Given a sample obtained in the Sampling step and

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 3. SPATIAL PARTITIONING AND INDEXING IN SPATIALHADOOP 59

Figure 3.3: Real-world dataset of 115M records of buildings with STR-based
partitioning.

the MBR of the dataset as the initial node, the Space subdivision step recursively
partitions x� 1 times a kd-tree in order to get at least x leaf nodes. Moreover, in
each step of the subdivision, it alternates between horizontal and vertical planes
that seek to keep a balanced number of spatial objects in the leaf nodes. Besides,
the technique uses the median spatial object of the respective axis for the node to
split to achieve this balance. This partitioning technique is also known as Binary
Space Partitioning (BSP) [Fuchs et al., 1980]. Finally, the Indexing step uses the
boundaries of the leaf nodes as the partitions and replicates each spatial object to
the ones it overlaps using a Grid file.

– Z-curve-based partitioning. This method uses several properties of the Z -curve
to partition a spatial dataset [Mokbel et al., 2003]. First, the spatial objects of
the sample obtained in the Sampling step are sorted based on the order of their
centroid on the Z -curve. Then, the Space subdivision step divides this set of
centroids into x subsets of equal size (containing roughly bs/xc spatial objects) for
each one of the partitions to generate. Next, the Indexing step uses the centroid
of each subset as a pivot and assigns each spatial object to the partition of the
closest one. Finally, the boundaries of each partition are calculated based on the
contained spatial objects, and the Grid files are written to HDFS. Note that this
partitioning technique presents several overlaps between the generated partitions
due to the partial loss of spatial locality that presents the Z -curve.

– Hilbert-curve-based partitioning. This partitioning technique is similar to the Z -
curve-based partitioning, but employing a Hilbert-curve (H -curve) [Hilbert, 1891]
instead. Moreover, the overlaps between partitions are reduced thanks to the
fact that the Hilbert-curve preserves the locality properties of spatial objects to a
greater extent, and it completely avoids the long jumps on the Z -curve.

The most important conclusions of [Eldawy et al., 2015] about the previous partition-
ing techniques for distributed spatial join processing, using the overlap spatial predicate,

© 2021 Garćıa-Garćıa, F.J.

60 3.2. SPATIAL PARTITIONING TECHNIQUES IN SPATIALHADOOP

are the following: (1) the lowest running time is obtained when the same partitioning
technique (for both input datasets) is used for the spatial join processing; (2) Quadtree
outperforms all other techniques with respect to running time since it minimizes the
number of overlapping partitions by employing a regular space partitioning; (3) Z -curve
reports the worst running times; and (4) kd-tree gets very similar results to STR.

There are other partitioning methods and techniques implemented in SpatialHadoop
but not included in the o�cial release:

– Spatial coding-based [Yao et al., 2017]. This partitioning technique does not need
the Sampling step and processes the full spatial dataset instead. First, the Space
subdivision step uses a spatial coding matrix (SCM), based on a spatial code (e.g.,
Hilbert, Grid, etc.), to compress the spatial dataset into a sensing information
set (SIS). Moreover, the SIS storages di↵erent properties, like the size or spatial
object count, for each spatial coded cell. Then, this information combined with
other HDFS properties, like the block size, is used to compute a spatial partitioning
matrix (SPM) that assigns each spatial code to a block or partition. Finally, in
the Indexing step, each spatial object is partitioned by calculating its spatial code
and looking at the assigned partition in the SPM.

– 2DPR-Tree [Elashry et al., 2018]. This method uses a two-dimensional Priority
R-tree (PR-tree) [Arge et al., 2008] which is an R-tree that presents optimal per-
formance to answer window queries. It uses again the full dataset instead of the
Sampling step. Basically, the Space subdivision step employs the 2DPR-tree to
store the partitions as four-dimensional points and adds four extra leaves below
each internal node with the actual spatial objects arranged by maximum or min-
imum values in each axis, e.g., one leaf has points with the lowest X-axis values.
Given a spatial dataset P, the node capacity as b|P|/xc and starting with the full
dataset MBR as root, the bulk-loading process recursively generates two more
child nodes with the exceeding elements once the node is filled and then it starts
sorting the elements in the four leaves. The process stops when there are x leaf
nodes or partitions. Finally, the Indexing step stores the spatial objects of each
one as the partitions using a Grid file.

– R*-Grove [Vu and Eldawy, 2020]. This partitioning technique uses an R*-tree
[Beckmann et al., 1990] to obtain high-quality square-like partitions with high
load balance and block utilization. To achieve this, it expands the Sampling step
by optionally building a histogram of storage size that assists in the partitioning
algorithm at the Space subdivision step. Therefore, this histogram is used to assign
a weight to each sample based on the total size of all its neighbors. Next, the Space
subdivision adapts R*-tree-based algorithms to produce partition boundaries with
higher load balance. Basically, it considers all split points and chooses the one that
minimizes some cost function which is typically the total area of the two resulting
partitions. Finally, in the Indexing step, a kd-tree-based structure improves the
performance of this step and allows us to replicate each point to all overlapping
partitions using disjoint partitions.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 3. SPATIAL PARTITIONING AND INDEXING IN SPATIALHADOOP 61

To end this section, choosing the best partitioning method is essential to obtain the
best results when performing spatial queries. This selection must take into account the
di↵erent properties and distribution of the spatial dataset to be partitioned. Below,
there are two selection methods applied to several partitioning techniques implemented
in SpatialHadoop:

– Skewness-based selection [Belussi et al., 2020b]. This paper proposes a partition-
ing technique selection method based on the skewness degree of the input spatial
dataset. Furthermore, the detection is based on a box-counting function and a
heuristic, as well as several properties and experimental observations to get the
best performance while executing some spatial queries over the partitioned spatial
dataset. Besides, for the calculation of the box-counting function, a MapReduce
algorithm is presented that allows us to obtain two exponents, namely E0 and
E2, that refer respectively to the existence of empty areas (dataset di↵usion) and
the concentration of objects in some areas (dataset distribution). Therefore, with
these properties, a heuristic is proposed that enables the choice of the most appro-
priate partitioning technique. In summary, this selection method uses Grid-based
partitioning when the distribution is uniform, and otherwise, it uses Quadtree-
based partitioning when there is some clustering of the data and R-tree-based
partitioning when the data shows some connection.

– Deep Learning selection [Vu et al., 2020]. The authors propose a method based on
deep learning techniques for selecting the best partitioning technique on a set of
these, for instance, kd-tree, R*-Grove, STR, Z -curve, Grid, and RR*-tree. This
method consists of a training phase and an application phase. During the training
phase, several synthetic datasets are generated to choose which two types of sum-
marization techniques, fractal-based, and histogram-based techniques, are applied.
The former is based on the box-counting plots presented in the previous method
[Belussi et al., 2020b] along with the Morans index, which is a measure of spatial
autocorrelation (e.g., concentration, dispersion), and the number of empty cells.
Regarding the latter, a histogram is obtained using a uniform grid that counts
the spatial objects within each cell. Together with the summary vector, quality
metrics are used to calculate the best partitioning technique for a given dataset
and thus be able to train the model. Finally, the application phase calculates the
summary vector of the dataset to be partitioned, and with the trained model, se-
lects the partitioning technique to apply. The results of di↵erent experiments show
up to 87% accuracy of the proposed model in recommending the best partitioning
technique.

3.3 Spatial Indexing in SpatialHadoop

For spatial indexing, SpatialHadoop uses a two-level index structure, composed of global
and local indexes, to accelerate spatial query processing in MapReduce. Figure 3.4
shows how this structure is distributed among the master and slave nodes and the
di↵erent types of available indexes. On the one hand, each slave node has the data

© 2021 Garćıa-Garćıa, F.J.

62 3.3. SPATIAL INDEXING IN SPATIALHADOOP

of a particular partition and its associated local index, which allows us to speed up
the local spatial queries. On the other hand, the master node stores the global index,
which has the general information of all partitions generated by a selected partitioning
method. Moreover, its combined use with the SpatialFileSplitter allows us to discard
the partitions that are not needed for the current spatial query.

Figure 3.4: A two-level index structure in SpatialHadoop for spatial indexing.

As described in Section 3.1, after the Partitioning phase, the Local Indexing phase
builds the requested spatial index as a local index (e.g., Grid file or R-tree) on the
spatial data contents of each physical partition. This process is carried out as a reduce
function that takes the records assigned to each partition and stores them in a spatial
index, written in a local index file. Moreover, the combined size of the records and
index structure has to fit in one HDFS block. The block in a local index file is generated
with its Minimum Bounding Rectangle (MBR) of its contents, which is calculated while
building the local index. The latest released implementation of SpatialHadoop1 supports
Grid files and R-trees as local indexes:

– For the Grid file, the records of each grid cell are just written to a heap file without
building any local indexes because the grid index is a one-level flat index where
contents of each grid cell are stored in no particular order.

– For the R-tree, the records of each partition are bulk loaded into an R-tree using
the STR algorithm [Leutenegger et al., 1997], which is then dumped into a file.

Finally, the Global Indexing phase builds the requested spatial index (e.g., Grid file
or R-tree) as a global index structure that indexes all partitions by concatenating the
general information of all local index files into one file.

1
Available at https://github.com/aseldawy/spatialhadoop2/tree/shadoop-2.4.2

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 3. SPATIAL PARTITIONING AND INDEXING IN SPATIALHADOOP 63

3.4 Voronoi-Diagram based Partitioning

The Voronoi-Diagram is a partitioning method of a geometric space that contains points
data. Each data partition of the Voronoi-Diagram (Voronoi-Cells) is associated with a
generator point or pivot p, such that any point inside the partition has p as its nearest
neighbor. The resulting data structure from the Voronoi-Diagram is very e�cient in
exploring a local neighborhood in a geometric space. Voronoi-Diagrams are used in
many algorithmic applications, like closest-site problems (nearest neighbor queries and
closest pairs), clustering point sites (partitioning and hierarchical clustering methods),
placement and motion planning, etc. In our case, the large dataset of points is divided
into data partitions based on a Voronoi-Diagram with a careful method for selecting
a set of suitable pivots. Then, these data partitions (Voronoi-Cells) are clustered into
groups only if the distances between them are restricted by a specific distance bound.
This new data partitioning technique in SpatialHadoop is an approach based on Voronoi-
Diagrams [Garćıa-Garćıa et al., 2018a, Garćıa-Garćıa et al., 2020b], and according to
[Song et al., 2016] it could be considered as a distance-based partitioning strategy. A
Voronoi-Diagram divides a geometric space into disjoint partitions where the nearest
neighbor of any point inside a partition is the pivot of the partition. Several related
definitions are shown below.

Definition 3.1. Voronoi-Diagram, V D
Let R = {r1, r2, · · · , rt} be a set of t distinct points in the plane (2D); these points
can be called generators or pivots. Then, the Voronoi-Diagram of R is defined as the
subdivision of the plane into r cells, one for each pivot ri in R, with the property that a
point p lies in the cell corresponding to a pivot ri if and only if dist(p, ri) < dist(p, rj)
for each rj 2 R with j 6= i. We can denote the Voronoi-Diagram generated by R as
V D(R).

Definition 3.2. Voronoi-Cell, Vi

The cell of V D(R) that corresponds to a pivot ri is called Voronoi-Cell of ri and is
denoted by V C(ri) or Vi for short. The Voronoi-Diagram of a set of point R, V D(R),
is unique and it also satisfies the following property: V D(R) =

St
i=1 Vi and

Tt
i=1 Vi = ;,

where Vi = {p : dist(p, ri) < dist(p, rj) for j 6= i}.

According to [Lu et al., 2012], given a set of points P, the main idea of Voronoi-
Diagram based partitioning technique is to select a set R of points (which may not
necessarily belong to P) as pivots, and then split the points of P into |R| disjoint par-
titions, where each point is assigned to the partition of its closest pivot ri in R. In the
case of multiple pivots that are closest to a particular point, then that point is assigned
to the partition with the smallest number of points. In this way, the whole data space
is split into |R| disjoint Voronoi-Cells. In summary, the set of points are divided into
partitions based on a Voronoi-Diagram with carefully selected pivots. Then, data par-
titions (i.e., Voronoi-Cells) are clustered into groups only if the distances between them
are restricted by a specific bound.

Moreover, two distance metrics are defined, U(PP
i) and L(PP

i), to be used in DBQ
MapReduce algorithms.

© 2021 Garćıa-Garćıa, F.J.

64 3.4. VORONOI-DIAGRAM BASED PARTITIONING

Definition 3.3. Maximum and Minimum distance U(PP
i), L(PP

i)
Let R be the set of selected pivots, 8ri 2 R, PP

i denotes the set of points from P that
has ri as its closest pivot. We denote U(PP

i) and L(PP
i) as the maximum and minimum

distance from the pivot ri to the points of PP
i , respectively. That is:

U(PP
i) = max{dist(p, ri) : 8p 2 PP

i }
L(PP

i) = min{dist(p, ri) : 8p 2 PP
i }

Table 3.1 shows the symbols and their meanings used throughout this section.

Symbol Definition

k number of the NNs or the CPs, k � 1
P set of points P

dist(pi, qj) distance from pi to qj
SP sample set from P
⇢ sampling ratio, 0 ⇢ 1
RP set of selected pivots from P
ri a pivot in RP

V D(RP) a Voronoi-Diagram of RP

Vi a Voronoi-Cell of ri
PP set of partitions from P
PP

i subset from P, having ri as its closest pivot
U(PP

i) maximum dist. from ri to the points of PP
i

L(PP
i) minimum dist. from ri to the points of PP

i

MBR(PP
i) MBR covering the points of PP

i

Table 3.1: Symbols and their meanings.

In order to include the new data partitioning technique based on Voronoi-Diagram
into SpatialHadoop, we have followed the steps for the Spatial Partitioning phase in
SpatialHadoop (see Figure 3.1):

1. Computing the number of partitions. As usual, the number of desired partitions x
is computed based on file size and HDFS block capacity.

2. Sampling. A set SP of samples from an input dataset P is provided.

3. Space subdivision. A set RP of x pivots is obtained from the sample set SP, using
some pivot selection technique.

4. Indexing. The points from the input dataset P are assigned to their closest pivot
ri 2 RP and some properties of the pivot are calculated and stored in the global
index.

3.4.1 Sampling large datasets

Sampling is an e↵ective way to deal with large datasets, which attempts to find a small
but representative profile of the dataset. The sample-set is required to be small enough

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 3. SPATIAL PARTITIONING AND INDEXING IN SPATIALHADOOP 65

to satisfy the dataset size constraints and, and at the same time, the result of the
sampling should be reliable and close enough to approximately represent the whole
dataset. However, sampling methods cannot take into account the correlation among
the data hence it is hard to obtain the perfect sample. For example, if we have an input
dataset that contains k clusters, ideally, the sample set should also contain k clusters.
For this reason, ideal clustering result is di�cult to obtain since the clusters cannot be
determined easily.

For implementing this new partitioning technique, three sampling methods have been
studied: (1) uniform random sampling [Eldawy and Mokbel, 2015], it is the simplest
and the most common; (2) partition-based sampling [Ros and Guillaume, 2017], where
the sampling is carried out according to a split of the dataset into a number of disjoint
partitions that optimize a criterion function; and (3) density-based sampling [Ros and
Guillaume, 2016], where distance concepts are managed for sampling to ensure space
coverage and fit cluster shapes.

– For uniform random sampling on large datasets, the size of the sample is usually
set to a ratio between the sample dataset size and its original dataset size [Eldawy
and Mokbel, 2015], that is |SP| = ⇢ ⇥ |P|, where 0 ⇢ 1 is the ratio of the
sampled dataset. In [Zhao et al., 2018], when 0.01 ⇢ 0.02, the execution
times are minimized for kNNJQ since both small and large sample sizes tend to
deteriorate the performance (i.e., small ratios are unable to accurately estimate
dataset distribution and large ratios lead to high sampling overhead). In our
experiments, we have chosen by default ⇢ = 0.01 (1%), since it was the best ratio
value for real datasets when kNNJQ is executed [Zhao et al., 2018], also for the
kCPQ performance [Garćıa-Garćıa et al., 2018b], and it produces high quality
partitions in SpatialHadoop [Eldawy et al., 2015]. To generate the random sample
e�ciently when the input file is very large, SpatialHadoop provides a MapReduce
job that scans all records and outputs each one with a probability of 1% (⇢ = 0.01).

– For partition-based sampling, k-means clustering algorithm [MacQueen, 1967] has
been successfully used as a preprocessing sampling step for sophisticated and ex-
pensive clustering techniques. It is executed with k = |SP|, where |SP| is the
desired sample size of P, such as |SP| ⌧ |P| [Ros and Guillaume, 2017]. For this
reason, we can use k-means++ [Arthur and Vassilvitskii, 2007] for sampling pur-
poses. To generate this kind of sample e�ciently from a large dataset, we have
implemented a MapReduce job, where the input dataset is split into a number of
necessary parts to fit in the main memory of the mappers. Therefore, in the map
phase, each mapperi performs the k-means++ algorithm from ELKI library [Schu-
bert and Zimek, 2019] on its part with ki = si, where si is the number of points
resulting from applying the ratio ⇢ on the number of points that such mapperi
receives. The final result of this MapReduce job is the combination of the par-
tial results of applying k-means++ in each mapper. The study of the theoretical
analysis of error bounds of sampling to select the pivots for partitions in metric
similarity join in MapReduce can be found in [Wu et al., 2019]. In addition, in
[Blömer et al., 2016], the study of the seeding methods for the k-means algorithm
is presented, providing also the lower bound on the expected error of picking k

© 2021 Garćıa-Garćıa, F.J.

66 3.4. VORONOI-DIAGRAM BASED PARTITIONING

initial centers for the k-means algorithm. According to [Arthur and Vassilvitskii,
2007], the k-means method does not perform well since the random seeding will in-
evitably merge clusters together, and the algorithm will never be able to split them
apart. The careful seeding method of k-means++ avoids this problem altogether,
and it almost always attains the optimal results.

– For density-based sampling, we will use the DENDIS clustering algorithm [Ros and
Guillaume, 2016] since it combines both DENsity and DIStance concepts to ensure
space coverage and fit cluster shapes. In general, at each step of the algorithm, a
new point is added to the sample, choosing the furthest from the representative
in the most important group. Like the previous sampling cases, we have imple-
mented a MapReduce job, where the input dataset is also split into a number of
necessary parts whose size can be processed by each mapper. Then, each mapperi
executes the DENDIS algorithm on each part, using granularity gr = 0.001, as
recommended in [Ros and Guillaume, 2016] to get a good accuracy. Finally, the
individual results of each mapper are combined to obtain the final result.

3.4.2 Pivot selection techniques for space subdivision

The Voronoi-Diagram based partitioning technique is well-known for maintaining data
proximity, and it is especially appropriate for distance-based queries. For the creation
of Voronoi-Diagrams, the method to select of suitable pivots is very important and
therefore, in the Space subdivision step of the Partitioning phase in SpatialHadoop (see
Figure 3.1), a module for selecting a set of pivots should be executed. In [Lu et al., 2012]
three pivot selection strategies are proposed: random selection, furthest selection and
k-means selection. Random selection was faster than k-means, but during the kNN join
phase, the performance of k-means selection was better. For this reason, we have adapted
random selection and clustering selection strategies to be included in SpatialHadoop.
For the random selection technique, b|SP|/kc random sets of points are generated, then
for each set, the total sum of the distances between every two points are computed, and
the points from the set with the largest total sum of distances are chosen as pivots.

Taking into account the results of [Lu et al., 2012] and [Garćıa-Garćıa et al., 2018a],
the use of a clustering algorithm improves the quality of the selected pivots for splitting
the whole dataset more evenly, and the partition-based and density-based clustering
algorithms are the most appropriate for spatial big data [Schoier and Gregorio, 2017].
Partition-based clustering attempts to directly decompose the dataset into a set of dis-
joint clusters. More specifically, this type of clustering algorithm attempts to determine
an integer number of partitions that optimize a certain criterion function. On the other
hand, the key idea of density-based clustering is to group neighboring objects of a dataset
into clusters based on density conditions.

– For the partition-based clustering category we have chosen the k-means clustering
algorithm [MacQueen, 1967], leading to the k-means selection technique. We have
used the best recommendation for the k-means family in ELKI library [Schubert
and Zimek, 2019], this is Sort-Means [Phillips, 2002], which accelerates k-means,

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 3. SPATIAL PARTITIONING AND INDEXING IN SPATIALHADOOP 67

exploiting the triangle inequality and pairwise distances of means to prune can-
didate means (with sorting). Moreover, it uses k-means++ [Arthur and Vassil-
vitskii, 2007] to initialize means. When the k clusters have been generated, the
center point of each cluster is chosen as a pivot for the Voronoi-Diagram based
partitioning.

– For the density-based clustering class, we have chosen the OPTICS algorithm
[Ankerst et al., 1999], resulting the OPTICS selection technique. OPTICS is a
density-based clustering algorithm that attempts to overcome some of the draw-
backs of its most famous counterpart DBSCAN [Ester et al., 1996]. The major
weaknesses of DBSCAN are the inability to detect clusters in zones of varying
density and the choice of parameter values, for which it is very sensitive. The
main di↵erence between them is the ✏ value; in OPTICS, it is an upper bound in-
stead of a specific distance value. We have used the best recommendation for the
density-based clustering family in ELKI library [Schubert and Zimek, 2019], this
is OPTICSxi [Schubert and Gertz, 2018] with the implementation of FASTOptics
[Schneider and Vlachos, 2013]. In general terms, OPTICSxi generates a hierar-
chical classification of the clusters obtained when OPTICS is applied. The main
parameters of OPTICSxi are ✏ (an upper bound of the distance to be considered),
minpts (the minimum number of points required to form a cluster) and xi (contrast
parameter that establishes the relative decrease in density). For our experiments,
we have used ✏ = 2, minpts = 100 and xi = 0.025. Since the output of the algo-
rithm is a hierarchical structure, we have to find a level where at most k clusters
are stored. When the k clusters have been selected, the center point of each cluster
is chosen as a pivot for the Voronoi-Diagram based partitioning.

3.4.3 Indexing data

It should be recalled that the Indexing step of the Partitioning phase in SpatialHadoop
splits the data file by assigning each point to one or more partitions. The main idea of
this step in Voronoi-Diagram based partitioning technique is to allocate each point of P
to the partition with its closest pivot in RP. That is, the points from the input dataset P
are assigned to their closest pivot ri 2 RP, leading to |RP| possible partitions. Moreover,
some properties of the pivot ri are calculated and stored for each partition, such as the
number of points |PP

i |, theMBR(PP
i) which is the Minimum Bounding Rectangle (MBR)

covering the points of PP
i , U(PP

i) and L(PP
i). Figure 3.5 illustrates the result of applying

the Voronoi-Diagram based partitioning technique in SpatialHadoop. For more details,
in the left chart, the data partitions, using the Voronoi-Diagram based partitioning
technique from the selected pivots, are shown. The chart in the center shows the same
data partitions, represented as pivots with their MBRs, in the same way, that other
spatial partitioning techniques are represented in SpatialHadoop. Finally, on the right,
there is a table that summarizes the values of some properties of the pivots available for
each partition.

© 2021 Garćıa-Garćıa, F.J.

68 3.5. QUADTREE-BASED LOCAL INDEX

Figure 3.5: Overview of the Voronoi-Diagram based partitioning technique in
SpatialHadoop.

3.5 Quadtree-based Local Index

The use of a spatial index is one of the most common techniques employed to accelerate
spatial query processing. Many di↵erent spatial indices have been proposed in the
literature [Gaede and Günther, 1998], but the most influential ones have been the R-
trees and the Quadtrees. One of the main characteristics of DSDMSs is to include
spatial indexes that would allow selective access to specific regions of spatial data, which
would in turn yield more e�cient distributed query processing algorithms. In general,
DSDMSs employ spatial indices for two main purposes: (1) to distribute data among
slave nodes and possibly reduce the number of partitions visited during a spatial query
(spatial partitioning); and (2) to process spatial queries in slave nodes (spatial indexing).
Because of these advantages, spatial indices are supported by all proposed DSDMSs, and
the R-tree is used for both purposes [Pandey et al., 2018]. The Quadtree is only used by
GeoSpark and LocationSpark, both Spark-based DSDMSs. As we have seen above, in
SpatialHadoop, the Quadtree is used as a spatial partitioning technique to split the large
datasets into smaller units, but it is not used to index the data of each partition. In this
section, we will study how to include the Quadtree as a local index in SpatialHadoop
(Hadoop-based DSDMS).

3.5.1 Implementing a Quadtree-based local index in SpatialHa-
doop

In the local indexing phase, each partition is bulk loaded into a Quadtree using the PR
algorithm [Hjaltason and Samet, 1999], similar to the Quadtree partitioning. First, the
records of each partition are sorted using a Z -curve so that those found on a leaf node
appear consecutively. Then, the algorithm considers that all records belong to the root
node and checks whether there are nodes to divide. A node is split into its four children
if the current number of records exceeds the established node capacity. Figure 3.6 shows
a partition indexed by a Quadtree-based local index, with the resulting regions and tree
structure. Finally, the Quadtree of each partition is dumped to a file along with the
partition records. The index header contains information about its length, MBR of its
contents and, the record o↵sets and sizes of each leaf node. As usual in SpatialHadoop,
the global indexing phase concatenates all local index files and creates the global index
using their MBRs as the index key.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 3. SPATIAL PARTITIONING AND INDEXING IN SPATIALHADOOP 69

Figure 3.6: Overview of a partition indexed by a Quadtree-based local index.

3.5.2 kNNQ and kCPQ MapReduce algorithms with Quadtrees
in SpatialHadoop

The general scheme of the kNNQ algorithm in SpatialHadoop is as follows [Eldawy and
Mokbel, 2015]: (1) A filtering function selects the partition in which the query point q
is found. (2) Then, the map task is responsible for obtaining the initial answer by using
a local kNNQ algorithm on the selected partition and in the reduce task, the global
k nearest neighbors from q are returned. (3) The correctness check phase evaluates
whether the result obtained is less than k, or there are partitions within the circular
range query, centered in q with a radius equal to the k-th largest distance obtained so
far. (4) In this case, the answer refinement starts by rerunning the previous MapReduce
job from the first step, but at this time, more partitions are within the range query, and
therefore, they are selected by the filtering function. Otherwise, the final result has
already been obtained. If the input dataset contains a local Quadtree-based index, the
local kNNQ algorithm traverses it by Breadth-First search of the tree, using a queue.
Each step checks whether the current node intersects with the circular range and if so,
its four children are added to the end of the queue for further testing. In the case of
leaf nodes, each one of the spatial objects they contain is tested to see if they are part
of the range query.

In general, the kCPQ MapReduce algorithm [Garćıa-Garćıa et al., 2018b] in Spatial-
Hadoop consists of the following steps: (1) The upper bound calculation step finds an
upper bound of the distance value of the k-th closest pair of the joined datasets, called
�, (2) that the filtering step uses to prune combinations of pairs of partitions. (3) The
local kCPQ step consists of a map function that uses a plane-sweep kCPQ algorithm
between each local pair of partitions. (4) Finally, the global kCPQ is a reduce function
that merges the local sets into the final set of the k closest pairs. When both datasets
are indexed through a local Quadtree-based index, instead of using a plane-sweep on all
its records, both trees are traversed using Depth-First search. For this, a stack stores

© 2021 Garćıa-Garćıa, F.J.

70 3.6. PERFORMANCE EVALUATION

the children of the pairs of nodes whose distance is less than the current k-th closest
pair distance. When dealing with a pair of leaf nodes, the general kCPQ plane-sweep
algorithm is applied to the spatial objects stored in them.

3.6 Performance Evaluation

This section provides the results of an extensive experimental study aiming at measuring
and evaluating the e�ciency of the spatial partitioning and indexing techniques proposed
in Sections 3.4 and 3.5. In particular, Subsection 3.6.1 describes the experimental set-
tings for this performance study in SpatialHadoop. Next, Subsection 3.6.2 studies the
e↵ects of applying Voronoi-Diagram based partitioning technique in two DJQs (kNNJQ
and kCPQ). Finally, Subsection 3.6.3 shows a comparison of the Quadtree-based local
index against the R-tree local index in SpatialHadoop over two top-k queries (kNNQ
and kCPQ).

3.6.1 Experimental Setup

For the experimental evaluation, we have used real-world 2d point datasets to test both
our Voronoi-Diagram based partitioning technique and Quadtree-based local index in
SpatialHadoop. We have used datasets from OpenStreetMap2:

- LAKES (L), which contains 8.4M records (8.6 GB) of boundaries of water areas
(polygons).

- PARKS (P), which contains 10M records (9.3 GB) of boundaries of parks or green
areas (polygons).

- ROADS (R), which contains 72M records (24 GB) of roads and streets around the
world (line-strings).

- BUILDINGS (B), which contains 115M records (26 GB) of boundaries of all build-
ings (polygons).

- ROAD NETWORKS (RN), which contains 717M records (137 GB) of road net-
works represented as individual road segments (line-strings).

To create sets of points from these five spatial datasets, we have transformed the MBRs of
line-strings into points by taking the center of each MBR. In addition, we have considered
the centroid of each polygon to generate individual points for this type of spatial object.

The main performance measures that we have used in our experiments have been
the total execution time (i.e., total response time) and the total indexing time (i.e.,
total creation time). For the performance evaluation, we have employed distance-based
queries (i.e., kCPQ and kNNJQ for Voronoi-Diagram based partitioning, and kNNQ
and kCPQ for Quadtree-based local index) although they are described in more detail
in Chapter 4.

2
http://spatialhadoop.cs.umn.edu/datasets.html

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 3. SPATIAL PARTITIONING AND INDEXING IN SPATIALHADOOP 71

Table 3.2 summarizes the configuration parameters used in our experiments in this
section.

Parameter Values (default)

Sampling Random, k-means++, DENDIS
Pivot selection Random, k-means, OPTICS

Table 3.2: Configuration parameters used in our experiments.

All experiments were conducted on a cluster of 12 nodes on an OpenStack envi-
ronment. Each node has 4 vCPU with 8GB of main memory running Linux operating
systems and Hadoop 2.7.1.2.3. Each node has a capacity of 3 vCores for MapReduce2
/ YARN use. Finally, we used the latest code available in the repositories of Spatial-
Hadoop3.

3.6.2 Voronoi-Diagram based Partitioning experiments

Subsections 3.6.2.1 and 3.6.2.2 experimentally show the advantages of the use of sampling
and space subdivision in the building of the Voronoi partitioned dataset. Subsection
3.6.2.3 presents all experiments for kNNJQ using the Voronoi-Diagram based partition-
ing technique, paying special attention to the execution time needed to perform this
DJQ and the increment of the k value. Subsection 3.6.2.4 exposes all experiments re-
lated to kCPQ, comparing Quadtree spatial partitioning technique, which is the best
spatial partitioning method in SpatialHadoop for distributed spatial join according to
[Eldawy et al., 2015], with the proposed data partitioning technique, and analyzing the
increment of k value. Finally, in Subsection 3.6.2.5 a summary of the most important
conclusions from the experimental results is reported.

3.6.2.1 E↵ect of sampling methods

During the Partitioning phase, in the Sampling step, we collect a set of samples (e.g.,
|SP| = 0.01 ⇥ |P|) from the input dataset to capture its distribution as best as possible,
since this sample set will a↵ect query performance. In this experiment, we evaluate
three sampling techniques for the building of the Voronoi partitioned dataset (Random,
k-means++ and DENDIS) for kNNJQ (Fig. 3.7) and kCPQ (Fig. 3.8) by consider-
ing the three pivot selection techniques: Random (VR), k-means (Vk) and OPTICS
(VO). Figure 3.7 shows that, on average, k-means++ sampling exhibits the best global
performance (execution time) for kNNJQ, although Random and DENDIS report good
results with Vk. Random sampling is the fastest, but it has a great component of ran-
domness that exists between two di↵erent executions of the same query. DENDIS needs
more time than k-means++ to be run, since it requires many distance computations
and consumes many resources in its execution. For kCPQ, Figure 3.8 reveals again
that k-means++ sampling shows the best global performance, mainly for Vk. Random
and DENDIS with Vk get good results as well, but they have the previous drawbacks.

3
https://github.com/aseldawy/spatialhadoop2

© 2021 Garćıa-Garćıa, F.J.

72 3.6. PERFORMANCE EVALUATION

The main conclusion of these results indicates that k-means++ is the best sampling
technique (partition-based sampling) for the creation of Voronoi partitioned datasets in
SpatialHadoop for DJQs.

VR Vk VO VR Vk VO VR Vk VO

0

100

200

300

400

500

600

700

800

900

1,000

Random k -means++ DENDIS

T
ot
al

E
xe
cu

ti
on

T
im

e
(i
n
se
c)

LAKES ⇥ BUILDINGS - kNNJQ

Figure 3.7: kNNJQ cost, the total execution time for the combination of the datasets,
LAKES ⇥BUILDINGS, considering di↵erent sampling methods and pivot selection

techniques for k = 10.

3.6.2.2 E↵ect of space subdivision and indexing

In this experiment, we will compare our new proposed Voronoi-Diagram based par-
titioning algorithms with the Quadtree (Q) built-in partitioning technique which has
shown to obtain the best performance results with the di↵erent spatial queries present
in SpatialHadoop [Eldawy et al., 2015, Eldawy and Mokbel, 2015, Garćıa-Garćıa et al.,
2016b, Garćıa-Garćıa et al., 2018b]. We will consider the k-means++ sampling (the
best one of the previous experiment), and the three pivot selection techniques: random
selection (VoronoikR, VkR), k-means selection (Voronoikk, Vkk) and OPTICS selection
(VoronoikO, VkO) for the Space subdivision step, and the Indexing data step.

In Figure 3.9, the partitioning cost of di↵erent datasets is shown with respect to the
execution time, for both the Space subdivision and Indexing phases. The first conclusion
we can draw is that the total execution times for VoronoikR and Quadtree grow similarly
as the size of the datasets is increased. For Voronoikk the increase in execution time
is larger, since a k-means algorithm is used in the Space subdivision phase. This k-
means algorithm takes longer times to converge towards a solution as the size of the
datasets increases. The costliest pivot selection technique is VoronoikO, because the
execution of OPTICSxi clustering algorithm is more expensive than k-means, being the
number of partitions smaller. Finally, VoronoikR presents the fastest execution times,

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 3. SPATIAL PARTITIONING AND INDEXING IN SPATIALHADOOP 73

VR Vk VO VR Vk VO VR Vk VO

0

50

100

150

200

250

300

350

400

450

500

Random k -means++ DENDIS

T
ot
al

E
xe
cu

ti
on

T
im

e
(i
n
se
c)

LAKES ⇥ BUILDINGS - kCPQ

Figure 3.8: kCPQ cost, total execution time for the combination of the datasets,
LAKES ⇥BUILDINGS, considering di↵erent sampling methods and pivot selection

techniques for k = 100.

mainly because it consumes the smallest time in the Indexing phase of the data since
in the Space subdivision phase, the total execution times are very similar to those of
Quadtree. In Table 3.3, we can observe information of data distribution (points per
partition) about the partitioning of ROAD NETWORKS dataset for each partitioning
technique. On the one hand, VoronoikO presents a higher mean value due to having a
lower number of partitions than the other techniques. On the other hand, Voronoikk
has a much lower standard deviation that allows better handling of data skew problems
by having a more proportional distribution of the points in all partitions. This metric
provides information about the gap between the di↵erent partitioning techniques and
how it a↵ects the performance of the DJQs since the skewed data is one of the main
factors for the increase of the execution time. In addition, this result is aligned with
the behavior obtained in Figures 3.7 and 3.8, where the best performance (the lowest
execution time) is obtained by applying k-means++ algorithm, either in sampling or
partitioning phases, confirming that the results are close to the optimal values.

NUM MEAN MIN MAX STDEV

Voronoikk 512 1400486 19914 3684694 623909
VoronoikR 512 1400486 18347 6228082 985297
VoronoikO 72 9959011 1149113 40703435 8512796
Quadtree 430 1667555 218 4275451 1130277

Table 3.3: Information of data distribution (points per partition) of
ROAD NETWORKS dataset per partitioning technique.

© 2021 Garćıa-Garćıa, F.J.

74 3.6. PERFORMANCE EVALUATION

V
k
R

V
k
k

V
k
O Q

V
k
R

V
k
k

V
k
O Q

V
k
R

V
k
k

V
k
O Q

V
k
R

V
k
k

V
k
O Q

0

50

100

150

200

250

L P R B

T
ot
al

E
xe
cu
ti
on

T
im

e
(i
n
se
c)

Datasets partitioning cost

Space subdivision Indexing

Figure 3.9: Partitioning cost, total execution time per phase, considering di↵erent
partitioning techniques and datasets.

3.6.2.3 E↵ect of pivot selection techniques - kNNJQ

This experiment compares the three pivot selection techniques (Random, k-means and
OPTICS) with k-means++ as the sampling method and Quadtree (Q) for the kNNJQ
in SpatialHadoop, based on the total execution time. They are denoted as Voronoikk
(Vkk), VoronoikR (VkR) and VoronoikO (VkO).

In Figure 3.10, left chart, the kNNJQ for the combination of di↵erent datasets (L⇥P ,
L⇥ R, L⇥ B and L⇥ RN) is shown for each pivot selection technique and for a fixed
k = 10. We can observe that Voronoikk exhibits the best performance in all cases.
Moreover, Quadtree is much slower than any of the other variants of Voronoi-Diagram
based partitioning technique. This behavior is due to the fact that with the three
Voronoi variants, every point of P is assigned to a Q partition that contains at least
k elements, and therefore the processing time of a big part of the points is reduced.
However, for Quadtree there is a large growth of the number of partitions to search for
kNN candidates. Notice the high execution time needed for L ⇥ RN using VkO, this
is because the OPTICS algorithm does not generate a fixed number of clusters, but it
depends strongly on the data distribution (and the number of clusters is less than k).
In this figure, we can also highlight that the di↵erences in execution time between the
four partitioning techniques are reduced with the combination with the largest dataset,
L⇥RN , mainly because the Quadtree technique finds more final results faster. As the
volume and size of Q are much greater, the volume of points of P that fall into partitions
of Q is also greater, obtaining final results earlier, reducing the execution time of the
kNNJQ MapReduce algorithm.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 3. SPATIAL PARTITIONING AND INDEXING IN SPATIALHADOOP 75

Moreover, similar behavior can be observed in Figure 3.10, right chart, where, as
the k value is increased for the combination of the datasets, LAKES ⇥ ROADS. The
execution time of the kNNJQ algorithm is also higher. We have also to emphasize the
high execution time needed for k = 75 using VkR, which is mainly due to the random
nature of the random selection technique.

V
k
k

V
k
R

V
k
O Q

V
k
k

V
k
R

V
k
O Q

V
k
k

V
k
R

V
k
O Q

V
k
k

V
k
R

V
k
O Q

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

L⇥ P L⇥ R L⇥ B L⇥ RN

T
ot
al

E
xe
cu
ti
on

T
im

e
(i
n
se
c)

P⇥Q: Datasets joined - kNNJQ

V
k
k

V
k
R

V
k
O Q

V
k
k

V
k
R

V
k
O Q

V
k
k

V
k
R

V
k
O Q

V
k
k

V
k
R

V
k
O Q

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

k = 25 k = 50 k = 75 k = 100

T
ot
al

E
xe
cu
ti
on

T
im

e
(i
n
se
c)

LAKES ⇥ ROADS - kNNJQ

Figure 3.10: kNNJQ cost, total execution time of di↵erent dataset combinations (left)
and varying the k values (right) for L⇥R.

3.6.2.4 E↵ect of pivot selection techniques - kCPQ

These experiments aim to measure the behavior of the kCPQ MapReduce algorithm
in SpatialHadoop, varying di↵erent parameters as the dataset sizes to be joined, the
partitioning techniques, and the values of k. In Figure 3.11, left chart, the kCPQ for
a fixed k = 100 and for real spatial datasets (L ⇥ P , P ⇥ R, R ⇥ B and B ⇥ RN)
is shown with respect to the execution time for the di↵erent partitioning techniques
(Voronoikk, VoronoikR, VoronoikO and Quadtree). We can observe that the total execu-
tion times in all partitioning techniques grow almost linearly as the size of the datasets
is increased, except VoronoikO that for P ⇥ R the time is very high, due to mainly the
high preprocessing cost. For kCPQ, the best partitioning technique is Quadtree, which
is approximately 18% faster than Voronoikk. Moreover, for the combinations of L ⇥ P
and P ⇥ R, Voronoikk is slightly faster than Quadtree (e.g., for L ⇥ P Voronoikk is 14
sec faster than Quadtree), but for the combinations of the largest datasets (R ⇥B and
B⇥RN) Quadtree is the fastest, e.g., for B⇥RN Quadtree is 18% (254 sec) faster than
Voronoikk. That is, Voronoikk exhibits smaller runtime values for smaller dataset sizes
since it produces a slightly larger number of partition combinations (e.g., 24 vs. 23 par-
tition pairs for L⇥P) that are better distributed in tasks for this cluster of nodes. But
for larger dataset sizes, Quadtree is the fastest for kCPQ since it minimizes the number
of partitions for each dataset and the number of the ones that overlap between each
other. For instance, for the combination of B⇥RN , Quadtree obtains 78⇥ 430 = 33540
possible pairs of partitions, with only 711 pairs of partitions (2%) considered, with a
total execution time of 1220 sec. In the case of Voronoikk, it generates 81⇥512 = 41472

© 2021 Garćıa-Garćıa, F.J.

76 3.6. PERFORMANCE EVALUATION

pairs of partitions, with only 1191 pairs of partitions (2.8%) considered, with a total ex-
ecution time of 1474 sec, which is slightly higher than for Quadtree due to the increase
on the number of map tasks. Finally, VoronoikO shows the worst results, noting that
the indexing time of VoronoikO is much higher and the number of partitions is smaller.
Figure 3.11, right chart, shows the e↵ect of increasing the k value for the combination of
the largest datasets (BUILDINGS ⇥ ROAD NETWORKS) for kCPQ. This exper-
iment shows that the total execution time grows slowly as the number of results to be
obtained (k) increases. All partitioning techniques report very stable execution times,
even for large k values (e.g., k = 105), although, we can see that Quadtree still exhibits
the lowest execution times.

L⇥ P P ⇥ R R ⇥ B B ⇥ RN
0

500

1,000

1,500

2,000

2,500

3,000

P⇥ Q: Datasets joined

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

Datasets joined - kCPQ

1 10 10
2

10
3

10
4

10
5

0

500

1,000

1,500

2,000

2,500

3,000

k : # of closest pairs

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

BUILDINGS ⇥ ROAD NETWORKS - kCPQ

Voronoikk VoronoikR VoronoikO Quadtree

Figure 3.11: kCPQ cost, total execution time of di↵erent partitioning techniques (left)
and varying the k values (right) for B ⇥RN .

3.6.2.5 Conclusions from the experimental results

The main conclusions extracted for this set of experiments on the proposed Voronoi-
Diagram based partitioning techniques in SpatialHadoop for DJQ MapReduce algo-
rithms are the following:

1. The best sampling technique to find a small but representative profile from big
spatial datasets for DJQ processing in SpatialHadoop is k-means++, which is a
partition-based sampling method.

2. Using the k-means++ sampling, we have compared three clustering algorithms
(Random, k-means, and OPTICS) for the pivot selection. The partitioning exe-
cution times for VkR are the smallest and grow almost linearly as the size of the
datasets, while, for Vkk, this increment is larger due to the use of k-means++
clustering algorithm. The use of OPTICS, VkO, is the slowest. But Vkk exhibits
the best global performance in all cases for kNNJQ because this combination of k-
means algorithms partitions the dataset appropriately for the kNNJQ MapReduce
algorithm in SpatialHadoop.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 3. SPATIAL PARTITIONING AND INDEXING IN SPATIALHADOOP 77

3. For kNNJQ (it follows a multiple nearest neighbor query processing schema), Vkk

is faster than Quadtree partitioning because it deals better with skewed data and
it gets more final results earlier.

4. Quadtree partitioning outperforms all other variants of partitioning techniques
based on Voronoi-Diagrams, with respect to the total execution time for the kCPQ
(it follows a global query processing schema), although Voronoikk or Vkk tech-
niques present slightly better performance, for the combinations of the smallest
datasets.

3.6.3 Quadtree-based local index experiments

In this section, we present the most representative results of our experimental evaluation,
comparing the Quadtree-based local index against the built-in R-tree local index in
SpatialHadoop [Garćıa-Garćıa et al., 2020a]. To this end, we have used real-world 2d
point datasets to test the local indexes and the top-k query MapReduce algorithms
(kNNQ and kCPQ) in SpatialHadoop.

The conducted experiments results are shown in Figure 3.12 and correspond to the
following: (1) Local index creation time; (2) kNNQ execution time varying k using
BUILDINGS ; (3) kNNQ with k = 100 for di↵erent spatial datasets; (4) kNNQ varying
cluster node count (⌘); kCPQ execution time varying k joining (5) LAKES ⇥PARKS
and (6) PARKS⇥BUILDINGS; (7) kCPQ with k = 100 for di↵erent spatial datasets
combinations; and (8) kCPQ varying cluster node count (⌘).

3.6.3.1 Conclusions from the experimental results

By analyzing the experimental results showed in Figure 3.12, we can extract the following
conclusions:

1. The indexing times (creation times) are similar with a small advantage for Quadtree
since it has a higher number of partitions and the workload is shared among the
nodes, e.g., BUILDINGS (78 partitions with Quadtree vs. 28 partitions with
STR).

2. For both DBQs, when the value of k or the size of the datasets varies, Quadtree is
the clear winner. Furthermore, its execution times are more stable than those of
R-tree when dealing with higher values of k or larger datasets.

3. For kCPQ, the large di↵erences in execution time between R-tree and Quadtree,
are due to the morphology of the nodes and the number of partitions. The nodes of
the Quadtree show a more regular shape that causes a smaller number of overlaps
between nodes, which implies a reduction in the number of pairs to compare.
Moreover, the number of partitions generated by Quadtree is larger, which means
they are smaller in size and allows us to reduce the impact of skew data problems.

4. For kNNQ, the use of computing nodes (⌘) by both Quadtree and R-tree is small
thanks to the e�cient utilization of indices, allowing the execution of several
queries in parallel.

© 2021 Garćıa-Garćıa, F.J.

78 3.6. PERFORMANCE EVALUATION

LAKES PARKS BUILDINGS
0

50

100

150

200

P: Dataset indexed

T
ot
al

In
d
ex
in
g
T
im

e
(i
n
se
c)

(1) Indexing Time

1 10 102 103 104 105
0

5

10

15

20

k : # of closest pairs

T
ot
al

E
xe
cu
ti
on

T
im

e
(i
n
se
c)

(2) BUILDINGS - kNNQ

LAKES PARKS BUILDINGS
0

5

10

15

P: Dataset

T
ot
al

E
xe
cu
ti
on

T
im

e
(i
n
se
c)

(3) k = 100 - kNNQ

1 3 6 9 12
0

5

10

15

⌘: # of available computing nodes

T
ot
al

E
xe
cu
ti
on

T
im

e
(i
n
se
c)

(4) BUILDINGS - kNNQ

1 10 102 103 104 105
0

2,000

4,000

6,000

8,000

10,000

12,000

k : # of closest pairs

T
ot
al

E
xe
cu
ti
on

T
im

e
(i
n
se
c)

(5) LAKES ⇥ PARKS - kCPQ

1 10 102 103 104 105
0

1,000

2,000

3,000

4,000

5,000

6,000

k : # of closest pairs

T
ot
al

E
xe
cu
ti
on

T
im

e
(i
n
se
c)

(6) PARKS ⇥ BUILDINGS - kCPQ

LAKES ⇥ PARKS PARKS ⇥ BUILDINGS
0

1,000

2,000

3,000

4,000

5,000

P⇥Q: Datasets joined

T
ot
al

E
xe
cu
ti
on

T
im

e
(i
n
se
c)

(7) k = 100 - kCPQ

1 3 6 9 12
0

200

400

600

800

1,000

1,200

⌘: # of available computing nodes

T
ot
al

E
xe
cu
ti
on

T
im

e
(i
n
se
c)

(8) LAKES ⇥ PARKS - kCPQ

R-tree Quadtree

Figure 3.12: Experimental results comparing Quadtree and R-tree performance with
the top-k queries (kNNQ and kCPQ).

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 3. SPATIAL PARTITIONING AND INDEXING IN SPATIALHADOOP 79

5. For kCPQ, both R-tree and Quadtree show better performance when the number
of computing nodes (⌘) is increased, but if there are not enough tasks available for
a specific number of nodes, no performance improvements are obtained. On the
one hand, Quadtree takes much less time than R-tree when there is only one node
available. On the other hand, the existence of skew data problems, which generate
map tasks with a larger execution time compared to the rest, reduces the benefits
of adding more nodes.

3.7 Conclusions

This section highlights the main conclusions of this chapter. First, we have detailed the
general spatial partitioning scheme and spatial indexing mechanism of SpatialHadoop
to enable fast access to spatial data in Hadoop. Next, we have described the available
spatial partitioning techniques in SpatialHadoop. Furthermore, we have presented a
detailed description of the built-in spatial indexes in SpatialHadoop. We have also
proposed a data partitioning technique based on Voronoi-Diagrams in SpatialHadoop.
We have explained and discussed the reasons and the process to include the Quadtree
as a local index in SpatialHadoop since this spatial access method is widely used in
commercial spatial database systems. Finally, an experimental evaluation of di↵erent
spatial partitioning methods and a comparison with the new Voronoi-Diagram based
technique and Quadtree-based local index in SpatialHadoop have demonstrated their
importance and great performance for DBQs (kNNQ, kNNJQ and kCPQ).

© 2021 Garćıa-Garćıa, F.J.

80 3.7. CONCLUSIONS

E�cient Query Processing in Distributed Spatial Data Management Systems

Chapter 4

Spatial Query Processing in

SpatialHadoop

© 2021 Garćıa-Garćıa, F.J.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 81

Chapter 4

Spatial Query Processing in
SpatialHadoop

Contents
4.1 SpatialHadoop for Spatial Query Processing 85

4.1.1 MapReduce layer . 85

4.1.2 Operations layer . 86

4.2 Spatial Queries supported by SpatialHadoop 87

4.2.1 Range Query . 87

4.2.2 kNearest Neighbor Query . 88

4.2.3 Spatial Join Query . 89

4.2.4 Polygon Union Query . 90

4.2.5 Skyline Query . 91

4.2.6 Convex Hull Query . 92

4.2.7 Farthest Pair Query . 93

4.2.8 Closest Pair Query . 93

4.2.9 Voronoi-Diagram Query . 94

4.3 Enhancing SpatialHadoop with DBQs 95

4.3.1 "Distance Range Query . 95

4.3.2 kClosest Pairs Query . 96

4.3.3 "Distance Join Query . 97

4.3.4 kNearest Neighbor Join Query 99

4.3.5 "Distance Range Join Query 101

4.3.6 Reverse kNearest Neighbor Query 103

4.3.6.1 MRSFT - SFT MapReduce algorithm 103

4.3.6.2 MRSLICE - SLICE MapReduce algorithm 104

82

4.4 Extensions and Improvements of DJQs 109

4.4.1 Extensions of the DJQ MapReduce algorithms for processing
non-points spatial objects . 110

4.4.2 Improvements for kCPQ in SpatialHadoop 110

4.4.2.1 Computing � by Global Sampling 112

4.4.2.2 Computing � by Local Processing 113

4.4.2.3 Computing � using Voronoi-Diagram based parti-
tioning . 117

4.4.3 Improvements for kNNJQ in SpatialHadoop 119

4.4.3.1 Improvements for processing skewed data 119

4.4.3.2 Using Voronoi-Diagram based partitioning for k-
NNJQ . 121

4.4.3.3 Less Data Technique 123

4.5 Performance Evaluation . 125

4.5.1 Experimental Setup . 125

4.5.2 "DRQ experiments . 127

4.5.2.1 The e↵ect of the increment of the dataset size . . . 127

4.5.2.2 The e↵ect of the increment of " values 128

4.5.2.3 Speedup of the algorithm 128

4.5.2.4 Conclusions from the experimental results 129

4.5.3 kCPQ experiments . 129

4.5.3.1 The e↵ect of applying � computation 130

4.5.3.2 Comparison of di↵erent plane-sweep algorithms and
the use of local indices 135

4.5.3.3 The e↵ect of using di↵erent spatial partitioning tech-
niques . 136

4.5.3.4 The e↵ect of the increment of k values 137

4.5.3.5 The e↵ect of extending the algorithm for non-points
spatial objects . 138

4.5.3.6 Using Voronoi-Diagram based partitioning 139

4.5.3.7 Extensibility varying the P dataset area 141

4.5.3.8 Speedup of the algorithm 141

4.5.3.9 Conclusions from the experimental results 143

4.5.4 "DJQ experiments . 144

4.5.4.1 Comparison of di↵erent plane-sweep algorithms and
the use of local indices 144

4.5.4.2 The e↵ect of using di↵erent spatial partitioning tech-
niques . 145

4.5.4.3 The e↵ect of the increment of " values 146

4.5.4.4 The e↵ect of extending the algorithm for non-points
spatial objects . 147

4.5.4.5 Speedup of the algorithm 149

4.5.4.6 Conclusions from the experimental results 149

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 83

4.5.5 kNNJQ experiments . 150

4.5.5.1 The e↵ect of using repartitioning techniques 151

4.5.5.2 The e↵ect of using Voronoi-Diagram based parti-
tioning . 155

4.5.5.3 The e↵ect of the improvements 157

4.5.5.4 Extensibility varying the P dataset area 158

4.5.5.5 Speedup of the algorithm 159

4.5.5.6 Conclusions from the experimental results 159

4.5.6 "DRJQ experiments . 161

4.5.6.1 Comparison with "DJQ 161

4.5.6.2 Speedup of the algorithm 162

4.5.6.3 Conclusions from the experimental results 162

4.5.7 Reverse k Nearest Neighbors experiments 163

4.5.7.1 The e↵ect of the number of regions 164

4.5.7.2 The e↵ect of the increment of the dataset size . . . 164

4.5.7.3 The e↵ect of the increment of k values 165

4.5.7.4 Speedup of the algorithms 165

4.5.7.5 Conclusions from the experimental results 166

4.6 Conclusions . 167

© 2021 Garćıa-Garćıa, F.J.

84

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 85

I n this chapter, we focus on a detailed description of the spatial query processing
in SpatialHadoop. First, in Section 4.1, the general spatial query processing scheme
in SpatialHadoop is presented together with the di↵erent features and tools that it
provides to obtain better performance over Hadoop. Next, the spatial queries already
supported by SpatialHadoop are exposed in Section 4.2. Moreover, new Spatial Queries
implemented in SpatialHadoop are described in Section 4.3. Then, useful extensions and
improvements of the spatial query algorithms are discussed in Section 4.4. Finally, a
performance evaluation of several spatial query algorithms, and a comparison with their
extensions and improvements, are presented in Section 4.5.

4.1 SpatialHadoop for Spatial Query Processing

The main goal of SpatialHadoop is to provide spatial query processing capabilities to
Hadoop by injecting spatial data awareness in each of its layers. In the previous chapter,
it has been described how the Storage layer seeks to distribute, organize and index the
big spatial datasets in an optimal way for its processing. However, the layers that
support the di↵erent spatial queries are the MapReduce and Operations layers.

4.1.1 MapReduce layer

The MapReduce layer is the query processing layer that runs MapReduce programs, and
SpatialHadoop enriches it to support the use of spatially indexed input files. Therefore,
SpatialHadoop provides to the MapReduce layer two new components, namely, Spatial-
FileSplitter and SpatialRecordReader, to implement e�cient and scalable spatial data
processing [Eldawy and Mokbel, 2015].

– SpatialFileSplitter. This new file splitter, which has knowledge about the spatial
nature of the datasets, obtains blocks from the input files based on the partitions
defined by global indexes. Besides, it avoids the processing of those partitions that
do not contain elements that are part of the result of a certain spatial query. To do
this, a filtering function can be defined to select the partitions to be processed later
by implementing some heuristic that exploits their spatial properties. For instance,
for the "Distance Range query, the filtering function can prune the partitions whose
MBR has a distance value from the query point q larger than ". Another feature
that it provides is the ability to combine two input files by using CombineFileSplits.
This kind of split contains a pair of partitions or blocks, one from each of the
input files, and is especially suitable for queries that perform some spatial join.
For instance, for the "Distance Join query, the filtering function receives a list of
partitions from each of the input files and returns, through CombineFileSplits, the
combinations of pairs of partitions whose MBRs are separated at most a distance
of ". Finally, the partitions outputted by the SpatialFileSplitter, whether they
have one or two input files, are further processed by the SpatialRecordReader.

© 2021 Garćıa-Garćıa, F.J.

86 4.1. SPATIALHADOOP FOR SPATIAL QUERY PROCESSING

– SpatialRecordReader. It is a record reader that obtains the input data of the map
function from the splits generated by the SpatialFileSplitter. This map function
takes the MBR of the partition being processed as the key parameter, and the
local index (or the iterator if it does not exist) as the value parameter, which
enables access to all elements in the partition. The SpatialRecordReader allows us
to handle all elements of the partition in the same map function in a more optimal
way and without the need to regroup by forwarding them to a reducer [Eldawy
and Mokbel, 2015]. Moreover, it also allows us to exploit the characteristics of the
local index so that we can apply di↵erent heuristics that prevent us from having
to scan all elements in the partition but only to those that are necessary for the
spatial query. Finally, in the case of CombineFileSplits, the behavior is similar but
the map functions receive a pair of MBRs, as the key parameter, and a pair of
each of the indices (or iterators) of the split partitions, as the value parameter.

4.1.2 Operations layer

The Operations layer enables the e�cient implementation of spatial operations, consid-
ering the combination of the spatial indexing in the Storage layer with the new spatial
functionality in the MapReduce layer. The general spatial query processing scheme in
SpatialHadoop consists of five steps [Eldawy and Mokbel, 2015, Garćıa-Garćıa et al.,
2016b, Garćıa-Garćıa et al., 2018b, Li et al., 2019], as we can observe in Figure 4.1:

1. Preprocessing, also called Partitioning, is the step where the dataset is distributed
according to a specific spatial partitioning technique (e.g., Grid, Quadtree, STR,
Hilbert-curve, etc.) [Eldawy et al., 2015], generating a set of partitions or cells.
In this partitioning process, spatial data locality is fulfilled since spatially nearby
objects are assigned to the same partition [Eldawy and Mokbel, 2015]. Each
partition corresponds to an HDFS block, and the HDFS blocks in each file are
globally indexed, generating a spatially indexed file (indexing).

2. Filtering, when the query is issued, this is the optional step where the master node
examines all partitions and prunes (by a filtering function) those that are guar-
anteed not to include in any possible result of the spatial query. Furthermore, in
this step, the SpatialFileSplitter component exploits the global index(es) on input
file(s) and the partition boundaries to prune easily file partitions not contributing
to the answer of the spatial query [Eldawy and Mokbel, 2015].

3. Local Spatial Query Processing, is the step where a local spatial query is performed
on each non-pruned partition in parallel on di↵erent machines. In this step, the
SpatialRecordReader allows us to read a split originating from the spatially indexed
input file(s) and exploiting local index(es) to e�ciently process the spatial query
[Eldawy and Mokbel, 2015]. However, it is possible to employ the SpatialRecor-
dReader component without using the local index(es) (i.e., it would not exploit the
advantages of them) and access the whole set of elements of each partition in the
input of the map function to perform, for example, a plane-sweep-based algorithm
over them.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 87

4. Pruning, which is an optional step, is executed after the local spatial query has
ended in each machine. Its main goal is to detect which elements do not need
further processing or are not part of the query result. The former ones are written
directly to the output files, while the latter are directly pruned. This action reduces
the amount of data sent to the next step, reducing both memory requirements and
processing time.

5. Global Processing, also called Merging, is the step where the results are collected
from all nodes (machines) in the previous step, and the final result of the concerned
spatial query is computed. A combine function can be applied in order to decrease
the volume of data that is sent from the map task. The reduce function can be
omitted when the results from the map phase are final. Furthermore, when the
total size of the elements collected from all nodes is very large, they cannot be
optimally processed in a single node. Therefore, in [Li et al., 2019] an additional
processing scheme is presented consisting of two steps: (1) a reduce function,
which runs in parallel on various nodes, that processes and reduces the size of
the data that remains to be processed, so that it fits into a single node, and (2)
a post-processing step that lastly merges the data on a single node. Finally, this
additional scheme can be executed in several rounds.

Figure 4.1: General spatial query processing scheme in SpatialHadoop.

4.2 Spatial Queries supported by SpatialHadoop

SpatialHadoop is equipped in the Operations layer with several spatial operations, in-
cluding range, knearest neighbor, and spatial join queries. Other computational geome-
try algorithms (e.g., polygon union, skyline, convex hull, farthest pair, closest pair, and
Voronoi-Diagram) are also implemented following the similar general approach described
in Section 4.1. A description of these spatial operations and the di↵erent algorithms im-
plemented in SpatialHadoop are exposed below.

4.2.1 Range Query

The Range Query (RQ), given one spatial dataset P and a query area a, finds all spatial
objects in the dataset that overlap with a. An example of this spatial query could be
to find all buildings inside the limits of a city, that is, buildings are the objects of the

© 2021 Garćıa-Garćıa, F.J.

88 4.2. SPATIAL QUERIES SUPPORTED BY SPATIALHADOOP

spatial dataset P and the area bounded by the limits of the city is a. The naive method
in Hadoop to obtain the result of the query would be to check, one by one, if each spatial
object from P is within the query area a. In the case of SpatialHadoop, and thanks to
the use of spatial indexes, the Range Query MapReduce algorithm in SpatialHadoop
[Eldawy and Mokbel, 2015] consists of two steps: global filter and local filter.

The first step uses the global index and a range filtering function to select only the
partitions from P that need to be processed. The built-in SpatialFileSplitter selects only
the partitions that overlap with the query area a. Partitions that are completely inside
a are part of the query result and do not need further processing. The second step
processes partitions that are partially overlapping with a as a refinement step. A map
function uses the local index of the current partition provided by the SpatialRecordReader
with a local range query algorithm to return the final answer. For instance, it can use
an R-tree to check which spatial objects are fully overlapping with a.

If the Range Query is dealing with an index with replication, then the algorithm
needs to apply a duplicate avoidance method to remove duplicate spatial objects in each
step. For instance, SpatialHadoop computes the intersection of each candidate spatial
object with the query area a and checks if the top-left corner is inside the partition
boundaries. It is guaranteed that only one partition contains that point because they
are disjoint. Furthermore, this technique avoids the need for a reduce function.

4.2.2 kNearest Neighbor Query

The kNearest Neighbor Query (kNNQ), given one spatial dataset P, finds the k closest
spatial objects (e.g., points) in the dataset to a given query point q. One application
case (Accommodation Services), with one spatial dataset P of locations of hotels and
the location q of a conference center, kNNQ could find the 3 nearest possible hotels to
the conference center in order to select the best hotel (k = 3) close to the conference
where the user is attending. In Hadoop, a kNNQ algorithm needs to calculate the
distance to q of all points in P and keep only the top-k ones. In [Eldawy and Mokbel,
2015], a kNNQ MapReduce algorithm in SpatialHadoop, that uses di↵erent pruning
techniques, is presented. Figure 4.2 shows the proposed kNNQ MapReduce algorithm
which is composed of the following three steps: initial answer, correctness check and
answer refinement.

The previous steps are a pair of MapReduce jobs that calculate the initial result and
that are iteratively run again if they do not pass the correctness check until the final
answer is obtained. Similar to the Range Query algorithm, a filtering function selects
the partition in which the query point q is found. Then, the map task is responsible
for obtaining the initial answer by using a local kNNQ algorithm on the points of
the selected partition, and in the reduce task, the global k nearest neighbors from q are
returned. The correctness check phase evaluates whether the result obtained is less than
k, or there are partitions within the circular range query, centered in q with a radius
equal to the k-th largest distance obtained so far. In this case, the answer refinement
starts by rerunning the previous MapReduce job from the first step, but at this time,
more partitions are within the range query, and therefore, they are selected by the
filtering function. Otherwise, the final result has already been obtained.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 89

Figure 4.2: Overview of the kNNQ MapReduce algorithm in SpatialHadoop.

4.2.3 Spatial Join Query

The Spatial Join Query (SJQ), given two datasets P and Q of spatial objects and a
spatial operator ✓, finds the set of all pairs (pi, qi) where pi 2 P, qi 2 Q and ✓(pi, qi) =
true. Moreover, the spatial operator ✓ could describe di↵erent spatial or geometric
relations between the spatial objects like contains, intersects, inside, distance, etc. For
example, a Spatial Join Query could be to find all urban areas that belong to each state or
province, given a spatial dataset P of urban areas and another spatial dataset Q of states
and provinces, using the spatial operator intersects as ✓. To perform the SJQ of big
spatial datasets, SpatialHadoop implements two algorithms (Spatial Join MapReduce
and Distributed Join) [Eldawy and Mokbel, 2015]. Furthermore, both approaches uses
the intersects operator as ✓ with a plane-sweep implementation.

The Spatial Join MapReduce algorithm [Zhang et al., 2009b] is an implementation of
the Partition-Based Spatial-Merge (PBSM) join [Patel and DeWitt, 1996] for MapRe-
duce, and it is aimed at non-indexed datasets. Therefore, this algorithm does not take
advantage of the spatial indexes of SpatialHadoop. First, this algorithm calculates the
MBR of combining the two input datasets using a MapReduce job, and then it divides
it using a uniform grid. Next, in the map function, the partition to which each spatial
object of each of the datasets belongs is calculated, and it is used as the key to group
them in the same reducer. Finally, in the reduce function, the spatial operator ✓ (e.g.,
overlaps) is applied to the two received subsets of spatial objects that are part of the
same partition.

The Distributed Join algorithm [Eldawy and Mokbel, 2015] exploits the spatial in-
dex mechanism of SpatialHadoop and it generally consists of three steps: global join,
local join, and duplicate avoidance. First, in the global join step, pairs of blocks of spa-
tial objects from both datasets are combined. Next, in the local join step, the spatial

© 2021 Garćıa-Garćıa, F.J.

90 4.2. SPATIAL QUERIES SUPPORTED BY SPATIALHADOOP

operator ✓ (e.g., overlaps) is applied to the spatial objects of the joined blocks from
the dataset. Finally, in the duplicate avoidance step, if the distributed join is dealing
with an index with replication, then the algorithm needs to apply a duplicate avoidance
method to remove duplicate spatial objects similar to the Range Query. SpatialHadoop
presents some variants of the distributed join that depends on whether the datasets are
indexed or not. Moreover, a cost model [Belussi et al., 2020a] has been developed for
the selection of the best-suited algorithm and variant depending on di↵erent properties
of the input datasets.

– Distributed Join with no index. This variant does not require the input datasets
to be indexed, and it is a Map-side join implementation of the block nested loop
join. Therefore, the map function receives pairs of splits resulting from applying
the Cartesian product of the splits of the datasets.

– Distributed Join with index. Like the previous one, it is a Map-side join, but in
this case, it requires that both datasets are indexed and therefore works at the
partition level. Furthermore, it is an adapted implementation of the Grid File
Spatial (GFS) join algorithm [Harada et al., 1990] that has a series of advantages:
(1) the global join step allows us to apply a filtering function that prunes those
partition pairs that do not satisfy the spatial operator ✓; (2) the local join step
receives the local indices of the two join partitions, which allows us to optimize
the performance of the local plain-sweep join algorithm.

– Distributed Join with repartition. Similar to Distributed Join with index, it adds
a previous MapReduce job in which the distribution of the smallest dataset with
the index of the largest dataset is performed. It is mainly designed for the spatial
operator overlaps to decrease the number of pairs obtained in the global join. For
instance, those spatial objects or full partitions of the dataset to be repartitioned
that fall outside the partitions of the largest dataset are directly dismissed.

4.2.4 Polygon Union Query

The Polygon Union Query (PUQ), given one spatial dataset of polygons P, finds a set
of polygons Q formed by the perimeter of all points found in, at least, one polygon in P,
while removing existing inner edges. An example of this spatial query could be to find
the whole available area for agriculture from the areas provided by each state or province,
that is, areas provided are the spatial objects of the spatial dataset P and the resulting
total area is Q. Figure 4.3 shows how 3 di↵erent polygons, that is, a rectangle, an arrow,
and a circle, are combined into their PUQ resulting polygon. In [Eldawy et al., 2013],
a PUQ MapReduce algorithm in SpatialHadoop, which exploits spatial partitioning, is
presented. The proposed MapReduce algorithm is composed of three steps: partitioning,
local union and merging.

First, the partitioning step uses a built-in partitioning technique of SpatialHadoop to
distribute the polygons to each node. Next, the local union step is a map function that
uses a traditional in-memory polygon union algorithm [de Berg et al., 2008] to get the

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 91

local result for a given partition, that is, the set of polygons of the local union. Finally,
the merging step employs the same union algorithm used in the map function to combine
the partial results into the final set of polygons. The use of spatial aware partitioning
allows each map function to receive adjacent polygons, so it can remove more inner edges
and return simpler polygons. As a result, the workload of the merging step decreases
due to the lower number of polygons it receives and the previously distributed cleaning
of internal edges.

An enhanced version of the SpatialHadoop algorithm is presented in [Li et al., 2019]
that removes the need for the merging step. In the map function of the local union
step, a new pruning step is added, which removes unrequired line-segments by using the
limits of the actual partition. These segments are either not part of the final result or
are already generated by another node.

4.2.5 Skyline Query

The Skyline Query (SQ), given one spatial dataset of points P, finds a set of points
SKY from P that are not dominated by any other point of P. A point pi is said to

Figure 4.3: Other spatial queries present in SpatialHadoop: Polygon Union, Skyline,
Convex Hull, Farthest Pair, Closest Pair and Voronoi-Diagram Queries.

© 2021 Garćıa-Garćıa, F.J.

92 4.2. SPATIAL QUERIES SUPPORTED BY SPATIALHADOOP

dominate another point pj if each coordinate of pi is greater than or equal to the same
coordinate of pj , and there is at least one coordinate that is greater in one dimension.
An example of this spatial query could be to find all restaurants that are both cheap and
close to a monument, that is, restaurants are the points of the spatial dataset P with
coordinates price and distance to the closest monument, and the resulting set SKY will
be those restaurants that are not worse than any other one in both price and distance
to a monument. Figure 4.3 shows the di↵erent segments of the resulting SQ of a given
point dataset. The SQ MapReduce algorithm in SpatialHadoop, that is described in
[Eldawy et al., 2013], is composed of the following three steps: partitioning, local skyline
and global skyline.

The algorithm follows a similar approach to the Polygon Union Query, described in
Section 4.2.4, but using a traditional centralized skyline algorithm for two-dimensional
data [Preparata and Shamos, 1985]. Moreover, it utilizes a filtering function that prunes
those partitions that do not contain points of the final query answer by using the skyline
algorithm with their MBRs. Furthermore, an output-sensitive version of the skyline
algorithm, which overcomes the memory limitations of doing the merging step on a
single node, is presented in [Li et al., 2019].

Finally, there are other Skyline Query algorithms in SpatialHadoop with interesting
features:

– The skyline algorithm presented in [Pertesis and Doulkeridis, 2015] outperforms
the original SpatialHadoop algorithm thanks to the use of a filtering function, a
combine function, and several pruning rules added to di↵erent steps.

– In [Kalyvas and Maragoudakis, 2019], the authors propose an alternative algorithm
based on added sorting mechanisms that provide better local skylines. Moreover,
they present the first SpatialHadoop algorithm in literature for a derived query
called Reverse Skyline Query.

4.2.6 Convex Hull Query

The Convex Hull Query (CHQ), given a spatial dataset of points P, is the smallest
convex polygon Q that contains all points in P. The points that are part of the result of
this query are returned in clockwise order. An example of this spatial query could be to
find the convex hull of all WiFi access points that exist within a city, in order to get an
approximation of the area with WiFi coverage. For instance, the WiFi access points are
the points of the spatial dataset P and the resulting convex polygon is Q. The convex
hull is very useful as a complement for other spatial processing algorithms like collision
detection where the approximation could be used, instead of checking point-by-point
of the dataset. Figure 4.3 shows the resulting polygon of the CHQ of a given point
dataset. A Convex Hull Query MapReduce algorithm in SpatialHadoop that exploits
spatial partitioning is described in [Eldawy et al., 2013]. The proposed MapReduce
algorithm is composed of three steps: partitioning, local convex hull and global convex
hull.

The general plan of the algorithm is similar to that of the previous Skyline Query
algorithm described in Section 4.2.5, but using a traditional in-memory convex-hull

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 93

algorithm [Andrew, 1979]. Furthermore, it reuses the filtering function of the Skyline
Query by applying it to the partitions for each of the 4 skylines (max-max, min-max,
max-min and min-min) of the spatial dataset. Therefore, the partitions that are not
part of the skylines are pruned because they do not contribute points to the final result.

Finally, in [Li et al., 2019] the authors propose a new and more e�cient algorithm
since, in the local convex hull step, it performs pruning of all points that are not part
of the final convex hull. Therefore, the global convex hull step transforms into a simpler
merge step that performs the union of all received points.

4.2.7 Farthest Pair Query

The Farthest Pair Query (FPQ), given a spatial dataset of points P, is the pair of points
(pi, pj) such that pi 6= pj that have the largest Euclidean distance between them. One
of the main properties of this query is that the pair of points are part of the convex hull
of P. An example of this spatial query could be to find the farthest pair of all buildings
in a state or province, in order to get the largest distance between them needed for the
design of a communication network. For instance, the buildings are the points of the
spatial dataset P and the resulting farthest pair of buildings is a pair (pi, pj). Figure 4.3
shows how the pair of points of an FPQ of a given point dataset is part of its CHQ. In
[Eldawy et al., 2013] a Farthest Pair Query MapReduce algorithm in SpatialHadoop is
presented and consists of the following three steps: partitioning, local farthest pair and
global farthest pair.

The approach is similar to the previous algorithms with the novelty that the filtering
function returns pairs of partitions as input from the map function that performs the
local farthest pair step. Moreover, the filtering function uses the maximum and minimum
distances between the MBRs of the partitions to discard those that do not provide
results. Next, the algorithm obtains the local convex hull of each not pruned pair and
applies the rotating calipers algorithm [Preparata and Shamos, 1985] on the result to
determine each local farthest pair. Finally, the global farthest pair step only has to
output the pair of points received in the reduce function with the largest distance.

4.2.8 Closest Pair Query

The Closest Pair Query (CPQ), given a spatial dataset of points P, obtains the pair of
points (pi, pj) such that pi 6= pj that have the smallest Euclidean distance between them.
Moreover, this is the complementary query to the Farthest Pair Query. An example
of this spatial query could be to find the closest pair of airplanes that are actually
flying around the world, in order to monitor air tra�c and avoid possible collisions. For
instance, the airplanes are the points of the spatial dataset P, and the resulting closest
pair of airplanes is a pair (pi, pj). This query has several di↵erences from kCPQ that
make it a less demanding query: (1) It involves a single dataset as input while kCPQ
joins two distinct datasets; (2) it uses a fixed value of k = 1. Figure 4.3 shows the CPQ
of a given point dataset. A Closest Pair Query MapReduce algorithm in SpatialHadoop,
based on the classic non-distributed closest pair divide-and-conquer algorithm [Preparata
and Shamos, 1985], is described in [Eldawy et al., 2013]. The proposed MapReduce

© 2021 Garćıa-Garćıa, F.J.

94 4.2. SPATIAL QUERIES SUPPORTED BY SPATIALHADOOP

algorithm is composed of three steps: partitioning, local closest pair and global closest
pair.

The general schema of the algorithm does not di↵er much from previous algorithms.
The main di↵erence is that if only the closest pair of each of the partitions is used,
points that contribute to the final result could be omitted. In particular, if distCPi is
the distance of the closest pair in the Pi partition, each map function must return the
points that are at most a distCPi distance value from the boundaries of Pi to be able to
compare them with points of neighboring partitions in the reduce function. Finally, note
that for the algorithm to work correctly, partitions must not overlap, so no duplicated
points are present.

4.2.9 Voronoi-Diagram Query

The Voronoi-Diagram Query (VDQ), given a spatial dataset of points P, returns the
Voronoi-Cells that form the Voronoi-Diagram (VD) that adopts the points of P as pivots
or generators. An example of this spatial query could be to find the regions associated
with each post o�ce, in order to know which is the area corresponding to each postcode.
In this way, any building in the region is closer to its post o�ce than to others. For
instance, the post o�ces are the points of the spatial dataset P and the resulting regions
build-up V D. The main objective of this query is di↵erent from the Voronoi-Diagram
based partitioning algorithm presented in Section 3.2: the former obtains a V D from a
massive set of pivots by calculating the boundaries of each cell, while the latter obtains
the suitable pivots and the corresponding partitions to optimally distribute the points
of a big spatial dataset. Figure 4.3 shows the VDQ of a given point dataset. In [Li et al.,
2019] a VDQ MapReduce algorithm in SpatialHadoop is presented, and consists of the
following four steps: partitioning, local V D, pruning and merging.

First, the partitioning step uses a built-in partitioning technique of SpatialHadoop,
but in this case, it is mandatory to use a disjoint partitioning technique and it is specially
optimized for Grid and STR+ partitioning. Next, the local VD step is part of a map
function that uses a traditional divide-and-conquer algorithm [Preparata and Shamos,
1985] to get the local result for a given partition, that is, the set of Voronoi-Cells of the
local VD. Following, the pruning step identifies final cells which are the output of the
algorithm and non-final cells which will be modified during the merge step. Finally, the
merging step employs the same union algorithm used in the map function to combine
the partial results into the final set of polygons. The merging step is divided into
two steps (vertical and horizontal merging) to handle a large number of partitions that
cannot be carried out by a single machine. On the one hand, the vertical merging step
is implemented as a reduce function, reuses the divide-and-conquer algorithm and the
pruning rules to identify final cells. On the other hand, the horizontal merging step,
which is executed after all reducers have finished, is a CommitJob function that merges
the remaining non-final cells.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 95

4.3 Enhancing SpatialHadoop with Distance-based
Queries

Although SpatialHadoop provides several spatial queries and computational geometry
algorithms in the Operations layer, there are various spatial queries (see Section 2.2)
that are not present in this DSDMS. Therefore, this section shows various proposals for
e�cient distributed (MapReduce) algorithms for the principal distance-based queries
(DBQs).

4.3.1 "Distance Range Query

The "Distance Range Query ("DRQ), given one points dataset P, a query point q and
a distance threshold ", finds all points in the dataset P that fall on the circular shape,
centered in q with radius ". An example of this spatial query could be to find all parking
lots located 2 kilometers from my hotel. In this case, parking lots are the objects of the
spatial dataset P, the hotel is q and, " is the distance threshold (2 kilometers).

In [Eldawy and Mokbel, 2015], a generic range query operation in SpatialHadoop is
proposed. But here, a "DRQ MapReduce algorithm on top of SpatialHadoop has been
e�ciently implemented [Garćıa-Garćıa et al., 2016a]. In general, the solution for "DRQ
is similar to how Range Query, introduced in 4.2.1, is implemented in SpatialHadoop,
except instead of having a generic query area, now we have a circular region defined by
the query point q and a distance threshold ". In Figure 4.4, we can see the operation of
the "DRQ MapReduce algorithm in SpatialHadoop, which consists of two steps: Global
"DRQ and Local "DRQ.

Figure 4.4: Overview of the "DRQ MapReduce algorithm in SpatialHadoop.

The Global "DRQ is implemented by a filtering function in which the partitions
from P, which intersect with the circular region centered at the query point q and with
a radius equal to the distance threshold ", are selected. Next, the Local "DRQ consists
of a map-type task in which, for each selected partition, a plane-sweep algorithm is used
to select only those points whose distance is smaller than ". Finally, these points are
written in files, obtaining the final query result.

© 2021 Garćıa-Garćıa, F.J.

96 4.3. ENHANCING SPATIALHADOOP WITH DBQS

4.3.2 kClosest Pairs Query

When two datasets (P and Q) are combined, the kClosest Pairs Query (kCPQ) discovers
the k pairs of points formed from these datasets having the k smallest distances between
them (i.e., it reports the top-k pairs from P⇥Q). An example of this spatial query could
be to find the 10 pairs of hotels and subway stations with the shortest distances between
them. In this case, hotels are the objects of the spatial dataset P, subway stations are
the objects from Q and k = 10.

In general, the kCPQ MapReduce algorithm in SpatialHadoop [Garćıa-Garćıa et al.,
2016b, Garćıa-Garćıa et al., 2018b] is similar to how spatial join query (see Section
4.2.3) is performed [Eldawy and Mokbel, 2015]. This can be described as a generic top-
k MapReduce job that takes a specific plane-sweep kCPQ algorithm [Roumelis et al.,
2016] as a parameter. Therefore, having P andQ partitioned by some method (e.g., Grid)
into n and m partitions, respectively; and generate n⇥m possible pairs of partitions to
possibly combine. Then, every suitable pair of partitions (one from P and one from Q)
is sent as the input for the map phase. Each mapper reads the points from the pair of
partitions and performs a plane-sweep (e.g., Reverse Run [Roumelis et al., 2016]) kCPQ
algorithm between the points inside that pair of partitions. Figure 4.5 shows the three
steps of the kCPQ MapReduce algorithm: Global kCPQ, Local kCPQ, and Top kCPQ.

Figure 4.5: Overview of the kCPQ MapReduce algorithm in SpatialHadoop.

First, in the Global kCPQ step, pairs of partitions of spatial objects from both
datasets are combined. Next, the Local kCPQ step aims to find the kCP of the spatial
objects of the joined partitions from the datasets with a particular plane-sweep kCPQ
algorithm. Finally, in the Top kCPQ step, a reducer examines the candidate pairs from
each mapper and return the final set of the k closest pairs.

In Algorithm 1 we can see our proposed solution for kCPQ in SpatialHadoop, which
consists of a single MapReduce job. The map function aims to find the k closest pairs
between the local pair of partitions from P and Q with a particular plane-sweep kCPQ
algorithm (PSKCPQ). KMaxHeap is a max binary heap [Cormen et al., 2009] used to
keep record of local selected top-k closest pairs that will be processed by the reduce
function. The output of the map function is in the form of a set of DistanceAndPair el-
ements (called D in Algorithm 1), i.e., pairs of points from P and Q and their distances.
As in every other top-k pattern, the reduce function can be used in the combiner to
minimize the shu✏e data. The reduce function aims to examine the candidate Distance-
AndPair elements and return the final set of the k closest pairs. It takes as input a set

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 97

of DistanceAndPair elements from every mapper and the number of pairs (k). It also
employs a max binary heap, called CandidateKMaxHeap, to calculate the final result.
Each DistanceAndPair element is inserted into the heap if its distance value is less than
the distance value of the heap root. Otherwise, that pair of points is discarded. Finally,
candidate pairs that have been stored in the heap are returned as the final result and
stored in the output file.

Algorithm 1 kCPQ MapReduce Algorithm
1: function MAP(P: set of points, Q: set of points, k: number of pairs)
2: SortX(P)
3: SortX(Q)
4: KMaxHeap PSKCPQ(P,Q, k)
5: if KMaxHeap is not empty then
6: for all DistanceAndPair 2 KMaxHeap do
7: output(null, DistanceAndPair)
8: end for
9: end if
10: end function

11: function COMBINE, REDUCE(null, D: set of DistanceAndPair, k: number of pairs)
12: Initialize(CandidateKMaxHeap, k)
13: for all DistanceAndPair 2 D do
14: Insert(CandidateKMaxHeap, DistanceAndPair)
15: end for
16: for all candidate 2 CandidateKMaxHeap do
17: output(null, candidate)
18: end for
19: end function

In order to make use of the local indices that SpatialHadoop provides, a version of
the kCPQ algorithm using R-trees similarly to Spatial Join Query, described in Section
4.2.3, has been implemented. This new distributed kCPQ algorithm can be applied when
both input datasets are indexed through a local R-tree index. Moreover, it follows the
same scheme presented in Algorithm 1, consisting of a single MapReduce job whose only
di↵erence is the processing performed in the map function, keeping the reduce function
unmodified. In this case, the map function applies a plane-sweep algorithm over the
nodes of the R-trees, as described in [Corral et al., 2004b]. This algorithm consists of
traversing both R-trees in a Best-First order, keeping a global min binary heap [Cormen
et al., 2009] prioritized by the minimum distance between the considered pairs of MBRs.
When dealing with leaf nodes, a plane-sweep algorithm is applied to the elements that
are contained on them, whereas the � value is updated appropriately (� is the distance
of the k-th closest pair of points discovered so far). In the case of internal nodes, plane-
sweep is also applied for processing two internal nodes; the MBR pairs with a minimum
distance greater than � are pruned. We have chosen the Best-First traversal order for
the combination of the two R-trees since it is the fastest algorithm for processing of
kCPQs according to [Corral et al., 2004b].

4.3.3 "Distance Join Query

The "Distance Join Query ("DJQ) reports all possible pairs of spatial objects from two
di↵erent spatial datasets (P and Q), having a distance of each other smaller than a

© 2021 Garćıa-Garćıa, F.J.

98 4.3. ENHANCING SPATIALHADOOP WITH DBQS

distance threshold ". An example of this spatial query could be to find all pairs of hotels
and subway stations that are at most 100 meters between them. In this case, hotels are
the objects of the spatial dataset P, subway stations are the objects from Q and the
value of distance threshold " is 100 meters.

The "DJQ can be considered as an extension of the kCPQ, where the distance thresh-
old of the pairs is known beforehand and the processing strategy (e.g., plane-sweep tech-
nique) is the same as in the kCPQ for generating the candidate pairs of the final result.
Therefore, the method for the "DJQ in MapReduce, adapting from kCPQ in Spatial-
Hadoop [Garćıa-Garćıa et al., 2016b, Garćıa-Garćıa et al., 2018b], is a Map-based join
algorithm (Figure 4.6) which is composed of the following two steps: Global "DJQ and
Local "DJQ.

Figure 4.6: Overview of the "DJQ MapReduce algorithm in SpatialHadoop.

Algorithm 2 "DJQ MapReduce Algorithm
1: function MAP(P: set of points, Q: set of points, ": threshold distance)
2: SortX(P)
3: SortX(Q)
4: Results PS"DJQ(P,Q, ")
5: for all DistanceAndPair 2 Results do
6: output(null,DistanceAndPair)
7: end for
8: end function

9: function filtering(CP: set of cells, CQ: set of cells, ": threshold distance)
10: for all c 2 CP do
11: for all d 2 CQ do
12: minDistance MinDistance(MBR(c),MBR(d))
13: if minDistance " then
14: output(c, d)
15: end if
16: end for
17: end for
18: end function

First, P and Q are partitioned by some method (e.g., Grid) into two sets of partitions,
with n and m partitions of points, respectively. Then in the Global "DJQ step, every
possible pair of partitions is sent as input for the filtering function (see Algorithm 2).
This function takes combinations of pairs of partitions, in which the datasets of points
are partitioned, and a distance threshold " as input, and it prunes that pairs of cells

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 99

that have minimum distances larger than ". By using SpatialHadoop built-in function
MinDistance, we can calculate the minimum distance between two partitions (i.e., this
function computes the minimum distance between the two MBRs, Minimum Bounding
Rectangles, of the two cells).

In the Local "DJQ step, each mapper (see Algorithm 2) reads the points of a pair of
filtered partitions, and performs a plane-sweep "DJQ algorithm [Roumelis et al., 2016]
(variation of the plane-sweep kCPQ algorithm) between the points inside that pair of
partitions. The results from all mappers are just combined in the reduce phase and
written into HDFS files, storing only the pairs of points with distance less than ".

In addition, we can use the local indices provided by SpatialHadoop to obtain im-
provements in the performance of the previous "DJQ MapReduce algorithm. This new
algorithm follows the same scheme of a single MapReduce job, whose only di↵erence
is the processing of the distance-based join query that is realized in the map function,
maintaining the filtering function without any modification. In this case, we have lo-
cally indexed the data in each partition by R-tree structures that we can use to process
the query. The algorithm consists of performing an iterative Depth-First search over
the two R-trees. That is, for each pair of internal nodes, one from each index, the
MinDistance between their MBRs is calculated; if it is larger than ", then this pair is
pruned. Otherwise, the children of the nodes will be checked in the next step, following
a depth-first order. When the leaf nodes are reached, the same plane-sweep algorithm,
as the one without local indices, is applied. We have chosen the iterative Depth-First
traversal order for the combination of two R-trees and not the Best-First one because,
if " is large enough, the global min binary heap can grow very quickly and exceed the
available main memory and, thus management of secondary memory is needed and the
response time of the algorithm execution will be significantly incremented.

4.3.4 kNearest Neighbor Join Query

The kNearest Neighbor Join Query (kNNJQ) is one of the most studied DJQs when two
datasets (P and Q) are combined. This query, given two datasets of points (P and Q)
and a positive number k, finds for each point of P, the k nearest neighbors of this point
in Q. One example for this query could be to find the 10 closest points of interest to
each hotel of a city. In this case, hotels form the spatial dataset P, points of interest are
the spatial objects from Q and with a value of k = 10.

The proposed kNNJQ algorithm in [Nodarakis et al., 2016a], on two datasets P and
Q, consists of four phases of MapReduce jobs: information distribution, primitive com-
putation, update lists and unify lists. In the information distribution phase, a uniform
partitioning of the dataset Q is performed, and the number of elements from P, which
are inside the partitions of Q, is counted. Then, in the primitive computation phase,
an initial response is provided by calculating the kNNQ for each point pi of P with the
points of Q that are in the partition where pi is located. Once this phase is completed, it
is necessary to refine these initial kNN lists for each point of P, if there have been found
less than k neighbors, or if there are nearby partitions that overlap with the distance to
each k-th nearest neighbor. All this refinement is done in the update lists phase, where
new non-final kNN lists are obtained. Finally, in the unify lists phase, the merging of

© 2021 Garćıa-Garćıa, F.J.

100 4.3. ENHANCING SPATIALHADOOP WITH DBQS

all kNN lists, resulting from previous phases, is achieved, obtaining the final answer of
the query.

To adapt and implement the previous kNNJQ MapReduce algorithm in Spatial-
Hadoop, we have to carry out several extensions and improvements that are detailed
below:

1. The information distribution phase is implemented using the partitioning meth-
ods provided by SpatialHadoop, allowing us to use non-uniform partitions, such
as STR, Quadtree, etc., with the di↵erent improvements and particularities that
they can o↵er. Figure 4.7 illustrates how the same dataset is partitioned us-
ing a uniform-based partitioning technique like Grid (on the left) and using a
non-uniform-based partitioning technique like Quadtree (on the right), where the
selected partitions are highlighted.

2. The information distribution phase is performed only once for each dataset and is
reused for further kNNJ queries.

3. SpatialHadoop indices are used in each of these phases to accelerate the processing
of the partitions.

4. Finally, an implementation of kNNQ based on a plane-sweep algorithm is carried
out, which reduces the number of operations and calculations, obtaining a higher
performance join operation.

Figure 4.7: Uniform-based partitioning (Grid) vs. Non-uniform-based partitioning
(Quadtree) in SpatialHadoop.

Figure 4.8 shows the phases of the proposed kNNJQ MapReduce algorithm [Garćıa-
Garćıa et al., 2020c]: Bin kNNJ, kNNJ on Overlapping Cells and Merge Results. The
first phase, Bin kNNJ (information distribution and primitive computation in [Nodarakis
et al., 2016a]), that consists of a Bin-Spatial Join of the input datasets in which the join
operator is the kNNQ, is accomplished. As described in Algorithm 3, in the map func-
tion of the Bin kNNJ phase, each point pi 2 P is combined with the partition in which
it is located in the dataset Q, so that in the reduce function, the plane-sweep kNNQ
(PSKNNQ algorithm) of that point, with the points of Q in the same partition, is exe-
cuted. The result of this phase is a kNN list for each point pi 2 P. Then a completeness

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 101

Figure 4.8: Overview of the kNNJQ MapReduce algorithm in SpatialHadoop.

check is made to find which of the previous kNN lists are not final and therefore it is
necessary to continue with their processing. As shown in Algorithm 4, for the kNNJ
on Overlapping Partitions phase (update lists in [Nodarakis et al., 2016a]), in the map
function is checked (using the GetOverlappedPartitions function) if the previous kNN
lists for each point pi 2 P contain less than k results (line 26) and also if there are
neighboring partitions that overlap with the circular range, centered on pi 2 P and with
radius the distance to the current k-th nearest neighbor (line 30). These points are
then sent together with the calculated neighboring partitions to the reduce phase, where
another plane-sweep kNNQ will be performed for each partition. Finally, the Merge
Results phase (unify lists in [Nodarakis et al., 2016a]) consists of collecting the non-final
kNN lists of the two previous phases in the map function, obtaining the final kNNQ
results for each point pi 2 P in the reduce function.

Algorithm 3 Bin kNNJ Algorithm

1: function MAP(p: point from P or Q, PQ: set of partitions from Q)
2: partition FindPartition(PQ, p)
3: output(partition.id, p)
4: end function

5: function REDUCE(partitionId: current partition, PQ: set of points in partition, k: number of neighbors)
6: P GetPointsFromP(PQ)
7: Q GetPointsFromQ(PQ)
8: for all p 2 P do
9: Initialize(kNNList, k)
10: kNNList PSKNNQ(Q, p, k)
11: output(p, kNNList)
12: end for
13: end function

4.3.5 "Distance Range Join Query

The "Distance Range Join Query ("DRJQ) given two points datasets (P and Q) and
a distance threshold ", finds, for each point pi 2 P, all points in Q that fall within
the circular shape, centered on pi with radius ". This query is also called spatial range
join query. One example for this query could be to find the houses with their distances
to shopping centers being at most 1500 meters. In this case, shopping centers are the
spatial objects from P, houses form the spatial dataset Q and with a value of " = 1500
meters.

© 2021 Garćıa-Garćıa, F.J.

102 4.3. ENHANCING SPATIALHADOOP WITH DBQS

Algorithm 4 kNNJ on Overlapping Partitions Algorithm

1: function MAP(p: point from P or Q, PQ: set of partitions from Q, k: number of neighbors)
2: origin IsFromPorQ(p)
3: if origin is from Q then
4: partition FindPartition(PQ, p)
5: output(partition.id, p)
6: else
7: overlappedParts GetOverlappedPartitions(PQ, p, k)
8: for all partition 2 overlappedParts do
9: output(partition.id, p)
10: end for
11: end if
12: end function

13: function REDUCE(partitionId: current partition, PQ: set of points in partition, k: number of neighbors)
14: P GetPointsFromP(PQ)
15: Q GetPointsFromQ(PQ)
16: for all p 2 P do
17: Initialize(kNNList, k)
18: kNNList PSKNNQ(Q, p, k)
19: output(p, kNNList)
20: end for
21: end function

22: function GetOverlappedPartitions(PQ: set of partitions from Q, p: point from P, k: number of neigh-
bors)

23: kNNList GetKnnList(p)
24: nnNumber kNNList.size
25: radius GetKthDistance(kNNList)
26: while nnNumber < k do
27: radius Increase(radius)
28: nnNumber GetNumberOfNeighbors(PQ, p, radius)
29: end while
30: overlappedPartitions RangeQuery(PQ, p, radius)
31: return overlappedPartitions
32: end function

Note that just as we can formulate and implement the "DJQ as a derived version of
kCPQ in which the pruning distance " is known. Similarly, we can define the "DRJQ
based on the kNNJQ algorithm by means of a Reduce-based join algorithm, as we can
observe in Figure 4.9. Of the three phases discussed above, due to the fact that the "

Figure 4.9: Overview of the "DRJQ MapReduce algorithm in SpatialHadoop.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 103

distance is known in advance, the Bin kNNJ and kNNJ on Overlapping Cells phases
are combined into just only one and since we do not have to unify kNN lists, the last
phase is not needed to be performed.

After studying the results of "DRJQ and "DJQ, they turn out to be equivalent, i.e.,
both DJQs report the same result set. The main di↵erence resides in the order of the
pairs returned in the final result. While "DRJ(P,Q, ") reports pairs clustered around
every point in P (i.e., for each point pi 2 P, it returns all points in Q overlapping with
a circular shape, centered on pi with radius "), "DJ(P,Q, ") reports unrelated pairs
of points (i.e., it returns a sequence of pairs within a distance threshold (") from each
other). Another di↵erence between these two DJQs is the algorithmic technique used to
solve them. While "DRJQ is processed based on multiple executions of "DRQ on Q for
every point in P, the algorithm for solving "DJQ is based on a sort-merge join approach
(i.e., it is a plane-sweep algorithm between P and Q).

4.3.6 Reverse kNearest Neighbor Query

The Reverse kNearest Neighbor Query (RkNNQ), given a set of points P and a query
point q, finds the points from P that have q as one of their k closest points. As an example
of this query, we could want to find the gym that would be a↵ected by the opening of a
new one. In this case, gyms form the spatial dataset P, new gym is the query object q
and k = 1.

In the following sections we present two di↵erent approaches in order to adapt and
implement RkNNQ in SpatialHadoop: MRSFT [Garćıa-Garćıa et al., 2017b], which is
based on the multistep SFT [Singh et al., 2003] algorithm, and MRSLICE [Garćıa-
Garćıa et al., 2019], which is a novel MapReduce version of SLICE [Yang et al., 2014]
algorithm.

4.3.6.1 MRSFT - SFT MapReduce algorithm

In general, the parallel and distributed RkNNQ algorithm based on the SFT algorithm
[Singh et al., 2003] consists of two phases namely filtering phase and verification phase.
Assuming that P is the dataset to be processed and q is the query point, the basic idea
is to have P partitioned by some method (e.g., Grid) into n cells or partitions of points.

In the filtering phase, a MapReduce-based kNNQ is executed in order to find every
possible candidate point from P. To carry out that, we find the partition from P where
q is located. A first answer for the kNN(P, q,K) is obtained, and we use the distance
from the k-th point to q in order to find if there are possible candidate points in other
partitions close to q. To ensure an exact result, the value of K must be greater than k
(K � k) as proposed in [Tao et al., 2004], at a magnitude of at least K = 10 ⇥ d ⇥ k,
where d is the dimensionality of the points in the dataset being examined (e.g., for 2d
points, K = 20⇥ k).

In the verification phase, a range query, with a circle centered in q and that distance
as radius, is run to finally answer the kNNQ. The candidate points with their distance
to the query point q are written into HDFS files in order to be the input for the next
jobs. At this moment, each candidate point is checked to verify if it is part of the final

© 2021 Garćıa-Garćıa, F.J.

104 4.3. ENHANCING SPATIALHADOOP WITH DBQS

answer of the query. That is, it finds the number of points that are part of the range
query centered on the candidate point and radius the distance to q. If this number is
less than k, the candidate point is verified to be an RkNN of q. Finally, the results are
written into HDFS files, storing only the points coordinates and the distance to q.

4.3.6.2 MRSLICE - SLICE MapReduce algorithm

SLICE is the state-of-the-art RkNNQ algorithm since it is the best for all considered
performance parameters in terms of CPU cost [Yang et al., 2015]. Like most of the
RkNNQ algorithms, SLICE consists of two phases, namely filtering phase and verifi-
cation phase. SLICE improves the filtering power of the six-regions approach [Stanoi
et al., 2000], by using its strength of being a cheaper filtering strategy. Moreover, it
is important to note that the filtering phase dominates the total query processing cost
[Yang et al., 2014].

Filtering phase. SLICE divides the space of a set of points P around the query point
q into multiple equally sized regions based on angle division. The experimental study
in [Yang et al., 2014] demonstrated that the best performance is achieved when the
space is divided into 12 equally sized regions. Given a region R and a point p 2 P, we
can define the half-space that divides them as Hp:q. The intersection of this half-space
with the limits of the region R allows us to obtain the upper arc of p with respect to R
(rUp:R) and the lower arc of p with respect to R (rLp:R) whose radii meet the condition

of rU > rL. In [Yang et al., 2014], it is shown that a point p0 in the region R can be
pruned by the point p if p0 lies outside its upper arc, i.e., dist(p0, q) > rUp:R. Note that a

point p0 2 R cannot be pruned by p if p0 lies inside its lower arc, i.e., dist(p0, q) < rLp:R.

The bounding arc of a region R, denoted as rBR , is the k-th smallest upper arc of that
region and it is used to easily prune points or set of points. Note that any point p0

that lies in R with dist(p0, q) > rBR can be pruned by at least k points. A point p is
called significant for the region R if it can prune points inside it, i.e., only if rLp:R < rBR .
Therefore, SLICE maintains a list of significant points for each region that will be used
in the verification phase. The following lemmas are used in this phase to reduce the
search space by pruning non-significant points.

Lemma 1. A point p 2 R cannot be a significant point of R if dist(p, q) > 2rBR

Proof. Shown in [Yang et al., 2014] as Lemma 4.

Lemma 2. A point p /2 R cannot be a significant point of R if dist(M,p) > rBR and
dist(N, p) > rBR where M and N are the points where the bounding arc of R intersects
the boundaries of R

Proof. Shown in [Yang et al., 2014] as Lemma 5.

These lemmas can be easily extended to a complex entity e (i.e., e does not contain
any significant point), by comparing MinDistance(q, e) with the bounding arc of each
region that overlaps with e.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 105

Verification phase. SLICE tries to reduce the search space by using the following
lemma:

Lemma 3. A point p prunes every point p0 2 R for which dist(p0, q) > rUp:R where
0° < maxAngle(p,R) < 90°

Proof. Shown in [Yang et al., 2014] as Lemma 1.

To do this, each point p 2 P is checked against several derived pruning rules: (1) if
dist(q, p) > rBR , p is not part of the RkNNQ answer; (2) if dist(q, p) is smaller than the
k-th lower arc of R, p cannot be pruned; and (3) if once the maximum and minimum
angles have been calculated of p with respect to q, there is at least one region R with
rBR > dist(q, p), p can be part of the RkNNQ answer. Once the search space has been
reduced, each candidate point is verified as a result of RkNNQ if at most there are k-1
significant points closest to the query object in the region R in which it is located.

Figure 4.10: Overview of MRSLICE algorithm in SpatialHadoop.

© 2021 Garćıa-Garćıa, F.J.

106 4.3. ENHANCING SPATIALHADOOP WITH DBQS

In general, our distributed MRSLICE algorithm for SpatialHadoop based on SLICE
algorithm [Yang et al., 2014] consists of three MapReduce jobs:

• Phase 1. The Filtering phase of SLICE is performed on the partition in which
the query object is located.

• Phase 1.B (optional). The filtering process is continued on those partitions that
are still part of the search space.

• Phase 2. The Verification phase is carried out with those partitions that have
not been pruned as a result of applying Phases 1 and 1.B.

From Figure 4.10, and assuming that P is the set of points to be processed and q is
the query point, the basic idea is to have P partitioned by some method (e.g., Grid) into
n blocks or partitions of points (PP denotes the set of partitions from P). The Filtering
phase consists of two MapReduce jobs, being optional the second one since in the case
of all significant points are found by the first job, the execution of the second job is
not necessary. Finally, the Verification phase is a MapReduce job that will check if the
non-pruned points are part of the RkNNQ answer.

Phase 1: Filtering phase. In the first MapReduce job (Algorithm 5), the Filter
function selects the partition of P in which q is found. Then, in the Map phase, the
Filtering phase is applied as described in SLICE. That is, P is divided into t regions of
equal space, and the list of k smallest upper arcs is obtained for each Ri region along
with its rBRi

and its list of significant points, that will be returned as RegionsData for
further use. To accelerate the Filtering phase, an R-tree index is used per partition,
and a heap is utilized to store the nodes based on their minimum distance to q. As
the R-tree nodes are traversed, the facilityPruned function from [Yang et al., 2014] is
used (Algorithm 5 line 13), pruning the nodes which with the current RegionsData do
not contain significant points. In the case of leaf nodes, the points are processed by the
pruneSpace function from [Yang et al., 2014] (Algorithm 5 line 15), which is responsible
to update the RegionsData information. Finally the k-th lower arc is calculated to be
used in the next phase.

Phase 1.B: Filtering phase (optional). The second MapReduce job (Algorithm 6)
runs only if the function Filter returns some partition. That is, the facilityPruned [Yang
et al., 2014] function is executed on each of the partitions by comparing its minimum
distance to q with the bounding arc of each region Ri with which it overlaps. Note
that the upper left partition of P in Figure 4.10 is in the shaded area, and therefore
can be pruned. However, the other partitions can contain significant points, and the
Filtering phase must be applied to them during the Map phase. The result of each of the
partitions will be merged on the Reduce phase to obtain the k-th upper arcs, bounding
arcs, and final significant points (RegionsData’).

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 107

Algorithm 5 MRSLICE Filtering - Phase 1

1: function FILTER(PP: set of partitions from P, q: query point)
2: return FindPartition(PP,q)
3: end function

4: function MAP(MBR: Minimum Bounding Rectangle of P, r: root of R-tree of actual partition, q: query
point, k: number of points, t: number of equally sized regions)

5: RegionsData.regions DivideSpace(MBR,q,t)
6: RegionsData SliceFiltering(r,q,k,RegionsData)
7: return RegionsData
8: end function

9: function SliceFiltering(r: root of R-tree, q: query point, k: number of points, RegionsData: SLICE
Regions Data)

10: Insert(Heap,null,r)
11: while Heap is not empty do
12: entry Pop(Heap)
13: if !facilityPruned(entry,q,k,RegionsData) then
14: if isLeaf(entry) then
15: pruneSpace(entry,q,k,RegionsData)
16: else
17: for all child 2 entry.children do
18: key MinDistance(q,child)
19: Insert(Heap,key,child)
20: end for
21: end if
22: end if
23: end while
24: for all region 2 RegionsData.regions do
25: region.boundingArc FindkUpperArc(region)
26: end for
27: RegionsData.minLowerArc ComputeMinLowerArc(RegionsData.regions)
28: return RegionsData
29: end function

Algorithm 6 MRSLICE Filtering - Phase 1.B

1: function FILTER(PP: set of partitions from P, q: query point, RegionsData: SLICE Regions Data)
2: for all p 2 PP do
3: if !facilityPruned(p,q,RegionsData) then
4: Insert(Result, p)
5: end if
6: end for
7: return Result
8: end function

9: function MAP(r: root of R-tree of actual partition, q: query point, k: number of points, RegionsData:
SLICE Partition Data)

10: RegionsData0 SliceFiltering(r,q,k,RegionsData)
11: return RegionsData0

12: end function

13: function REDUCE(RegionsDataArray: Array of SLICE Partition Data)
14: RegionsData0 RegionsDataArray[0]
15: for all RegionsData 2 RegionsDataArray do
16: RegionsData0.P Merge(RegionsData.regions, RegionsData0.P)
17: end for
18: for all partition 2 RegionsData0.P do
19: partition.kUpperArc FindkUpperArc(partition)
20: end for
21: RegionsData0.minLower ComputeMinLower(RegionsData0.P)
22: return RegionsData0

23: end function

© 2021 Garćıa-Garćıa, F.J.

108 4.3. ENHANCING SPATIALHADOOP WITH DBQS

Algorithm 7 MRSLICE Verification - Phase 2

1: function FILTER(PP: set of partitions from P, q: query point, RegionsData: SLICE partition data)
2: for all p 2 PP do
3: if !userPruned(p,q,RegionsData) then
4: Insert(Result, p)
5: end if
6: end for
7: return Result
8: end function

9: function MAP(r: root of R-tree of actual partition, q: query point, k: number of points, RegionsData:
SLICE Partition Data)

10: Insert(Stack,r)
11: while Stack is not empty do
12: entry Pop(Stack)
13: if !userPruned(entry,q,RegionsData) then
14: if isLeaf(entry) then
15: if isRkNN(entry,q,k,RegionsData) then
16: Output(entry)
17: end if
18: else
19: for all child 2 entry.children do
20: Insert(Stack,child)
21: end for
22: end if
23: end if
24: end while
25: end function

26: function isRkNN(entry: candidate point, q: query point, k: number of points, RegionsData: SLICE
Partition Data)

27: region FindRegion(entry,q,RegionsData)
28: counter 0
29: for all p 2 region do
30: if dist(entry,q) rL

p:R then
31: return true
32: end if
33: if dist(entry,p) < dist(entry,q) then
34: counter counter + 1
35: if counter � k then
36: return false
37: end if
38: end if
39: end for
40: return true
41: end function

Theorem 1 (Completeness). MRSLICE Filtering returns all significant points.

Proof. It su�ces to show that MRSLICE Filtering does not discard significant points.
A point p is discarded by MRSLICE Filtering only if it is pruned by the facilityPruned
function by either applying lemma 1 or 2. In any of these cases, it is shown in [Yang
et al., 2014] that any point that is not inside the area defined by these lemmas is not a
significant point. Points that are discarded can be split into di↵erent categories:

Phase 1. Points are pruned in this phase like in the non-distributed SLICE version
using Algorithm 5.

Phase 1.B - Partition granularity. Using the FILTER function in Algorithm 6,
partitions that do not contain any significant point are pruned by applying both lemmas
1 and 2 to the partition as a complex entity.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 109

Phase 1.B - Point granularity. Points are discarded in the Map Phase in the
same way that in Phase 1 only on non-pruned partitions.

Phase 1.B - Merging RegionsData. Finally, when merging RegionsData in the
Reduce Phase, both lemmas 1 and 2 are again used to discard non-significant points.

Phase 2: Verification phase. Finally, a MapReduce job (Algorithm 7) is executed
on the partitions that are not pruned by the Filter function when applying the pruning
rules described above for SLICE, using the userPruned function (Algorithm 7 line 3).
That is, the algorithm is executed on those partitions that contain some white area. In
the Map phase, the R-tree, which indexes each partition, is traversed with the help of a
stack data structure, and the search space is reduced by using the userPruned function
again. Furthermore, the pruning rules are applied again to the points that are in the
leaf nodes, and finally, they are verified if they are part of the final RkNNQ answer.
The isRkNN function (Algorithm 7 line 15) verifies a candidate point p as part of the
answer if there are at most k-1 significant points closer to p than q in the region Ri in
which it is located.

Theorem 2 (Correctness). MRSLICE Verification algorithm returns
the correct RkNNQ set.

Proof. It su�ces to show that MRSLICE Verification does not (a) discard RkNNQ
points, and (b) return non-RkNNQ points. First, the MRSLICE Verification algorithm
only prunes away those points or/and entries by using the pruning rules derived from
lemma 3, by using the information identified by the MRSLICE Filtering algorithm,
which guarantees no false negatives. Second, every non-pruned point is verified by
the isRkNN function, which ensures no false positives. We prove that these points
are guaranteed to be RkNNQ points by contradiction. Assume a point p returned by
MRSLICE algorithm is not an RkNNQ point. Then, there exist k significant points
closer to p than q, and p is also returned as part of the RkNNQ answer. But then p
could not be in the RkNNQ answer since it would have been discarded in line 35 of the
isRkNN function in Algorithm 7.

4.4 Extensions and Improvements of DJQs

When it comes to extending and improving the DJQ MapReduce algorithms, we must
consider several factors that take into account the characteristics of real-world spatial
objects and the execution environment of the DSDMSs. Therefore, we must analyze the
factors described in Section 2.2 to deal e�ciently with common problems like processing
non-points spatial objects, boundary handling, and skewed data management. Further-
more, as a result of this analysis and the study of each distance-based query, several
new pruning rules can be designed to reduce the search space and avoid unnecessary
distance computations.

In this section, we first expose the extensions of the DJQ MapReduce algorithms
to manage other geometric objects di↵erent to points. Next, we present new pruning
rules for the kCPQ MapReduce algorithm based on the upper bound calculation of the

© 2021 Garćıa-Garćıa, F.J.

110 4.4. EXTENSIONS AND IMPROVEMENTS OF DJQS

distance value of the k-th closest pair of the joined datasets. Finally, we present several
improvements and pruning rules to the kNNJQ MapReduce algorithm to deal with the
problems that arise when there are too many objects inside a particular partition, i.e.,
handling skewed data.

4.4.1 Extensions of the DJQ MapReduce algorithms for process-
ing non-points spatial objects

Usually, real-world datasets are not only limited to points but include other geometric
objects, like line-segments, polygons, regions, etc. For instance, a dataset containing
the buildings of a city can use polygons, while line-segments can be used to represent
roads. Because of this, it is necessary to extend the previously distributed algorithms
to be able to process these datasets consisting of more complex spatial objects (F.1).

When extending our algorithms, we must modify each of the steps that compose
them. Initially, we must take into account that the replication method (Grid and STR+)
in SpatialHadoop avoids expanding partitions by replicating each object to all overlap-
ping partitions. As a consequence, the query processor has to employ a duplicate avoid-
ance technique to account for replicated objects. In our approach, we have used the
reference-point duplicate avoidance technique [Eldawy and Mokbel, 2015], which con-
sists of selecting a single point of the geometry and discarding the partitions in which
the point is not found to avoid duplicates.

Furthermore, to simplify the operations and calculations of distances in the algo-
rithms, the MBR (Minimum Bounding Rectangle) that covers the spatial objects will
be used. Utilizing the MBR, instead of the exact geometrical representation of the spa-
tial object, reduces its structure to two points (i.e., min and max), where the most
significant spatial object features (position and extension) are maintained (F.2). Con-
sequently, the MBR is an approximation widely employed. In this way, the plane-sweep
algorithms only have to calculate the minimum distance between MBRs without com-
puting complex calculations based on their shapes (e.g., calculate the distance between
a convex polygon and a line-segment).

Figure 4.11 illustrates two complex spatial objects (i.e., a lake and a building) with
their MBRs and reference points, and shows the minimum distance (MinDistance) be-
tween them (two MBRs) is calculated. This process is generally identified as the filtering
step since it finds all MBRs of spatial objects that verify the query condition. Only in
the final phase, the processing of the exact geometry of the spatial objects will be re-
quired for obtaining the exact distance values. Commonly known as refinement step,
this step uses e�cient computational geometry algorithms [de Berg et al., 2008] to pro-
duce the final query result (e.g., algorithm to compute the distance between two convex
polygons).

4.4.2 Improvements for kCPQ in SpatialHadoop

It can be clearly seen that the performance of the proposed solution of the kCPQMapRe-
duce algorithm (Algorithm 1) will depend on the number of partitions in which the two

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 111

Figure 4.11: Example of two complex spatial objects (Lake vs. Building) with their
MBRs, reference points and minimum distance between their MBRs.

sets of points are partitioned. That is, if the set of points P is partitioned into n parti-
tions (the set PP) and the set of points Q is partitioned in m partitions (the set PQ),
then we obtain n⇥m combinations of partitions or map tasks. Furthermore, we know
that plane-sweep-based kCPQ algorithms use a pruning distance value, which is the dis-
tance value of the k-th closest pair found so far, to discard those combinations of pairs
of points that are not necessary to consider as a candidate of the final query result. As
suggested in [Garćıa-Garćıa et al., 2016b], we need to find in advance an upper bound
of the distance value of the k-th closest pair of the joined datasets, called �.

In addition, we can use this � value in combination with the features of the global
indexing that SpatialHadoop provides to further improve the pruning phase. Before
the map phase begins, we exploit the global indices to prune partitions that cannot
contribute to the final result. Using SpatialHadoop built-in function MinDistance, we
can calculate the minimum distance between the two MBRs of the two partitions. That
is, if we find a pair of partitions with points that cannot have a distance value smaller
than or equal to �, we can prune this combination of pairs of partitions (Rule 1).

Rule 1. Pair of Partitions Pruning
Given two partitions PP

i and PQ
j , from P and Q, respectively, and � is the upper

bound of the distance value of the k-th closest pair of the two joined datasets. If
MinDistance(MBR(PP

i), MBR(PQ
j)) > �, then the pair of partitions (PP

i , PQ
j) can

be pruned, because they do not contain any pair of points with distance smaller than �.

Moreover, the computation of � can be carried out (a) by sampling globally both
large datasets and executing a PSKCPQ (plane-sweep kCPQ) algorithm over the two
samples, or (b) by appropriately selecting a specific pair of partitions to which the two

© 2021 Garćıa-Garćıa, F.J.

112 4.4. EXTENSIONS AND IMPROVEMENTS OF DJQS

large datasets are partitioned and either (b1) by locally sampling them and executing a
PSKCPQ algorithm over the two samples, or (b2) by applying an approximate variation
of a plane-sweep kCPQ algorithm over the spatial objects of the selected pair. Finally,
(a particular case of b1) if both datasets are partitioned employing a Voronoi-Diagram
partitioning method, the local computation of � can use some of its properties. In the
following subsections, we will see all these methods [Garćıa-Garćıa et al., 2018b, Garćıa-
Garćıa et al., 2020b].

4.4.2.1 Computing � by Global Sampling

The first method of computing � can be seen in Algorithm 8 (computing � by global
sampling algorithm), where we take a small sample from both sets of points (P and Q)
and calculate the k closest pairs using a plane-sweep-based kCPQ algorithm (PSKCPQ
[Roumelis et al., 2016]) that is applied locally. Then, we set � equal to the distance
of the k-th closest pair of the result and use this distance value as input for mappers.
This � value guarantees that there will be at least k closest pairs if we prune pairs of
points with larger distances in every mapper. Figure 4.12 shows the general schema of
computing � (upper bound of the distance of the k-th closest pair) using global sampling,
which is used to filter only pairs of partitions with a minimum distance of their MBRs
smaller than or equal to �.

Algorithm 8 Computing � by global sampling Algorithm
1: function CALCULATE�(P: set of points, Q: set of points, ⇢: global sampling ratio, k: number of pairs)
2: SampledP SampleMR(P, ⇢)
3: SampledQ SampleMR(Q, ⇢)
4: SortX(SampledP)
5: SortX(SampledQ)
6: KMaxHeap PSKCPQ(SampledP, SampledQ, k)
7: if KMaxHeap is full then
8: �DistanceAndPair pop(KMaxHeap)
9: � �DistanceAndPair.Distance
10: output(�)
11: else
12: output(1)
13: end if
14: end function

15: function PARTITIONSFILTER(PP: set of partitions from P, PQ: set of partitions from Q, �: upper
bound distance)

16: for all c 2 PP do
17: for all d 2 PQ do
18: minDistance MinDistance(MBR(c),MBR(d)) . MmDist for Voronoi
19: if minDistance � then . Rule 1
20: output(c, d)
21: end if
22: end for
23: end for
24: end function

Moreover, we can further enhance the pruning phase using this � value and the
global indexing that SpatialHadoop provides. Before the map phase begins, we exploit
the global indices to prune partitions that cannot contribute to the final query result.
PARTITIONSFILTER takes as input each combination of pairs of partitions in which

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 113

Figure 4.12: Schema for computing � by global sampling.

the input set of points are divided. Then, it uses Rule 1 to prune combinations of pairs
of partitions that do not contribute to the final answer. Using di↵erent percentages of
samples of the input datasets in Algorithm 8, we have obtained results with a signifi-
cant reduction of execution time as explained later in the performance evaluation (see
Section 4.5). Note that to obtain a sample from each dataset, we use a SpatialHadoop
built-in MapReduce function, called SampleMR, which extracts a percentage of samples
(sampling ratio ⇢ in %, 0.0 < ⇢ 100.0) following a sampling Without Replacement
(WoR) pattern [Chaudhuri et al., 1999].

4.4.2.2 Computing � by Local Processing

Analyzing the above method for the � calculation, it is clearly observed that the high-
est time overhead occurs in the execution of the two calls to the SampleMR function
since they are full-fledged MapReduce jobs. Therefore, to try to improve the previous
algorithm and avoid calling the SampleMR function, we are looking to take advantage
of the information provided by the partitions (global indexes) and other features of
SpatialHadoop, and, thus, to make faster the � computation.

Global indices in SpatialHadoop provide the MBR of index partitions, as well as
the number of elements contained in them. Thanks to that, we can get an idea of the
distribution of data into each partition. To simplify the sampling process, we will find
a suitable pair of partitions, that by their characteristics, may contain k closest pairs
with a � value as small as possible. Then we can sample locally those partitions without
having to execute a MapReduce job (as SampleMR).

Since we are looking for the closest k pairs, the most suitable pair of partitions is
formed by those with an MBR that contains them, with the highest density of points, and

© 2021 Garćıa-Garćıa, F.J.

114 4.4. EXTENSIONS AND IMPROVEMENTS OF DJQS

whose intersection area is the largest. The larger the intersection area of two partitions,
the larger the probability that points in one set are near points in the other set. If the
density is also higher, the distances between points are smaller, and therefore, we will
be able to obtain better candidate pairs of partitions. Then, by Pair Data Density Area
Intersection, PDDAI (PP

i , P
Q
j), we denote a metric that expresses the suitability, based

on data density and area intersection, of these two partitions to allocate k closest pairs
with as small distances as possible. It is exposed in Definition 4.1.

Definition 4.1. Pair Data Density Area Intersection, PDDAI(PP
i , P

Q
j)

Given two partitions, PP
i and PQ

j , |PP
i | is the number of elements inside partition PP

i

(cardinality of PP
i), Area(MBR(PP

i) [MBR(PQ
j)) is the area of the MBR that covers

both MBRs of partitions PP
i and PQ

j (union MBR), and Area(MBR(PP
i)\MBR(PQ

j))

is the area of the intersection MBR of both MBRs of partitions PP
i and PQ

j . Then the

Pair Data Density Area Intersection of two partitions, PDDAI(PP
i , P

Q
j), is defined as

PDDAI(PP
i , P

Q
j) =

|PP
i
|+|PQ

j |
Area(MBR(PP

i
)[MBR(PQ

j
))
⇥ (1 +Area(MBR(PP

i) \MBR(PQ
j)))

We will select the pair of partitions with the maximum value of this metric so that
we will have the pair of partitions with the larger combination of density of points and
area of intersection. In the case of pairs of partitions that do not intersect, only the data
density is taken into count.

4.4.2.2.1 Computing � by Local Sampling

The new method for computing � can be seen in Algorithm 9 (computing � by local
sampling algorithm), which follows a similar scheme to that of global sampling. There
is a new step, the SELECTPARTITIONS function, in which the pair of partitions (c
and d) having the highest value for the PDDAI(c,d) metric is obtained. To do this,
the partitions of the two global indices are joined by calculating the PDDAI metric for
each combination. Then the candidate pair of partitions is sampled by recalculating the
sampling ratio ⇢ since we are dealing with a subset of elements, and we want to obtain
the same number of elements as for the case of global sampling. Once the samples
are obtained locally and verified that they reside in memory, a local plane-sweep-based
kCPQ algorithm (PSKCPQ) is applied to obtain �. Finally, this value is used in the
PARTITIONSFILTER function exactly as in Algorithm 8.

4.4.2.2.2 Computing � by Local Approximate Methods

Several approximation techniques ("-approximate, ↵-allowance, N -consider and Time-
consider) have been proposed for distance-based queries using R-trees in [Corral and
Vassilakopoulos, 2005]. These techniques can also be used to obtain approximate solu-
tions with a faster execution time, trying to find a balance between computational cost
and the accuracy of the query result. N -consider is an approximate technique that de-
pends on the number of points to be combined, and Time-consider depends only on the

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 115

Algorithm 9 Computing � by local sampling Algorithm

1: function SELECTPARTITIONS(PP: set of partitions from P, PQ: set of partitions from Q)
2: maxDensity 0
3: bestPair ;
4: for all c 2 PP do
5: for all d 2 PQ do
6: pairDensity PDDAI(c, d)
7: if pairDensity > maxDensity then
8: maxDensity pairDensity
9: bestPair (c, d)
10: end if
11: end for
12: end for
13: output(bestPair)
14: end function

15: function CALCULATE�(P: set of points, Q: set of points, ⇢: global sampling ratio, k: number of pairs)
16: localP⇢ CalculateLocalRatio(|P|, ⇢)
17: SampledP Sampling(P, localP⇢)
18: localQ⇢ CalculateLocalRatio(|Q|, ⇢)
19: SampledQ Sampling(Q, localQ⇢)
20: SortX(SampledP)
21: SortX(SampledQ)
22: KMaxHeap PSKCPQ(SampledP, SampledQ, k)
23: if KMaxHeap is full then
24: �DistanceAndPair pop(KMaxHeap)
25: � �DistanceAndPair.Distance
26: output(�)
27: else
28: output(1)
29: end if
30: end function

31: function PARTITIONSFILTER(PP: set of partitions from P, PQ: set of partitions from Q, �: upper
bound distance)

32: for all c 2 PP do
33: for all d 2 PQ do
34: minDistance MinDistance(MBR(c),MBR(d)) . Computing MinDistance
35: if minDistance � then . Rule 1
36: output(c, d)
37: end if
38: end for
39: end for
40: end function

query processing time. On the other hand, "-approximate and ↵-allowance are distance-
based approximate techniques and can be used for adjustment of quality of the query
result (kCPQ). For this reason, we will consider them as candidates for application in
our problem. Since " � 0 values are unlimited, according to the conclusions of [Corral
and Vassilakopoulos, 2005, Gao et al., 2015], it is not easy to adjust the � value (upper
bound of the distance value of k-th closest pair). For this reason, here we will choose
the ↵-allowance technique, where ↵ is a bounded positive real number (0 ↵ 1).
With this approximate method, we can easily adjust the balance between the execution
time of the kCPQ algorithm and the accuracy of the final query result. Notice that this
↵-allowance technique can be easily transformed to the "-approximate technique with
↵ = 1/(1 + ") [Gao et al., 2015].

According to [Corral and Vassilakopoulos, 2005], we can apply the ↵-allowance ap-
proximate technique in all plane-sweep-based kCPQ algorithms (PSKCPQ) [Roumelis

© 2021 Garćıa-Garćıa, F.J.

116 4.4. EXTENSIONS AND IMPROVEMENTS OF DJQS

et al., 2014, Roumelis et al., 2016] and the three sliding variants (Strip, Window, and
Semi-Circle) to adjust the final query result. It can be carried out by multiplying � by
(1 � ↵), giving rise to ↵PSKCPQ since it is a distance-based approximate technique,
and � is the distance value of the k-th closest pair found so far, during the processing of
the query algorithm. Analyzing the ↵ parameter in this approximate technique: when
↵ = 0, we will get the normal execution of the plane-sweep PSKCPQ algorithm; when
↵ = 1, we will invalidate the � value (it will always be 0) and no pair of points will
be selected for the result; finally, when 0 < ↵ < 1, we can adjust the strip sizes, the
window, and the semi-circle over the sweeping axis since all of them depend on the �
value. Therefore, the smaller ↵ value, the larger the upper bound of the � value (i.e.,
more points will be considered and fewer points will be discarded); on the other hand,
the larger ↵ value, the smaller the upper bound of the � value (i.e., fewer points will be
considered and more points will be discarded).

The schema to compute � by using the ↵-allowance approximate technique with
a plane-sweep-based kCPQ algorithm (↵PSKCPQ) is very similar to the schema of
computing � by local sampling illustrated in the right diagram of Figure 4.13. The
essential di↵erence is that sampling is not used in the selected pair of partitions, and all
points from them are combined by the ↵PSKCPQ algorithm, obtaining a � value in a
faster way if the ↵ value is large enough.

Figure 4.13: Schema for computing �. Global sampling (left) vs. local sampling
(right), with Grid partitioning technique.

The adaptation of the previous Algorithm 9 to local approximate is straightforward.
The CALCULATE� function no longer accepts ⇢ as a parameter since we do not perform
a sampling of the input datasets, but for each set, we get several elements that allow
us to work within the main memory. Furthermore, we have a new ↵ parameter, and
the function PSKCPQ is replaced by the new ↵PSKCPQ function that takes this new
parameter for the adjustment of the approximate technique. The subsequent steps of
the algorithm remain unmodified.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 117

Figure 4.14: Computation of �, using Voronoi-Diagram based partitioning by sampling
locally from both datasets (a), and partition refinement by its MBR, U(PP

i) and L(PP
i)

properties and maximum minimum distance calculation (b).

4.4.2.3 Computing � using Voronoi-Diagram based partitioning

Using Voronoi-Diagram based partitioning, as shown in Figure 4.14 (a), we can improve
the kCPQ MapReduce algorithm by modifying its local sampling � computation and
the filter function. For the computation of �, the most appropriate partitions, where an
initial kCPQ is performed, are those whose pivots are closer to each other and have both
the higher density of points and area of intersection (PDDAI). Figure 4.14 (b) shows
that for each partition PP

i of this partitioning technique, we have both its MBR(PP
i)

and its U(PP
i) and L(PP

i) values, allowing us to detect areas of the former in which there
are no points.

For the PARTITIONSFILTER two new distances metric can be used: the minimum
distance between two pivots from two di↵erent partitions minDist(ri, rj) and the maxi-

mum minimum distance between two partitions MmDist(PP
i , P

Q
j). They are exposed in

Definition 4.2 and Definition 4.3, respectively. Therefore, as shown in Figure 4.14 (b),
this function prunes pairs of partitions which have MmDist(PP

i , P
Q
j) larger than �, as

we can see in the pruning Rule 2.

Definition 4.2. Minimum distance between two pivots, minDist(ri, rj)

Given two pivots, ri 2 RP and rj 2 RQ i 6= j that generate two partitions PP
i and PQ

j ,
the minimum distance between two pivots, minDist(ri, rj), is defined as

minDist(ri, rj) = dist(ri, rj)� U(PP
i)� U(PQ

j)

Definition 4.3. Maximum minimum distance between two partitions,
MmDist(PP

i , P
Q
j)

Given two partitions, PP
i and PQ

j i 6= j, the maximum minimum distance between two

partitions, MmDist(PP
i , P

Q
j), is defined as

MmDist(PP
i , P

Q
j) = max{minDistance(MBR(PP

i),MBR(PQ
j)),minDist(ri, rj)}

© 2021 Garćıa-Garćıa, F.J.

118 4.4. EXTENSIONS AND IMPROVEMENTS OF DJQS

Rule 2. Pair of Voronoi Partitions Pruning
Given two partitions PP

i and PQ
j i 6= j, from P and Q, respectively, and � is the up-

per bound of the distance value of the k-th closest pair of the two joined datasets. If
MmDist(PP

i , P
Q
j) > �, then the pair of partitions (PP

i , P
Q
j) can be pruned, because they

do not have any pair of points with distance smaller than �.

Rule 2 allows us to prune combinations of partitions from P and Q, reducing the
number of map tasks that the kCPQ MapReduce algorithm needs to perform to get the
final query result.

Algorithm 10 shows the complete adaptation of the local sampling � computation
when using Voronoi-Diagram based partitioning. Note that the processing scheme re-
mains unmodified, but you get higher precision in the calculation of PDDAI (line 6) and
the PARTITIONSFILTER function with the use of MmDist (line 34).

Algorithm 10 Computing � using Voronoi-Diagram based partitioning

1: function SELECTPARTITIONS(PP: set of partitions from P, PQ: set of partitions from Q)
2: maxDensity 0
3: bestPair ;
4: for all c 2 PP do
5: for all d 2 PQ do
6: pairDensity PDDAI(c, d)
7: if pairDensity > maxDensity then
8: maxDensity pairDensity
9: bestPair (c, d)

10: end if
11: end for
12: end for
13: output(bestPair)
14: end function

15: function CALCULATE�(P: set of points, Q: set of points, ⇢: global sampling ratio, k: number of pairs)
16: localP⇢ CalculateLocalRatio(|P|, ⇢)
17: SampledP Sampling(P, localP⇢)
18: localQ⇢ CalculateLocalRatio(|Q|, ⇢)
19: SampledQ Sampling(Q, localQ⇢)
20: SortX(SampledP)
21: SortX(SampledQ)
22: KMaxHeap PSKCPQ(SampledP, SampledQ, k)
23: if KMaxHeap is full then
24: �DistanceAndPair pop(KMaxHeap)
25: � �DistanceAndPair.Distance
26: output(�)
27: else
28: output(1)
29: end if
30: end function

31: function PARTITIONSFILTER(PP: set of partitions from P, PQ: set of partitions from Q, �: upper
bound distance)

32: for all c 2 PP do
33: for all d 2 PQ do
34: minDistance MmDist(c, d) . Computing MmDist
35: if minDistance � then . Rule 2
36: output(c, d)
37: end if
38: end for
39: end for
40: end function

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 119

4.4.3 Improvements for kNNJQ in SpatialHadoop

In this section, we first present a repartitioning technique to improve the distributed
kNNJQ algorithms to deal with skewed data. Next, we adapt the distance metrics,
and pruning rules [Kuhlman et al., 2017] for kNNJQ MapReduce algorithm in Spatial-
Hadoop. Finally, we incorporate into SpatialHadoop the less data technique [Moutafis
et al., 2019b] to try to move as few data as possible between computing nodes.

4.4.3.1 Improvements for processing skewed data

When MapReduce tasks are performed, a problem that usually appears is the so-called
skewed data. In general terms, this problem consists in that some partitions have a
higher number of elements than the rest of them, and therefore it causes that there
are tasks that take a long time to be executed and a delay in obtaining the final result
can be derived (F.3). Furthermore, the partitioning techniques in SpatialHadoop and
other systems are usually based on getting partitions close to the underlying filesystem
block size (F.5) that has been established in the corresponding data cluster. However,
DJQ MapReduce algorithms, like kNNJQ, can produce combinations of partitions with
a very large number of elements that would delay the obtaining of results and increase
the main memory used (F.4).

The proposed improvements aim, from a set of data already partitioned by Spatial-
Hadoop (e.g., Grid, Quadtree), to repartition, if necessary, each local partition to solve
the aforementioned problem. To this end, a kind of double index is created by having
the original global index plus a sub-index for each of the partitions when a certain num-
ber of elements is exceeded, and they need to be repartitioned. For instance, we can
have a dataset partitioned by Quadtree into 12 partitions, and then each partition is
split into a Grid of 4⇥ 4 partitions. To create this index, we have to take into account
the factors F.1, F.2, F.3 and F.4 since SpatialHadoop has also considered the factor
F.5 for the initial partitions and because we will not save the resulting partitions as
new HDFS files. This repartitioning technique is used mainly for kNNJQ and "DRJQ in
SpatialHadoop, although they can be applied to other distributed DJQ algorithms and
DSDMSs. Figure 4.15 shows the new phase (Repartitioning) of the proposed kNNJQ
MapReduce algorithm in SpatialHadoop. The Repartitioning phase uses an existing par-
titioning technique to subdivide the largest and/or densest partitions from dataset Q
and saves the information for further use in subsequent phases. Note that, in [Moutafis
et al., 2019b], repartitioning is not performed since the Quadtree-based partitioning
in Hadoop is done completely under the control of the kNNJQ algorithm of [Moutafis
et al., 2019b], and is not limited by the file-system block size (unlike the partitioning
techniques provided by SpatialHadoop).

We have implemented two types of repartitioning techniques [Garćıa-Garćıa et al.,
2020c], one based on a Grid structure and another based on a recursive decomposition
of space by Quadtree.

The Grid-based repartitioning method divides the original partition into as many
rows and columns as necessary so that each cell or partition has at most L elements. In
our experiments, we have used num rows = num columns =

p
(num elements

L), where
num elements is the number of elements in the original partition, and L is a maximum

© 2021 Garćıa-Garćıa, F.J.

120 4.4. EXTENSIONS AND IMPROVEMENTS OF DJQS

Figure 4.15: Repartitioning phase in the kNNJQ MapReduce algorithm in
SpatialHadoop.

number of elements (e.g., in our experiments L = 50000). For kNNJQ, this repartitioning
is done in the Bin Join phase, previously described in Algorithm 4 and illustrated in
Figure 4.9, where, during the map phase, the elements of both sets are distributed based
on a formula that determines the new partition they belong. This distribution is the
great advantage of Grid partitioning since no previous preprocessing is needed to divide
a partition into a certain number of rows and columns (i.e., sub-partitions). Then, in
the reduce phase, a count of the elements of the largest set that belongs to each created
sub-partition is performed. This way, the next phase can use the recently created index
to obtain the partitions that overlap with the partial results. These sub-partitions are
smaller than the original partition, and therefore candidates from calculations of kNNJQ
will be pruned. However, even if a limit of elements has been established, it is impossible
to know if any of the sub-partitions will overcome it since we do not know a priori how
the elements are distributed.

The Quadtree-based repartitioning is a data-driven technique widely used in many
spatial applications. Since this repartitioning method is based on how the data are
distributed and, hence, a simple formula that splits the partition into rows ⇥ columns
is not enough, as it is in the case of the Grid -based repartitioning, a new task must
be performed. As shown in Algorithm 11, this is a MapReduce job that performs a
repartitioning of each of the partitions on the initial index. To do this, in the map
phase, it uses a maximum number of elements L and a data sampling process to have a
representative set of how the elements are distributed (r is a sample ratio) and reduce

Algorithm 11 Quadtree-based repartitioning Algorithm

1: function MAP(p: point from Q, PQ: set of partitions from Q, r: sample ratio)
2: partitionId FindPartition(PQ, p)
3: if Random r then
4: output(partitionId, p)
5: end if
6: end function

7: function REDUCE(partitionId: current partition, Q: set of points in partition, L: max number of
elements, r: sample ratio)

8: Initialize(Quadtree, L⇥ r)
9: for all q 2 Q do
10: InsertInto(Quadtree, q)
11: end for
12: output(partitionId, Quadtree)
13: end function

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 121

Algorithm 12 Range Query with repartitioning Algorithm

1: function RangeQueryWithRePartitioning(circle: circular region, PQ: set of partitions from Q,
Quadtrees: set of quadtrees for each PQ)

2: Initialize(SelectedParts)
3: for all c 2 PQ do
4: if Intersects(circle, c) then
5: InsertInto(SelectedParts, c)
6: end if
7: end for
8: Initialize(SelectedSubParts)
9: for all c 2 SelectedParts do
10: Quadtree FindQuadtree(Quadtrees, c)
11: SubParts Intersects(Quadtree, circle)
12: InsertInto(SelectedSubParts, SubParts)
13: end for
14: return SelectedSubParts
15: end function

the creation time of the subsequent Quadtree. As we will see in the experimental section:
L = 100000 and r = 2%. Finally, in the reduce phase, it inserts the sampled elements in a
Quadtree per partition that will form part of the new sub-index. Once the repartitioning
is done, the algorithm behaves in the same way as for the repartitioning based on Grid. In
Algorithm 12, the new range query method RangeQueryWithRePartitioning for selecting
partitions overlapping with the circular region centered at the query point q and with a
radius equal to the distance threshold �, is shown. Initially, the global index is used to
select those partitions that overlap with the region, and subsequently, the corresponding
Quadtree is used to obtain the sub-partitions that overlap with it. Note that in this
way, more candidates are pruned, and therefore the search in the spatial dataset is also
reduced.

4.4.3.2 Using Voronoi-Diagram based partitioning for kNNJQ

We have designed and implemented several improvements for the kNNJQ in Spatial-
Hadoop using Voronoi-Diagram based partitioning [Garćıa-Garćıa et al., 2020b]. As
shown in Figure 4.16, this partitioning technique can be incorporated into the proposed
kNNJQ MapReduce algorithm in two ways: (a) performing the initial Partitioning pro-
cess of the datasets in the Preprocessing step (see Figure 4.1), and/or (b) subdividing
the partitions from Q in the Repartitioning phase individually, and then, using its prop-
erties on the kNNJ on Overlapping Partitions phase. With the first one, we can take
advantage of the characteristics of this technique globally, using the default parame-
ters given by SpatialHadoop, in the same way that it is done for any built-in query.
For the second way, we can accelerate the kNNJQ processing by decomposing the ini-
tial partitioning, by using the Voronoi-Diagram based partitioning technique, in smaller
partitions given a maximum number of elements to solve skew data problems (Reparti-
tioning phase) and reduce the number and size of the tasks of the Bin kNNJ and kNNJ
on Overlapping Partitions phases. Furthermore, when calculating the overlapping par-
titions, the coordinates of each pivot ri and the U(PP

i) and L(PP
i) values can be used

to get better performance and accuracy than using only the MBR of each partition PP
i ,

MBR(PP
i). Figure 4.16 (b) shows that only the shaded part can contain points within

© 2021 Garćıa-Garćıa, F.J.

122 4.4. EXTENSIONS AND IMPROVEMENTS OF DJQS

Figure 4.16: Voronoi-Diagram based partitioning on the initial partitioning of the
datasets (a) and in the repartitioning and kNNJ on Overlapping Partitions phases (b).

the MBR(PP
i), and therefore there is no overlap with the circle centered in pi and the

distance of the current k-th nearest neighbor as radio.
Furthermore, we can exploit the properties of Voronoi-Diagram based partitioning

and adapt the distance metrics and pruning rules [Kuhlman et al., 2017] for kNNJQ
MapReduce algorithm in SpatialHadoop.

The points inside each Voronoi-Cell Vi are denoted as Vi.core = {p : p 2 Vi}. The
support set of a Voronoi-Cell Vi, called Vi.support, contains at least all data points that
satisfy the following two conditions:

1. 8q 2 Vi.support, q /2 Vi.core, and

2. there exists at least one point p 2 Vi.core such that q 2 kNN(Vi, p, k).

The Vi.support must be su�cient to guarantee that the kNN of all core points, in each
cell Vi, can be found among Vi.core and Vi.support.

Since support points must be duplicated, they are considered multiple times in a
kNNQ. Therefore, a large number of support points increases the computation costs per
partition since many more points must be searched. To minimize the number of support
points, in [Kuhlman et al., 2017], two distance metrics and two pruning rules are defined.

The core-distance of a given Voronoi-Cell Vi represents the maximum distance from
a core point p of Vi to its k-th nearest core neighbor q. It defines an upper bound on the
distance between any core point of Vi and the possible support points. That is, given a
point q outside Vi, it is guaranteed not to be a support point of Vi if its distance to any
core point of Vi is larger than the corDist(Vi).

Definition 4.4. core-distance of Vi, corDist(Vi), [Kuhlman et al., 2017]
corDist(Vi) = max(dist(p, q)) 8p, q 2 Vi.core where q 2 kNN(Vi, p, k) 2 Vi.core

The support-distance takes the pivot ri of cell Vi into consideration, and it represents
the maximum distance of a possible support point of Vi to the pivot ri of Vi.

Definition 4.5. support-distance of Vi, supDist(Vi), [Kuhlman et al., 2017]
supDist(Vi) = max(dist(p, ri) + dist(p, q)) 8p, q 2 Vi.core
where q 2 kNN(Vi, p, k) 2 Vi.core

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 123

Now, we remind the two pruning rules proposed in [Kuhlman et al., 2017] at Voronoi-
Cell and point levels. The first pruning rule, Rule 3, which is applied in the map function
of the kNNJ on Overlapping Partitions phase, avoids unnecessary data duplication (Al-
gorithm 13, line 4) and also reduces the number of Voronoi-Cells each point must be
checked against when mapping points to support sets (Algorithm 13, line 22).

Rule 3. Support Cell Granularity Pruning, [Kuhlman et al., 2017]
Given two Voronoi-Cells Vi, Vj and their corresponding pivots ri, rj, i 6= j. If the
supDist(Vi) dist(ri, rj)/2, then Vj does not contain any support points of Vi.

The second one, Rule 4, allows us to prune, in the map phase of the KNNJ on
Overlapping Partitions phase (Algorithm 13, line 7), the points of the support cells that
are not part of any partial kNN list. This allows us to reduce, even more, the shu✏ed
data (fewer points are transferred to the reduce phase) and the complexity of the final
kNN calculation for each point (the size of the set of support points is smaller).

Rule 4. Support Point Granularity Pruning, [Kuhlman et al., 2017]
Given any point p 2 Vi, q 2 Vj, i 6= j, and HP (Vi, Vj) is the HyperPlane bound-
ary between Voronoi-Cells Vi and Vj. If dist(q,HP (Vi, Vj)) � corDist(Vi), then q /2
kNN(Vj , p, k).

That is, Rule 4 allows us to prune points within the support cells that have not been
already discarded by Rule 3. Furthermore, according to [Hjaltason and Samet, 2003],
the following lower bound can be used in place of the exact value of dist(q,HP (Vi, Vj))
in pruning Rule 4.

Definition 4.6. Lower bound of dist(q,HP (Vi, Vj)), [Kuhlman et al., 2017]
Given two Voronoi-Cells Vi and Vj and their corresponding pivots ri, rj, i 6= j, and a

point q 2 Vj, dist(q,HP (Vi, Vi)) � dist(q,ri)�dist(q,rj)
2

Thanks to the Definition 4.6, we can use a lower bound whose calculation is less
complex than dist(q,HP (Vi, Vj)) leading to the pruning Rule 5, which reduces the cal-
culation time, preventing it from penalizing the application of this pruning rule.

Rule 5. Support Point Granularity Pruning by a Lower bound, [Kuhlman et al., 2017]

Given any point p 2 Vi, q 2 Vj, i 6= j. If dist(q,ri)�dist(q,rj)
2 � corDist(Vi), then q /2

kNN(Vj , p, k).

4.4.3.3 Less Data Technique

The less data technique [Moutafis et al., 2019b] can be used in our kNNJQ MapReduce
algorithm to reduce the size of the shu✏ed data and the size of the output data of
the kNNJ on Overlapping Partitions phase. Moreover, applying this technique in our
kNNJQ MapReduce algorithm, each computing node will calculate and return a kNN
list for every query point in the Bin kNNJ phase, based on its local data. Then some
additional phases are needed to exchange data among nodes and find possible misses of
nearer neighboring points while trying to move as less data as possible between nodes.

© 2021 Garćıa-Garćıa, F.J.

124 4.4. EXTENSIONS AND IMPROVEMENTS OF DJQS

Algorithm 13 Improved kNNJ on Overlapping Partitions Algorithm

1: function MAP(p: point from P or Q, PQ: set of partitions from Q, k: number of neighbors)
2: origin IsFromPorQ(p)
3: if origin is from Q then
4: filteredParts PrunePartitions(PQ, p, k) . Rule 3
5: partition FindPartition(filteredParts, p)
6: if partition is not NULL then
7: if PrunePoint(filteredParts, p) == false then . Rule 5
8: output(partition.id, p)
9: end if

10: end if
11: else
12: overlappedParts GetOverlappedPartitions(PQ, p, k)
13: for all partition 2 overlappedParts do
14: output(partition.id,p)
15: end for
16: end if
17: end function

18: function GetOverlappedPartitions(PQ: set of partitions from Q, p: point from P, k: number of neigh-
bors)

19: kNNList GetKnnList(p)
20: nnNumber kNNList.size
21: radius GetKthDistance(kNNList)
22: supParts GetSupportPartitions(PQ, p, radius) . Rule 3
23: nnNumber GetNumberOfNeighbors(supParts, p, radius)
24: while nnNumber < k do
25: supParts GetSupportPartitions(supParts, p, radius)
26: nnNumber GetNumberOfNeighbors(supParts, p, radius)
27: end while
28: return supParts
29: end function

In the original algorithm, every point, which is still not finished, is moved to its reducer
of the kNNJ on Overlapping Partitions phase with its kNN list. Therefore, it adds a
significant load to the network, especially for large k values. We decided to replace the
kNN list with the distance to the k-th neighbor as a bound, which is the only info needed
in the reducer. The partial kNN lists will be finally merged on the last Merge Results
phase.

Continuing with the idea of reducing the size of the data that is handled in the
di↵erent phases of the algorithm, the pruning Rule 6 allows us to determine which of
the kNN lists have turned out to be final.

Rule 6. Final kNN List Pruning
Given any point p 2 Vi, q 2 kNN(Vi, p, k). If dist(ri,rj)

2 � dist(ri, p) + dist(p, q) 8
Vj \ Vi.support 6= ?, then kNN(Vi, p, k) is final.

Therefore, with this new pruning rule (Rule 6), we can split the output of the reducers
of the Bin kNNJ phase into di↵erent group of files (final kNN lists and non-final kNN
lists) thus reducing the input data size of the kNNJ on Overlapping Partitions and
Merge Results phases. As a consequence of this reduction in the input data, the size of
the shu✏ed data between the map and reduce tasks of these phases is also considerably
smaller.

Finally, Figure 4.17 shows the di↵erences in the flow of data of the kNNJQ MapRe-
duce algorithm. Note that all final kNN lists are written directly to the output just after

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 125

Figure 4.17: kNNJQ MapReduce algorithm (top) vs. the use of the less data technique
(bottom).

the Bin kNNJ phase. Besides, the input of the kNNJ on Overlapping Partitions phase
is reduced in size to a list of pairs (i.e., point and distance of the k-th nearest neighbor
found so far) of the non-final kNN lists.

4.5 Performance Evaluation

This section presents the results of an extensive experimental study aiming at measuring
and evaluating the e�ciency of the DBQs algorithms in SpatialHadoop and their exten-
sions and improvements proposed in Sections 4.3 and 4.4. In particular, Subsection 4.5.1
describes the experimental settings for this performance study in SpatialHadoop. Fol-
lowing subsections study each DBQ MapReduce algorithm (i.e., "DRQ, kNNQ, RkNNQ,
"DRJQ, kCPQ, kNNJQ and "DJQ) to test their e�ciency, scalability and the e↵ects of
several extensions and improvements.

4.5.1 Experimental Setup

For the experimental evaluation, we have used real and synthetic (clustered) datasets
of 2d points to test our DBQ MapReduce algorithms in SpatialHadoop. For real-world
datasets we have used datasets from OpenStreetMap1 already described in Section 3.6:
LAKES (L), PARKS (P), ROADS (R), BUILDINGS (B) and ROAD NETWORKS
(RN). Remember that to generate datasets of points from non-point spatial objects, we
have considered the center of each MBR and the centroid of each polygon. For spatial ob-
jects experiments, we have used the datasets unmodified (i.e., polygons and line-strings).

1
http://spatialhadoop.cs.umn.edu/datasets.html

© 2021 Garćıa-Garćıa, F.J.

126 4.5. PERFORMANCE EVALUATION

SpatialHadoop requires the datasets to be partitioned and indexed before invoking any
spatial operations. For instance, the running times needed for the Preprocessing phase
using a Quadtree partitioning technique are 94 sec for LAKES, 103 sec for PARKS, 150
sec for ROADS, 175 sec for BUILDINGS and 1053 sec for ROAD NETWORKS. Spa-
tial data are indexed and stored on HDFS and for the subsequent execution of spatial
queries, they are already available.

For synthetic datasets, we have created clustered data since data in the real world are
often clustered or correlated. In particular, real spatial data may follow a distribution
similar to the clustered one. We have generated several files of di↵erent sizes using
our own generator of clustered distributions, implemented in SpatialHadoop and with
a similar format to the real data. The dataset sizes are 25M (5.4 GB), 50M (10.8
GB), 75M (16.2 GB), 100M (21.6 GB) and 125M points (27 GB), with 2500 clusters in
each dataset (uniformly distributed in the range [(-179.7582155, -89.96783429999999) -
(179.84404100000003, 82.51129005000003)]), which is the MBR of BUILDINGS), where,
for a set having N points, N/2500 points are gathered around the center of each cluster,
according to Gaussian (normal) distribution with mean 0.0 and standard deviation 0.2,
as in [Eldawy et al., 2013]. For example, for an artificial dataset of 100M of points, we
have 2500 clusters uniformly distributed, and for each cluster, we have generated 40000
points according to Gaussian distribution (mean = 0.0, standard deviation = 0.2). In
Figure 4.18, we can observe a small area of a clustered dataset. We made 5 combinations
of synthetic datasets by combining two separate instances of datasets, for each of the
above 5 cardinalities (i.e., 25MC1 ⇥ 25MC2, 50MC1 ⇥ 50MC2, 75MC1 ⇥ 75MC2,
100MC1⇥ 100MC2 and 125MC1⇥ 125MC2).

Figure 4.18: Synthetic dataset. Small area from a clustered dataset.

The main measure of performance in our experiments is the total execution time
(i.e., running time or response time) in seconds (sec), and represents the time spent

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 127

for the execution of each distributed DBQ algorithm in SpatialHadoop. Moreover, the
shu✏ed data, that describes the amount of information produced in the mapper tasks
and moved to the nodes where the reducer tasks will run, shown in Gigabytes (GB), is
also used as a performance metric in our experiments, to acquire more information on
the behavior of the di↵erent phases of kNNJQ in SpatialHadoop.

Moreover, all experiments were conducted on the same OpenStack cluster of 12
nodes, described in Section 3.6. We used the latest code available in the repositories of
SpatialHadoop2, with the addition of our open-source DJQ MapReduce algorithms3.

4.5.2 "DRQ experiments

In this section, we present the most representative results of our experimental evalua-
tion of the "DRQ MapReduce algorithm [Garćıa-Garćıa et al., 2016a]. We have used
both synthetic (Uniform) and real 2d point datasets to test our "DRQ algorithm in Spa-
tialHadoop. On the one hand, for synthetic datasets, we have generated several files of
distinct sizes (64MB, 128MB, 256MB, 512MB, and 1024MB) using SpatialHadoop built-
in uniform generator [Eldawy and Mokbel, 2015]. On the other hand, for real datasets,
we have sampled the BUILDINGS dataset described in Section 4.5.1, with several %
values (25%, 50%, 75% and 100%). For these experiments, the query point is located
at the center of the Minimum Bounding Rectangles (MBRs), to which the datasets
are partitioned by SpatialHadoop. For example, the MBR of the synthetic datasets is
[(0,0)-(1000000,1000000)], and the query point is at (500000,500000). Finally, Table 4.1
summarizes the configuration parameters used in our experiments. Default parameters
(in parentheses) are used unless otherwise mentioned.

Parameter Values (default)

Uniform dataset size (MB) 64, 128, 256, 512, 1024
BUILDINGS, % of samples 25, 50, 75, (100)

Distance threshold, " 20, (40), 75, 100, 200
Number of nodes, ⌘ 1, 2, 4, 6, 8, 10, (12)

Partitioning technique Grid, (STR)

Table 4.1: Configuration parameters used in our "DRQ experiments.

4.5.2.1 The e↵ect of the increment of the dataset size

Our first experiment is to examine the e↵ect of the dataset size using a fixed " = 40.
As we expected for uniform datasets (Figure 4.19, left chart), the execution times are
almost linear because the number of partitions that pass the filtering phase is less than
the number of map tasks. However, for the experiments with real datasets (Figure
4.19, right chart), the execution time varies due to the partitioning performed on the

2
https://github.com/aseldawy/spatialhadoop2

3
https://github.com/acgtic211/spatialhadoop2/tree/DJQ

© 2021 Garćıa-Garćıa, F.J.

128 4.5. PERFORMANCE EVALUATION

64 128 256 512 1,024
0

10

20

30

40

MB: dataset size

T
ot
al

E
x
ec
u
ti
on

T
im

e
(i
n
se
c)

Uniform Datasets - "DRQ

25 50 75 100
0

20

40

60

% of samples

T
ot
al

E
x
ec
u
ti
on

T
im

e
(i
n
se
c)

BUILDINGS - "DRQ

"DRQ

Figure 4.19: "DRQ cost, total execution time vs. dataset size for uniform (left) and %
of samples of BUILDINGS (right).

data since, in a Grid-based partitioning, the number of cells depends on the size of the
dataset and the number of partitions depends on the applied partitioning technique. For
example, the number of points to consider for the BUILDINGS dataset sampled at 50%
and 100% ratio is the same, being more than at 25% and 75%. And as we expected, the
number of items returned by the query increases by the same percentage as data grows.

4.5.2.2 The e↵ect of the increment of " values

The second experiment studies the e↵ect of two spatial partitioning techniques (Grid
and STR) included in SpatialHadoop and " value. As shown in Figure 4.20, left graph,
the choice of a partitioning technique does not greatly a↵ect the execution time, showing
similar behavior. Using Grid partitioned files, the execution time increases near linearly
until, almost, every point is selected, and then it grows more slowly. As Grid partitioning
is based on a uniform structure, the increment of " values increases the number of selected
partitions evenly. However, since STR partitioned files are non-uniform, the result is a
stepped graph. For example, when " value is 75, more partitions are selected, and the
execution time increases suddenly.

4.5.2.3 Speedup of the algorithm

The third experiment aims to measure the speedup of the "DRQ MapReduce algorithms,
varying the number of computing nodes (⌘). Figure 4.20, right chart, shows the impact
of ranging ⌘ from 1 to 12 on the performance of "DRQ MapReduce algorithm, for
BUILDINGS with a fixed value of " = 40. From this figure, it could be concluded
that the performance of our approach has a direct relationship with the number of
computing nodes. It could be deduced that better performance would be obtained if
more computing nodes are added. But, when the number of computing nodes exceeds
the number of map tasks, no improvement for that individual job is obtained.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 129

20 40 75 100 200
0

20

40

60

80

100

": distance values

T
ot
al

E
x
ec
u
ti
on

T
im

e
(i
n
se
c)

BUILDINGS - "DRQ

Grid
STR

1 2 4 6 8 10 12
0

50

100

150

200

⌘: # of available computing nodes

T
ot
al

E
x
ec
u
ti
on

T
im

e
(i
n
se
c)

BUILDINGS - "DRQ

"DRQ

Figure 4.20: "DRQ cost, total execution time vs. " value (left) and number of
computing nodes ⌘ (right).

4.5.2.4 Conclusions from the experimental results

By analyzing the previous experimental results, we can extract several conclusions that
are shown below:

1. We have experimentally demonstrated the e�ciency (in terms of total execution
time) and the scalability (in terms of " values, sizes of datasets, and the number
of computing nodes (⌘)) of the proposed MapReduce algorithm for "DRQ.

2. For uniform distributed datasets, the execution time variation is small, while for
real datasets, the execution times depend on the number of selected partitions in
the filtering phase.

3. The larger the " values, the higher the number of spatial objects to be checked,
and so the execution time grows. On the one hand, Grid partitioning shows a
near-linear increase due to the regular division of the space. On the other hand,
STR partitioning has non-regular partitions, obtaining a stepped increment.

4. "DRQ shows better performance when the number of computing nodes (⌘) grows,
but if there are not enough tasks available for a specific number of nodes, no
performance improvements are obtained.

4.5.3 kCPQ experiments

In this section, we present the most representative results of our experimental evaluation
of the kCPQ MapReduce algorithm [Garćıa-Garćıa et al., 2016b, Garćıa-Garćıa et al.,
2018b, Garćıa-Garćıa et al., 2020c, Garćıa-Garćıa et al., 2020b]. We have used synthetic
(clustered) and real 2d point datasets to test our kCPQ algorithm in SpatialHadoop.
For synthetic clustered datasets, we have generated several files of di↵erent sizes (25M,
50M, 75M, 100M, and 125M points) using the process detailed in Section 4.5.1. For
real datasets, we have used the following: LAKES, PARKS, ROADS, BUILDINGS and
ROADS NETWORKS. Moreover, to perform a kCPQ experiment with two big spatial

© 2021 Garćıa-Garćıa, F.J.

130 4.5. PERFORMANCE EVALUATION

datasets (one of them is BUILDINGS with 115M points), we have created a new big
quasi-real dataset from LAKES (8.4M), with a similar quantity of points. The creation
process is as follows: taking one point of LAKES, p, we generate 15 new points gathered
around p (i.e., the center of the cluster), according to the Gaussian distribution described
above, resulting in a new quasi-real dataset, CLUS LAKES, with around 126M of points
(27.5 GB). This dataset has the same shape as LAKES, but with more dense areas all
over the world. Finally, Table 4.2 summarizes the configuration parameters used in our
experiments (sampling ratio values express % of the whole datasets). Default parameters
(in parentheses) are used unless otherwise mentioned.

Parameter Values (default)

of closest pairs, k 1, 10, (102), 103, 104, 105

↵-allowance, ↵ 0.0, 0.25, 0.50, (0.75), 0.85, 0.95
Sampling ratio, ⇢ 0.005, 0.01, 0.05, (0.1), 0.5, 1, 5, 10
% Dataset, � 25, 50, 75, (100)

Number of nodes, ⌘ 1, 2, 4, 6, 8, 10, (12)
Partitioning technique Grid, (STR), Quadtree, Hilbert

PS algorithms Classic, (Reverse Run)
PS improvements Strip, Window, (Semi-Circle)
Sampling (Voronoi) k-means++

Pivot selection (Voronoi) Random, (k-means), OPTICS
% P area, � 25, 50, 75, (100)

Table 4.2: Configuration parameters used in our kCPQ experiments.

4.5.3.1 The e↵ect of applying � computation

Our first experiment is to examine the use of � distance value (the upper bound of the
distance value of the k-th closest pair) for kCPQ MapReduce algorithms in Spatial-
Hadoop (computed by global sampling (Algorithm 8), by local sampling (Algorithm 9)
or by using the ↵-allowance approximate technique).

As shown in Figure 4.21, left chart, for the real datasets LAKES ⇥ PARKS com-
bination using the Grid partitioning technique with various sampling ratios (⇢) and a
fixed k = 102 (k = 100), the execution time is almost constant for the three methods.
This trend in the results is mainly due to the fact that there is a trade-o↵ between the
time of sampling and � calculation with the one from the individual MapReduce tasks.
With a larger sampling ratio ⇢, a better � is obtained, which in turn improves the final
PSKCPQ execution time. However, increasing the value of ⇢ also increases the time
to calculate �. The use of � values accelerates the answer of the kCPQ, and using the
method of local sampling reduces the response time by around 22 times; whereas, for
the global sampling, the reduction is around 4 times faster than without � computation.
This means that the use of local sampling shortens significantly the execution time be-
cause selecting a suitable pair of partitions for each dataset and using sampling over
them reduce the computed � values and increase the power of pruning when passed to

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 131

the mappers. For instance, for a sampling ratio (⇢) equal to 0.1%, the � values obtained
by global sampling is 0.0144191, whereas by local sampling it is 0.0054841.

10�2 10�1 100 101
0

1,500

2,500

3,500

4,500

⇢: Sampling ratio in %

T
ot
al

E
x
ec
u
ti
on

T
im

e
(i
n
se
c)

LAKES ⇥ PARKS (Grid) - kCPQ

10�2 10�1 100 101
0

50

100

150

200

⇢: Sampling ratio in %
T
ot
al

E
x
ec
u
ti
on

T
im

e
(i
n
se
c)

LAKES ⇥ PARKS (STR) - kCPQ

no � computing global � computing local � computing

Figure 4.21: kCPQ cost without and with � computation (LAKES ⇥ PARKS),
varying the sampling ratio ⇢.

In the right chart of Figure 4.21, we see a di↵erent behavior if we apply the STR
partitioning technique for the same datasets. We observe that the use of global sampling
for the computation of � is more expensive than without � values in the preprocessing
phase; this is due to the fact that with the dataset sizes and the used partitioning
technique (STR), the time spent to perform the MapReduce sampling jobs (SampleMR)
produces an overhead much higher than the obtained improvement in response time. On
the other hand, the use of local sampling to get the kCPQ is faster than the other two
alternatives because the time required to perform the local sampling is very small, and
the use of � improves the time of the individual map tasks. Moreover, a similar trend is
observed between global and local sampling, which confirms that the improvement comes
actually from reducing as much as possible the time required to obtain �. Finally,
when comparing both charts in Figure 4.21, STR outperforms Grid since STR is a
partitioning technique based on the data distribution; therefore, partitions with more
uniform numbers of elements are produced, improving distance-based pruning of pairs of
partitions and load balancing between nodes. However, Grid partitioning uses uniform
division of the space without taking into account the global data density; therefore, it
produces some partitions with much more elements than others, and certain map tasks
delay the total response time of the query. Note that we have chosen for this first
experiment the Grid and STR partitioning techniques because they are used in [Eldawy
and Mokbel, 2015] for performance comparison of the spatial queries and, Grid is the
simplest (uniform grid of d

p
ne ⇥ d

p
ne grid cells, where n is the desired number of

partitions) and STR corresponds to R-trees which are widely used.

Figure 4.22 illustrates the same type of experiment (reporting the total execution
time), but now for the BUILDINGS ⇥ PARKS combination. In the left chart, we

© 2021 Garćıa-Garćıa, F.J.

132 4.5. PERFORMANCE EVALUATION

can see the same trend for Grid partitioning as in Figure 4.21, where the preprocessing
phase for computing � with local sampling is 2.7 times faster than using global sampling
(whereas without the preprocessing phase needed around 21900 seconds and it is not
depicted in the figure). In the right chart, STR is faster than Grid (e.g., for ⇢ = 0.1%
and global sampling, STR is 2.7 times faster than Grid), and local sampling is also 80
seconds faster than global sampling for computing � for the same reasons explained
previously. Notice that, without the computation of �, around 2900 seconds to carry
out the kCPQ are needed (not depicted in the figure). Again, comparing both charts,
STR outperforms Grid according to the same reasons exposed above.

10�2 10�1 100 101
0

200

400

600

800

1,000

⇢: Sampling ratio in %

T
ot
al

E
x
ec
u
ti
on

T
im

e
(i
n
se
c)

BUILDINGS ⇥ PARKS (Grid) - kCPQ

10�2 10�1 100 101
0

200

400

600

⇢: Sampling ratio in %

T
ot
al

E
x
ec
u
ti
on

T
im

e
(i
n
se
c)

BUILDINGS ⇥ PARKS (STR) - kCPQ

no � computing global � computing local � computing

Figure 4.22: kCPQ cost without and with � computation (BUILDINGS ⇥ PARKS),
varying the sampling ratio ⇢.

From these experiments, we can conclude that the use of local sampling for computing
� (Algorithm 9) generates smaller � values (e.g., BUILDINGS ⇥PARKS (STR) and
⇢ = 0.1%, the � value obtained by global sampling is 0.00211, whereas for local sampling
� is 0.00050) and then, this is more e↵ective than global sampling when � is used in the
mappers. Moreover, the partitioning technique is a determinant factor for this kind of
distance-based join; in particular, STR outperforms Grid in all cases. Finally, the value
of ⇢ (sampling ratio) is an important parameter to be considered, and we have to find
a trade-o↵ between the time of sampling and the value of � computation (the smaller
� value, the larger the time of sampling). Therefore, we have chosen ⇢ = 0.1% as the
value for the remaining experiments due to its excellent results.

Interesting results are also shown in Table 4.3, where all possible pairs of parti-
tions are shown, considering various percentages (�) of the datasets (BUILDINGS ⇥
CLUS LAKES (STR)) and, with (GS ⌘ using global sampling and LS ⌘ using local
sampling) or without using the computation of � for k = 100 (for other k values the
percentage of reduction is similar). We can extract three interesting conclusions from
this table: (1) with the use of �, we significantly reduce the number of possible pairs of
partitions to be joined (e.g., using the complete datasets, only 120 out of 1260 possible

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 133

pairs of partitions are considered); (2) the � value returned by global or local sampling
is not so determinant for the reduction of the number of pairs of partitions to be com-
bined (i.e., a smaller � value does not imply reducing the number of considered pairs of
partitions) as we can see in the two right columns; and (3) the percentage of datasets
to be joined is related to the number of considered pairs of partitions when a � value
is applied for the STR partitioning technique (e.g., the 75%, 50%, and 25% of 120 are
very close to 85, 55 and 32).

� (%) Without � � GS � LS

25 120 32 32

50 315 55 55

75 672 85 84

100 1260 120 120

Table 4.3: kCPQ cost, number of considered pairs of partitions without or with (global
sampling (GS) or local sampling (LS)) � computation.

10�2 10�1 100 101
0

500

1,000

1,500

⇢: Sampling ratio in %

T
ot
al

E
x
ec
u
ti
on

T
im

e
(i
n
se
c)

Local � computing by sampling - kCPQ

0 25 50 75 85 95
0

500

1,000

1,500

↵: allowance values (⇥10�2)

T
ot
al

E
x
ec
u
ti
on

T
im

e
(i
n
se
c)

Local � computing by approximate - kCPQ

BUILDINGS ⇥ CLUS LAKES (Grid) 125MC1 ⇥ 125MC2 (Grid)

BUILDINGS ⇥ CLUS LAKES (STR) 125MC1 ⇥ 125MC2 (STR)

Figure 4.23: kCPQ cost using local sampling (left) and ↵-allowance approximate
(right) technique for � computation.

In Figure 4.23, we study the behavior of the kCPQ MapReduce algorithm in Spa-
tialHadoop, concerning the total execution time when � is computed locally from a
suitable pair of partitions by local sampling or by using the ↵-allowance approximate
technique for the combination of the largest datasets (real and synthetic) and by using
two partitioning techniques (Grid and STR). In the left chart, we can see the trends
for several sampling ratios (⇢). Again the STR partitioning reduces the response time
significantly for real datasets (2.6 times faster when ⇢ = 0.1%) with respect to Grid, but
for the combination of synthetic data, the reduction is smaller (1.3 times faster when

© 2021 Garćıa-Garćıa, F.J.

134 4.5. PERFORMANCE EVALUATION

⇢ = 0.1%); even for ⇢ = 1.0%, ⇢ = 5.0% and ⇢ = 10.0%, the execution times are almost
the same. Moreover, notice that, when ⇢ is larger than 0.5%, the execution time with
local sampling is increased slightly since the time needed to compute � increases with
the increment of the sampling ratio. In the right chart, we can see the e↵ect of applying
the ↵PSKCPQ algorithm to the two selected partitions for computing �, by using var-
ious ↵ values (0.0, 0.25, 0.50, 0.75, 0.85 and 0.95) to report the results of kCPQ. The
response time is stable for all ↵ values when the partitioning technique is Grid (real and
synthetic) and STR (synthetic), but for BUILDINGS ⇥ CLUS LAKES (STR), the
reduction from ↵ = 0.95 to ↵ = 0.0 is around 580 sec. Taking into account this result, we
can deduce that the use of this approximate technique is useful for computing �, using
high values of ↵. Moreover, for this case, the di↵erence between ↵ = 0.75, ↵ = 0.85 and
↵ = 0.95 is very small. This behavior could be due to the fact that at the beginning
of the ↵PSKCPQ processing, this algorithm gets a small � value quickly, and then it is
executed very fast. Finally, if we compare both charts of Figure 4.23, we can conclude
that both techniques are very suitable to compute � and get the result of kCPQ in
SpatialHadoop very fast, in particular when ⇢ 2 [0.1%, 1.0%] and ↵ 2 [0.75, 0.95].

global � local � approximate �
400

600

800

1,000

1,200

T
ot
al

E
x
ec
u
ti
on

T
im

e
(i
n
se
c)

BUILDINGS ⇥ CLUS LAKES - kCPQ

preprocessing filtering MapReduce

Figure 4.24: kCPQ cost, total execution time of di↵erent phases in the execution of
kCPQ MapReduce algorithm.

Figure 4.24 shows the time spent in each phase that processing of the kCPQ in Spa-
tialHadoop is split, when the three approaches to compute � are applied in the filtering
step according to Figure 4.1. The configuration for this experiment is BUILDINGS ⇥
CLUS LAKES, STR, ⇢ = 0.1, k = 100. The three phases are: preprocessing, filtering
(Global kCPQ) and MapReduce (Local kCPQ and Top kCPQ). The time spent in the
preprocessing phase (STR) is the same for the three bars (498 sec), whereas the times
spent for the filtering phase are di↵erent, depending on the technique (global sampling,
local sampling or approximate) applied for computing �. By using the local sampling,
we get the smallest time spent (7 sec), next the approximate (40 sec) and the largest

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 135

execution time is for global sampling (106 sec). When the filtering phase is ended, a
� value is passed to the next phase; the smaller the � value, the faster the next phase
(MapReduce). With this in mind, the execution time spent in the last phase for the
three techniques are: global � = 578.498 sec (� = 0.00157), local � = 575.854 sec
(� = 0.00062) and approximate � = 559.254 sec (� = 0.00013).

The main conclusions that we can extract for this experiment are: (1) the use of
small � values accelerates the answer of the kCPQ; (2) local sampling needs less time,
generates smaller � values and is more e↵ective than global sampling; (3) both local
sampling and the ↵-allowance approximate technique are very suitable to compute �;
and (4) STR outperforms Grid since STR is a partitioning technique based on the data
distribution. For these reasons, we have chosen the local sampling as the default �
calculation technique for the rest of the experiments.

4.5.3.2 Comparison of di↵erent plane-sweep algorithms and the use of local

indices

This experiment aims to find the comparison of two plane-sweep-based kCPQ algorithms
(Classic and Reverse Run) and an improvement (Sliding Strip, Window, or Semi-Circle)
that has the best performance. As we can see in Table 4.4, the total execution times
obtained do not show significant improvements between the plane-sweep algorithms and
variants. This is due to various factors, such as reading disk speed, network delays,
consumed time for each task, etc. As shown in this table, the di↵erence between them
is not quite significant (mainly for LAKES ⇥PARKS (L⇥P)), being the Semi-Circle
Reverse Run algorithm the fastest in all cases, and the Classic Strip the slowest variant
(with the highest execution time). This is because the Reverse Run algorithm has been
specifically designed to reduce the number of distance computations [Roumelis et al.,
2014, Roumelis et al., 2016]. For this reason, we have chosen the Semi-Circle Reverse
Run as the plane-sweep kCPQ algorithm for all our experiments.

kCPQ Algorithm L⇥ P B ⇥ P

Classic Strip 126.871 293.852
Classic Window 124.661 283.441

Classic Semi-Circle 121.263 267.171
Reverse Strip 123.013 276.398

Reverse Window 121.768 230.390
Reverse Semi-Circle 120.648 229.226
Local indices (R-tree) 147.023 318.450

Table 4.4: kCPQ cost, total execution time (in seconds) spent by each kCPQ
algorithm, plane-sweep without indices and with local indices (R-tree).

Finally, since our kCPQ algorithm in SpatialHadoop supports local indices (R-trees),
we have compared it with the plane-sweep algorithms (without indices). The execution
time of local indices (R-tree), shown in the last row of Table 4.4, is higher than the
running time of all plane-sweep-based algorithms. The reason why the use of local indices

© 2021 Garćıa-Garćıa, F.J.

136 4.5. PERFORMANCE EVALUATION

slows down the algorithm is the fragmentation of the data produced by the R-tree’s own
structure. When no local indices are used, all elements present in the corresponding
partitions are loaded into main memory, and then the appropriate plane-sweep-based
kCPQ algorithm is performed. However, when using R-tree structures, the spatial data
objects are stored in the leaves, and their number is determined by the degree of the
tree. This degree for the node size and the configuration used for the experiments is 26
(suggested by [Eldawy and Mokbel, 2015]). When, finally, it is necessary to compare
leaf nodes, multiple PSKCPQ algorithms with small quantities of spatial objects are
performed. The sum of the execution times of these tasks becomes greater than working
with all data in the partitions directly in main memory. We can see this behavior with
the BUILDINGS⇥PARKS (B⇥P) combination, where Reverse Run Semi-Circle is
around 30% faster than using the local indices (R-trees).

The main conclusions that we can extract from this experiment are: (1) the Semi-
Circle Reverse Run algorithm is the fastest PSKCPQ algorithm, and (2) the use of local
indices (R-trees) does not increase the performance of the algorithm because of the time
spent by multiple small PSKCPQ executions.

4.5.3.3 The e↵ect of using di↵erent spatial partitioning techniques

In this experiment, we evaluate the e↵ect of choosing a partitioning technique with
the proposed kCPQ MapReduce algorithm. In [Eldawy et al., 2015], the most impor-
tant conclusions for distributed join processing, using the overlap spatial predicate, are
the following: (1) the smallest running time is obtained when the same partitioning
technique is used in both datasets (except for Z -curve, which reports the worst running
times), and (2) the Quadtree outperforms all other techniques for the running time since
it minimizes the number of overlapping partitions between the two data files by employ-
ing regular space partitioning. Therefore, we experiment with the kCPQ MapReduce

L⇥ P B ⇥ P B ⇥ C L
0

500

1,000

1,500

kCPQ of real datasets

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

Real Datasets - kCPQ

25MC 50MC 75MC 100MC 125MC
0

250

500

750

kCPQ of synthetic datasets

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

Synthetic Datasets - kCPQ

GRID STR QUADTREE HILBERT

Figure 4.25: kCPQ cost, total execution time of di↵erent partition techniques,
combining real (left) and synthetic datasets (right).

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 137

algorithm with both datasets partitioned with the same technique from the following:
Grid, STR, Quadtree, and Hilbert-Curve.

As shown in the left chart of Figure 4.25, for the kCPQ performance of real datasets
(LAKES⇥PARKS, BUILDINGS⇥PARKS and BUILDINGS⇥CLUS LAKES),
the choice of a partitioning technique a↵ects the execution time. For instance, Quadtree
is the fastest (445 sec), the STR is the second (642 sec), the third is Hilbert (884 sec),
and the slowest is the Grid (1667 sec), for the combination of the biggest real datasets:
BUILDINGS⇥CLUS LAKES (B⇥C L). Moreover, the influence of the partitioning
technique is less for the combination of the smallest datasets, LAKES⇥PARKS (L⇥P),
where the execution times are almost the same (e.g., Quadtree is only 32 sec faster than
STR). The behavior for synthetic datasets is di↵erent (see the right chart of Figure
4.25) due to the nature of the data distribution (uniform distribution of the centers of
the clusters) and the type of partitioning technique (replication-based and distribution-
based). The trends of replication-based techniques (Quadtree and Grid) are very similar,
as in the case of distribution-based (STR and Hilbert). Moreover, for the combination
of the biggest synthetic datasets, 125MC1 ⇥ 125MC2 (125M), the fastest partitioning
technique is Quadtree (534 sec), and STR has a very close running time (only 2 sec
slower), Grid takes 651 sec, and Hilbert is the slowest with 757 sec. Note that, a
label like 25MC on X-axis of the chart for synthetic datasets indicates the combination
25MC1⇥ 25MC2.

4.5.3.4 The e↵ect of the increment of k values

This experiment studies the e↵ect of increasing the k value for the combination of the
biggest datasets (real and synthetic). The left chart of Figure 4.26 shows that the total
execution time for real datasets (BUILDINGS ⇥ CLUS LAKES) grows slowly, as
the number of results to be obtained (k) increases, until k = 104; but for k = 105,
the increment is larger, mainly for STR (around 850 sec). The Quadtree reports the

1 10 10
2

10
3

10
4

10
5

0

500

1,000

1,500

2,000

k: # of closest pairs

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

BUILDINGS ⇥ CLUS LAKES - kCPQ

1 10 10
2

10
3

10
4

10
5

0

500

1,000

1,500

2,000

k: # of closest pairs

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

125MC1⇥ 125MC2 - kCPQ

STR QUADTREE

Figure 4.26: kCPQ cost, total execution time vs. k values.

© 2021 Garćıa-Garćıa, F.J.

138 4.5. PERFORMANCE EVALUATION

best execution times, even for large k values (e.g., k = 105). These results mean that
the Quadtree is less a↵ected by the increment of k because Quadtree employs regular
space partitioning, depending on the concentration of the points. For the combination
of synthetic datasets (125MC1 ⇥ 125MC2), in the right chart, for small k values, the
Quadtree is slightly faster than STR, but for larger k values, the roles are swapped, and
STR is faster than Quadtree.

The main conclusions that we can extract for this experiment are: (1) the Quadtree
again satisfies kCPQ in the fastest way, mainly for real datasets, and (2) the higher the
k values, the greater the possibility that pairs of partitions are not pruned, more map
tasks could be required, and more total execution time is needed.

4.5.3.5 The e↵ect of extending the algorithm for non-points spatial objects

In the following experiments, we analyze the behavior of the kCPQ algorithm in Spa-
tialHadoop when the extension for processing non-points spatial objects is applied (see
Section 4.4.1). Therefore, we will vary di↵erent parameters, such as dataset size, type
of spatial object, partitioning technique, and the k value.

In Figure 4.27, the chart on the left shows the kCP (P,Q, k) for point datasets (where
P ⇥ Q ⌘ LAKES ⇥ PARKS (L ⇥ P), PARKS ⇥ ROADS (P ⇥ R), ROADS ⇥
BUILDINGS (R⇥B) and BUILDINGS⇥ROAD NETWORKS (B⇥RN)) respect
to the execution time for a fixed k = 100. The first conclusion is that the execution
times grow as dataset size increases. The best partitioning technique is Quadtree, which
is approximately 15% faster than STR. Moreover, for the combinations of the biggest
datasets (R ⇥ B and B ⇥ RN) Quadtree is the fastest, e.g., for B ⇥ RN Quadtree is
12% (174 sec) faster than STR.

In Figure 4.27, the chart on the right shows the kCPQ performance for real spatial
object datasets (L⇥P : polygons ⇥ polygons, P⇥R: polygons ⇥ line-strings, R⇥B: line-
strings ⇥ polygons and B⇥RN : polygons ⇥ line-strings) with respect to the execution
time. A trend similar to the chart on the left (for points) is observed for the combination
of small-to-medium dataset sizes. Quadtree is the fastest partitioning technique for the
largest dataset combinations (it is slightly better than STR), and the Grid is the slowest.
Quadtree outperforms all other partitioning techniques with respect to the running time
since it minimizes the number of overlapping partitions between the two files for a DJQ
by employing regular space partitioning. Moreover, comparing both charts in Figure
4.27, it may be seen that, when a kCPQ is executed between two datasets of spatial
objects, it is more costly than when the two datasets are points, although the trend is
very similar. This is because the computation of the distance between two spatial objects
(e.g., between two polygons or between a polygon and a line-string) is more costly than
computing the distance between a pair of points. It should also be borne in mind that
the size of the datasets of spatial objects is larger than the size of point datasets and
are, therefore, more costly to retrieve (read) and process. In addition, the distances
between spatial objects are much smaller because some objects occupy a certain area
with respect to the centroids that do not have any. This reduction in the distance values
between spatial objects produces a smaller pruning bound by the plane-sweep kCPQ
algorithm, which discards fewer elements in each step of the algorithm.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 139

L⇥ P P ⇥R R⇥B B ⇥RN

0

1,000

2,000

3,000

4,000

5,000

6,000

P⇥ Q: Datasets joined

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

Point Datasets - kCPQ

L⇥ P P ⇥R R⇥B B ⇥RN

0

1,000

2,000

3,000

4,000

5,000

6,000

P⇥ Q: Datasets joined

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

Spatial Objects Datasets - kCPQ

GRID STR QUADTREE HILBERT

Figure 4.27: kCPQ cost, total execution time of di↵erent partitioning techniques,
joining points (left) and non-points spatial objects (right).

Figure 4.28 shows the e↵ect of increasing k value in the combination of the biggest
datasets (BUILDINGS⇥ROAD NETWORKS) for kCPQ. The first conclusion that
can be drawn is that the total execution time grows slowly as the number of results to be
found (k) increased for both types of spatial objects. Quadtree has very stable execution
times, even for large k values (e.g., k = 105) and when the sets of spatial objects (polygons
⇥ line-strings) are joined. This means that the Quadtree is less a↵ected by the increase
of k because Quadtree employs a regular space partitioning technique depending on the
concentration/density of spatial objects. In Figure 4.28 all algorithms show a slight
deviation for the highest values of k.

The main conclusions that we can draw for this experiment are: (1) the kCPQ
between two datasets of spatial objects (non-points) has more cost than when joining
points because the final distance calculations need more time and the dataset size is
higher; (2) the distances between spatial objects are smaller, and so the pruning bound
of the PSKCPQ is less e↵ective; and (3) the Quadtree again gets the best performance
for kCPQ, for all types of spatial datasets.

4.5.3.6 Using Voronoi-Diagram based partitioning

The following experiment aims to measure the e↵ect of using Voronoi-Diagram based
partitioning (see Section 3.4) for the kCPQ MapReduce algorithm in SpatialHadoop.
Therefore, we will compare this partitioning technique with the Quadtree (Q) built-in
partitioning technique which has shown to obtain the best performance results for kCPQ.
We will consider the k-means++ sampling (the winner in the sampling experiments of
Section 3.6.2.1), and the three pivot selection techniques: random selection (VoronoikR,
VkR), k-means selection (Voronoikk, Vkk) and OPTICS selection (VoronoikO, VkO)).

In Figure 4.29, left chart, the kCPQ for a fixed k = 100 and for real spatial datasets
(L⇥P , P ⇥R, R⇥B and B⇥RN) is shown with respect to the execution time for the

© 2021 Garćıa-Garćıa, F.J.

140 4.5. PERFORMANCE EVALUATION

1 10 10
2

10
3

10
4

10
5

0

500

1,000

1,500

2,000

2,500

k: # of closest pairs

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

BUILDINGS ⇥ROAD NETWORKS - kCPQ

Points Spatial Objects

Figure 4.28: kCPQ cost (Quadtree-based partitioning), total execution time vs. k
values.

di↵erent partitioning techniques (Voronoikk, VoronoikR, VoronoikO and Quadtree). We
can observe that the execution times in all partitioning techniques grow almost linearly
as the size of the datasets is increased, except VoronoikO that for P ⇥ R the time is
very high due to mainly the high preprocessing cost. For kCPQ, the best partitioning
technique is Quadtree, which is approximately 18% faster than Voronoikk. Moreover, for
the combinations of L⇥ P and P ⇥R, Voronoikk is slightly faster than Quadtree (e.g.,
for L ⇥ P Voronoikk is 14 sec faster than Quadtree), but for the combinations of the
biggest datasets (R⇥B and B⇥RN) Quadtree is the fastest, e.g., for B⇥RN Quadtree
is 18% (254 sec) faster than Voronoikk. That is, Voronoikk exhibits smaller runtime
values for smaller dataset sizes since it produces a slightly larger number of partition
combinations (e.g., 24 vs. 23 partition pairs for L ⇥ P) that are better distributed in
tasks for our cluster of nodes. But for bigger dataset sizes, Quadtree is the fastest for
kCPQ since it minimizes the number of partitions for each dataset and the number
of pairs of partitions that overlap between them. For instance, for the combination of
B ⇥RN , Quadtree obtains 78⇥ 430 = 33540 possible pairs of partitions, remaining 711
pairs of partitions (2%) after applying the Rule 1, with a total execution time of 1220 sec.
In the case of Voronoikk, it generates 81 ⇥ 512 = 41472 pairs of partitions, remaining
1191 pairs of partitions (2.8%) after applying Rule 2, with a total execution time of
1474 sec, that is slightly higher than for Quadtree due to the increase on the number
of map tasks. Finally, VoronoikO shows the worst results, noting that the indexing
time of VoronoikO is much higher and the number of partitions is smaller. Figure 4.29,
right chart, shows the e↵ect of increasing the k value for the combination of the biggest
datasets (BUILDINGS ⇥ ROAD NETWORKS) for kCPQ. This experiment shows
that the total execution time grows slowly as the number of results to be obtained (k)
increases. All partitioning techniques report very stable execution times, even for large

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 141

k values (e.g., k = 105), although, we can see that Quadtree still exhibits the best
performance (the lowest execution times).

L⇥ P P ⇥R R⇥B B ⇥RN
0

500

1,000

1,500

2,000

2,500

3,000

P⇥ Q: Datasets joined

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

Real Datasets - kCPQ

1 10 10
2

10
3

10
4

10
5

0

500

1,000

1,500

2,000

2,500

3,000

k: # of closest pairs

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

BUILDINGS ⇥ROAD NETWORKS - kCPQ

Voronoikk VoronoikR VoronoikO Quadtree

Figure 4.29: kCPQ cost, total execution time of di↵erent partitioning techniques,
joining real datasets (left) and varying the k values (right).

4.5.3.7 Extensibility varying the P dataset area

In this experiment, we evaluate the extensibility of the proposed kCPQ MapReduce
algorithm, considering di↵erent percentages (�) of the P dataset area and keeping Q
fixed. In this experiment, we compare our best approach using the Voronoi-Diagram
based partitioning technique (Voronoikk) to Quadtree. We aim to assess the performance
of this DJQ when the amount of data is massive, varying the smallest dataset (P) by
executing a Window Query centered on the MBR of P with a percentage (�) of the
original MBR. In the case of ROADS and the � values of 25%, 50%, 75%, and 100%,
we have obtained a percentage of points of 2%, 27%, 70%, and 100% from the original
dataset P.

Figure 4.30 shows that Voronoikk presents smaller execution times when the size of
the datasets is smaller since the pruning rule with MmDist works better, and there is
still a higher number of partitions. However, as shown in the experiments of Section
4.5.3.6, Quadtree minimizes the number of partitions and therefore obtains better results
for high � values.

4.5.3.8 Speedup of the algorithm

This final experiment aims to measure the speedup of the proposed kCPQ MapReduce
algorithm, varying the number of computing nodes (⌘). To evaluate the scalability per-
formance, we compare our best approach using the Voronoi-Diagram based partitioning
technique (Voronoikk) to the same MapReduce algorithm using the Quadtree partition-
ing scheme.

© 2021 Garćıa-Garćıa, F.J.

142 4.5. PERFORMANCE EVALUATION

� = 25% � = 50% � = 75% � = 100%
0

100

200

300

400

500

600

�: % Dataset

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

ROADS ⇥BUILDINGS - kCPQ

Voronoikk Quadtree

Figure 4.30: kCPQ cost, total execution time for the combination of
ROADS ⇥BUILDINGS, considering di↵erent � (%) values for k = 100.

Figure 4.31 shows the impact of considering a di↵erent number of computing nodes
on the performance of the kCPQ MapReduce algorithm for BUILDINGS ⇥ PARKS
and using default configuration values. From this chart, we can conclude that the
performance of our approach has a direct relationship with the number of computing
nodes. It could also be deduced that better performance would be obtained if more

1 2 4 6 8 10 12
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

⌘: # of available computing nodes

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

BUILDINGS ⇥ PARKS - kCPQ

Voronoikk Quadtree

Figure 4.31: kCPQ cost with respect to the number of computing nodes ⌘ (Speedup).

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 143

computing nodes are added, but when the number of computing nodes exceeds the
number of map tasks, no improvement is obtained. Finally, we can gather that Quadtree
exhibits lower execution times than Voronoikk.

4.5.3.9 Conclusions from the experimental results

We have experimentally demonstrated the e�ciency (in terms of total execution time)
and the scalability (in terms of k values, sizes of datasets and number of computing
nodes (⌘)) of the proposed kCPQ MapReduce algorithm in SpatialHadoop. From the
previous experimental results, we can extract the following conclusions:

1. The initial kCPQ MapReduce algorithm, described in Section 4.3.2, is significantly
improved by the three methods for the computation of an upper bound distance
� from Section 4.4.2. More specifically, the local computation methods, based
either on sampling or the ↵-allowance approximate technique, have shown the
best improvements in the e�ciency of the kCPQ algorithm.

2. Alternative plane-sweep-based algorithms (Classic and Reverse Run) in the MapRe-
duce implementation have similar performances in terms of execution time (Re-
verse Run is slightly faster), although they are faster than using local indices
(R-trees) in each map task.

3. The Quadtree partitioning technique improves the e�ciency of the kCPQ MapRe-
duce algorithms significantly. This is due to the regular division of the space,
according to the data distribution (the densities of the partitions depend on the
concentration of points) [Eldawy et al., 2015].

4. The larger the k, the higher the probability that pairs of partitions are not pruned,
moremap tasks will be needed, and higher total execution time is spent in reporting
the final query result.

5. When combining spatial objects (non-points), the running time is slightly higher
than for points but following similar trends.

6. Quadtree also outperforms all Voronoi-Diagram based partitioning techniques con-
cerning the execution time for the kCPQ, although Voronoikk (Vkk) technique
presents slightly better performance for the combinations of the smallest datasets.

7. In the experiments varying the � values (extensibility), if the size of the MBR of
P is smaller compared to Q, Voronoikk presents a slightly better behavior than
Quadtree for kCPQ. However, for medium and large � values, Quadtree gets the
best performance.

8. The larger the number of computing nodes (⌘), the faster the kCPQ MapReduce
algorithm is, but when ⌘ exceeds the number of map tasks, no improvement for
the whole job is obtained.

© 2021 Garćıa-Garćıa, F.J.

144 4.5. PERFORMANCE EVALUATION

4.5.4 "DJQ experiments

This section collects the most representative results of several experiments over our
"DJQ MapReduce algorithm [Garćıa-Garćıa et al., 2018b, Garćıa-Garćıa et al., 2020c].
For this performance evaluation, we have used the same datasets from the kCPQ ex-
periments. For instance, we have used synthetic clustered datasets of distinct sizes
(25M, 50M, 75M, 100M and 125M points), real datasets (LAKES, PARKS, ROADS,
BUILDINGS and ROADS NETWORKS) and the quasi-real dataset (CLUS LAKES).
Table 4.5 summarizes the configuration parameters used in our experiments, note that
" represents a distance threshold. Default parameters (in parentheses) are used unless
otherwise mentioned.

Parameter Values (default)

point distance, " (⇥10�4) 2.5, 5, 7.5, 12.5, (25), 50
non-point distance, " (⇥10�5) 7.5, 10, 25, 50, 75, (100)

Number of nodes, ⌘ 1, 2, 4, 6, 8, 10, (12)
Partitioning technique Grid, (STR), Quadtree, Hilbert

PS algorithms (Classic), Reverse Run
PS improvements Strip, Window, (Semi-Circle)

Table 4.5: Configuration parameters used in our "DJQ experiments.

4.5.4.1 Comparison of di↵erent plane-sweep algorithms and the use of local

indices

For the "DJQ, we have designed and executed similar experiments to those in Section
4.5.3.2 for the kCPQ to detect which is the best variant of the plane-sweep algorithms.
Table 4.6 shows these results, and we can observe that the Strip variant of Classic
and Reverse Run is the slowest, but Window and Semi-Circle have very close execution
times, and the Classic Semi-Circle is slightly the fastest. Moreover, as for the kCPQ, we
have adapted the distributed join algorithm [Eldawy and Mokbel, 2015] to implement a
distributed "DJQ algorithm using the Classic plane-sweep technique in each combination
of pairs of nodes of local R-trees. As shown in the last row of Table 4.6, its total execution
time is much higher than one of the plane-sweep-based algorithms without using local
indices (R-trees). The justification is very similar to that of the kCPQ, in which the use
of a single plane-sweep algorithm for the entire partition is favored over multiple accesses
and executions of plane-sweep-based "DJQ algorithm on pairs of R-tree leaves. Finally,
we can highlight that for the smallest datasets combination, LAKES⇥PARKS (L⇥P),
the Classic Semi-Circle is around 23 times faster than using the local indices, while for
the join of larger datasets, BUILDINGS ⇥ PARKS (B ⇥ P), Classic Semi-Circle is
around 25 times faster.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 145

"DJQ Algorithm L⇥ P B ⇥ P

Classic Strip 275.701 2798.069
Classic Window 98.024 418.473

Classic Semi-Circle 91.923 391.612
Reverse Strip 268.777 2506.165

Reverse Window 99.150 437.814
Reverse Semi-Circle 98.981 434.038
Local indices (R-tree) 2129.338 9748.563

Table 4.6: Total execution time (in sec) spent by each "DJQ algorithm, plane-sweep
without indices and with local indices (R-tree).

4.5.4.2 The e↵ect of using di↵erent spatial partitioning techniques

This experiment studies the e↵ect of choosing a partitioning technique for the pro-
posed "DJQ MapReduce algorithm. Similar to kCPQ, this choice a↵ects the exe-
cution time of "DJQ, regardless of whether the datasets are real or synthetic. For
instance, for real datasets (see the left chart of Figure 4.32), for the combination of
large datasets, LAKES ⇥ PARKS (L⇥ P), Hilbert partitioning is slightly faster than
the other techniques (e.g., it is 11 sec faster than STR, which is the second), but for
BUILDINGS ⇥ PARKS (B ⇥ P), Quadtree is the fastest (82 sec faster than the sec-
ond, STR), and for the largest datasets combination, BUILDINGS⇥CLUS LAKES
(B ⇥ C L), STR is the fastest (324 sec faster than Quadtree). From these results with
real data, we can conclude that the bigger the datasets, the better the performance of
STR for "DJQ. The behavior for synthetic datasets is not so di↵erent (see the right chart

L⇥ P B ⇥ P B ⇥ C L
0

250

500

750

"DJQ of real datasets

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

Real Datasets - "DJQ

25MC 50MC 75MC 100MC 125MC
0

100

200

300

"DJQ of synthetic datasets

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

Synthetic Datasets - "DJQ

GRID STR QUADTREE HILBERT

Figure 4.32: "DJQ cost, total execution time of di↵erent partition techniques,
combining real (left) and synthetic datasets (right).

© 2021 Garćıa-Garćıa, F.J.

146 4.5. PERFORMANCE EVALUATION

of Figure 4.32), although the data distribution is distinct. In the same way, the trends of
replication-based techniques (Quadtree and Grid) are very similar to those of kCPQ, as
the case for distribution-based (STR and Hilbert), with small gaps between them. More-
over, for the combination of the smallest synthetic datasets, 25MC1 ⇥ 25MC2 (25M),
again Hilbert is slightly the fastest (only 2 sec faster than Quadtree). The Quadtree is
the fastest for the combination of 50MC1⇥50MC2 (50M) and 75MC1⇥75MC2 (75M),
while STR is the fastest for the biggest synthetic datasets (e.g., for 125MC1⇥ 125MC2
(125M), STR is 28 sec faster than Quadtree, which is the second). Similarly to real
datasets, we can conclude for synthetic data that the bigger the datasets, the better the
performance of STR for "DJQ. Also note that, when we write on the X-axis of the chart
for synthetic datasets 25MC, we mean 25MC1⇥ 25MC2.

Lastly, we should highlight the excellent behavior of Quadtree partitioning technique,
which reports the lower execution times in most of the cases (mainly for real datasets),
as in the previous kCPQ experiments and in [Eldawy et al., 2015] for distributed overlap
join.

4.5.4.3 The e↵ect of the increment of " values

In this experiment, we study the e↵ect of increasing the " value in the "DJQ MapReduce
algorithm for the combination of the biggest datasets (real and synthetic). As shown in
the left chart of Figure 4.33, the total execution time for real datasets (BUILDINGS⇥
CLUS LAKES) grows as " increases. Both partitioning techniques (Quadtree and
STR) have similar performance for all " values, except for " = 50 ⇥ 10�4, where STR
outperforms Quadtree (i.e., STR is 295 sec faster). For the combination of synthetic
datasets (125MC1 ⇥ 125MC2) in the right chart, for small " values both techniques
(Quadtree and STR) have similar performance, but for larger " values Quadtree is faster
than STR (e.g., Quadtree is 65 sec faster for " = 25⇥ 10�4).

2.5 5 7.5 12.5 25 50
0

500

1,000

1,500

": distance values (⇥10
�4

)

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

BUILDINGS ⇥ CLUS LAKES - "DJQ

2.5 5 7.5 12.5 25 50
0

100

200

300

400

": distance values (⇥10
�4

)

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

125MC1⇥ 125MC2 - "DJQ

STR QUADTREE

Figure 4.33: "DJQ cost, total execution time vs. " values.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 147

Similar conclusions to the kCPQ performance can be extracted for the "DJQ: (1) the
Quadtree outperforms STR for the "DJQ mainly for synthetic datasets (for real datasets,
except for large " values) and (2) the higher the " values, the greater the possibility that
pairs of partitions are not pruned, more map tasks are needed and more total execution
time is required.

4.5.4.4 The e↵ect of extending the algorithm for non-points spatial objects

In this experiment, we analyze the performance of the "DJQ algorithm in SpatialHadoop
when applying the extension for processing non-points spatial objects (see Section 4.4.1).
Consequently, we will study the e↵ect of varying di↵erent parameters, such as dataset
size, type of spatial object, partitioning technique, and " value.

Figure 4.34 shows the "DJ(P,Q, ") performance for point datasets (where P ⇥ Q ⌘
LAKES ⇥ PARKS (L⇥ P), PARKS ⇥ROADS (P ⇥R), ROADS ⇥BUILDINGS
(R ⇥ B) and BUILDINGS ⇥ ROAD NETWORKS (B ⇥ RN)) respect to the total
execution time for a fixed " = 0.001 (100⇥10�5). As for kCPQ, the choice of partitioning
technique clearly a↵ected the "DJQ execution time, and again Quadtree performance
is the best for point datasets (slightly better than STR) as seen in the chart on the
left. For the combinations of the biggest datasets (R⇥B and B ⇥RN) Quadtree is the
fastest, e.g., for B ⇥RN Quadtree is 8% (91 sec) faster than STR.

L⇥ P P ⇥R R⇥B B ⇥RN

0

1,000

2,000

3,000

4,000

5,000

P⇥ Q: Datasets joined

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

Point Datasets - "DJQ

L⇥ P P ⇥R R⇥B B ⇥RN

0

1,000

2,000

3,000

4,000

5,000

P⇥ Q: Datasets joined

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

Spatial Objects Datasets - "DJQ

GRID STR QUADTREE HILBERT

Figure 4.34: "DJQ cost, total execution time of di↵erent partitioning techniques for
points (left) and non-points spatial objects (right).

In the chart on the right of Figure 4.34, the results of "DJQ for real spatial object
datasets are shown with respect to the total execution time (" = 0.001). The trend is
similar to the left-hand chart, where the STR partitioning technique is the fastest in
all cases (slightly faster than Quadtree, except for B ⇥ RN), and again the Grid is the
slowest. For example, Quadtree is 9% (100 sec) faster than STR in the combination of
the biggest datasets. Therefore, the conclusion is that the bigger the datasets, the better
the performance of Quadtree for "DJQ. A comparison of the two charts in Figure 4.34

© 2021 Garćıa-Garćıa, F.J.

148 4.5. PERFORMANCE EVALUATION

shows that for the same " value, the "DJQ between two datasets of spatial objects is
more expensive than when the two datasets are points (the same as for kCPQ), although
the trend is very similar. The reason is that the computation of the distance between
spatial objects is more costly than the distance between points, and because, just as for
kCPQ, the distances between spatial objects are smaller, returning more results for the
same ".

Figure 4.35 shows the total execution time grows as " is increased. At higher " values,
execution times started to increase due to the increment in the number of elements
in the results. If "DJQ behavior in joining points and spatial objects is compared
in SpatialHadoop, it may be seen that when a "DJQ is executed between two point
datasets, the execution time is smaller than when the two datasets are spatial objects
for small and medium " values. However, for higher " values (" >= 75 ⇥ 10�5), its
performance is worse, even though the calculation of the distance between spatial objects
is more expensive than for points. The main reason is that the resulting partitions from
Quadtree partitioning are di↵erent for each type, and in the case of spatial objects, they
tend to contain fewer elements. Therefore, in this particular case, the workload is more
balanced, and there are less skewed data when dealing with spatial objects than with
points for higher " values.

7.5 10 25 50 75 100
0

200

400

600

800

1,000

1,200

1,400

": distance values (⇥10
�5

)

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

BUILDINGS ⇥ROAD NETWORKS - "DJQ

Points Spatial Objects

Figure 4.35: "DJQ cost (Quadtree), total execution time vs. " values.

The main conclusions that we can extract for this experiment are: (1) the "DJQ
between two datasets of spatial objects has more cost than when joining points because
the final distance calculations need more time and the dataset size is higher; (2) the
distances between spatial objects are smaller, so the query returns more results for the
same "; and (3) although the STR partitioning technique has slightly better results for
smaller datasets, the Quadtree gets the best performance when the biggest datasets are
combined.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 149

4.5.4.5 Speedup of the algorithm

This experiment aims to measure the speedup of the "DJQ MapReduce algorithm vary-
ing the number of computing nodes (⌘). We have used the Quadtree as the partitioning
technique, even though STR has a very similar trend. Figure 4.36 shows the impact of
changing the number of computing nodes on the performance of "DJQ MapReduce al-
gorithm, for BUILDINGS⇥PARKS with the default configuration values. From this
chart, we can conclude that the performance of our approach has a direct relationship
with the number of computing nodes. It could also be deduced that better performance
would be obtained if more computing nodes are added. However, when the number of
computing nodes exceeds the number of map tasks, no improvement for the whole job
is obtained.

1 2 4 6 8 10 12
0

500

1,000

1,500

2,000

2,500

3,000

⌘: # of available computing nodes

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

BUILDINGS ⇥ PARKS - "DJQ

QUADTREE

Figure 4.36: "DJQ cost with respect to the number of computing nodes ⌘ (Speedup).

4.5.4.6 Conclusions from the experimental results

We have experimentally demonstrated the e�ciency and the scalability of the proposed
"DJQ MapReduce algorithm in SpatialHadoop. The most relevant conclusions that we
can draw from the previous experiments are the following:

1. The use of plane-sweep-based algorithms (either Classic or Reverse Run version)
for the "DJQ in SpatialHadoop allows lower execution times than utilizing local
indices (R-trees).

2. The larger the " value, the higher the probability that pairs of partitions are not
pruned, more map tasks will be needed, and higher total execution time is spent
in reporting the final result.

3. The use of the Quadtree partitioning technique improves the performance of the
"DJQ algorithm. Although the STR partitioning technique has slightly better

© 2021 Garćıa-Garćıa, F.J.

150 4.5. PERFORMANCE EVALUATION

results for smaller datasets, the Quadtree gets the best performance when the
biggest datasets are joined. For instance, its regular division of the space minimizes
the number of overlapping partition pairs when increasing the " value.

4. When combining spatial objects, the computation of the final distance calculations
increases the total execution time, and the fact that the distance between spatial
objects is less than the distance between points makes the query returns more final
results for the same ". However, the performance follows similar behavior for both
types of spatial objects (points and non-points).

5. "DJQ shows better performance when the number of computing nodes (⌘) is in-
creased, but if there are not enough tasks available for a specific number of nodes,
no performance improvements are obtained.

4.5.5 kNNJQ experiments

In this experimental section, we expose the most significant results of our performance
evaluation of the kNNJQ MapReduce algorithm [Garćıa-Garćıa et al., 2020b, Garćıa-
Garćıa et al., 2020c]. We have used only real-world datasets because this type of data
is more realistic, and the conclusions that we can infer from their experimental results
are more representative than if we use synthetic ones. We have utilized the following
real datasets (described in Section 4.5.1): LAKES (L), PARKS (P), ROADS (R),
BUILDINGS (B) and ROAD NETWORKS (RN). Again, we have transformed spatial
objects to points by using the center of each MBR and the centroid of each polygon.

To study the performance of the kNNJQ MapReduce algorithm, we have utilized
the Quadtree as the global partitioning technique due to the excellent results reported
in all join operations [Eldawy et al., 2015, Garćıa-Garćıa et al., 2018b]. To test the
improvements related to the use of repartitioning techniques, we have employed Grid and
Quadtree partitioning methods. When Voronoi-Diagram based partitioning is applied,
the same technique will be used for both Global partitioning and Repartitioning phases.

Table 4.7 summarizes the configuration parameters employed in our experiments.
Default parameters (in parentheses) are used unless otherwise mentioned.

Parameter Values (default)

of nearest neighbors, k 1, (10), 25, 50, 75, 100
Number of nodes, ⌘ 1, 2, 4, 6, 8, 10, (12)

Partitioning technique (Quadtree), Voronoi
Repartitioning technique None, Grid, (Quadtree), Voronoi

Sampling (Voronoi) k-means++
Pivot selection (Voronoi) Random, (k-means), OPTICS

% P area, � 25, 50, 75, (100)

Table 4.7: Configuration parameters used in our kNNJQ experiments.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 151

4.5.5.1 The e↵ect of using repartitioning techniques

The first experiment for the kNNJQ MapReduce algorithm studies the e↵ect of using
repartitioning techniques (see Section 4.4.3.1). For this aim, we measure the variation
of two parameters, such as the dataset sizes to be joined (scalability) and k values.
Also, note that L = 100000 and r = 2% for Quadtree-based repartitioning and L =
50000 for the Grid -based repartitioning techniques. Remember that L represents the
maximum number of elements in each partition, and r is the sample ratio in the sampling
process of the Quadtree-based repartitioning. In the chart on the left, in Figure 4.37, the
kNNJ(P,Q, k) query is shown with respect to the execution time and k = 10, where P =
LAKES has been fixed as the smallest dataset and the others as Q (PARKS, ROADS,
BUILDINGS and ROAD NETWORKS), resulting in the following combinations of
P ⇥ Q: L ⇥ P , L ⇥ R, L ⇥ B and L ⇥ RN . The most important conclusion that can
be arrived at from this chart is that the Quadtree-based repartitioning technique is the
fastest, next is Grid -based, whereas the worst alternative is not to use any repartitioning
technique (mainly when joining the biggest datasets). For example, for L⇥P , Quadtree
is 1.8 times faster than Grid and for L ⇥ RN , Quadtree is 4.8 times faster. Another
important result is that Quadtree-based repartitioning technique is quite stable, with
increase in size of Q dataset for a fixed k = 10. For instance, from L⇥P to L⇥RN , the
increment is 53.4% (1491 sec) when the increment of ROAD NETWORKS (717M)
with respect to PARKS (10M) is huge in terms of the number of points. Another
conclusion is that Quadtree has quite stable execution times with a sub-linear increment
as the size of the dataset (Q) grows. This excellent behavior of SpatialHadoop with
Quadtree-based repartitioning technique is because its repartitioning technique deals
with skewed data very well.

The chart on the right, in Figure 4.37, shows the e↵ect of increasing the value of
k for the combined datasets (LAKES ⇥ PARKS). We can observe that the use of

L⇥ P L⇥R L⇥B L⇥RN

0

2,500

5,000

7,500

10,000

12,500

P⇥ Q: Datasets joined

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

Point Datasets - kNNJQ

1 10 25 50 75 100
0

2,500

5,000

7,500

10,000

12,500

k: # of nearest neighbors

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

LAKES ⇥ PARKS - kNNJQ

None GRID QUADTREE

Figure 4.37: kNNJQ cost, total execution time of di↵erent datasets combinations (left)
and varying the k values (right).

© 2021 Garćıa-Garćıa, F.J.

152 4.5. PERFORMANCE EVALUATION

repartitioning techniques improves the kNNJQ performance in SpatialHadoop highly.
Moreover, we can see that for small k values (k 25), Quadtree is faster than Grid, but
when k is large (k > 25) Grid takes a similar or even shorter time to report the query
result. This behavior is because the repartitioning techniques produce di↵erent types of
partition subsets. In the case of Grid, it is a uniform distribution where all partitions
are the same size, whereas for Quadtree, it is a regular space partitioning technique
based on the concentration of spatial objects, and therefore, it generates di↵erent sized
partitions. In an algorithm like kNNJQ, an increase in k augments the possibility of
selecting more partitions overlapping with the ranges of distances found in the Bin kNN
Join phase. Therefore, the same point must be compared in more than one partition,
increasing the size of shu✏ed data and having a partial kNN list for each partition that
must be combined in the last phase of the algorithm. These results suggest that as k
increases, the number of overlapping partitions increases to a greater extent and more
suddenly for Quadtree-based repartitioning than for Grid -based.

The following experiment with the kNNJQ MapReduce algorithm compares the
Grid -based and Quadtree-based repartitioning techniques in SpatialHadoop by evalu-
ating the cost, in total execution time and shu✏ed data in each of the phases in the
query algorithm. In Figure 4.38, the chart on the left, the kNNJ(P,Q, k) query for the
combination of the LAKES ⇥ PARKS datasets is shown for each repartitioning tech-
nique and fixing k = 10. We can observe that SpatialHadoop with the Quadtree-based
repartitioning technique has the best performance. Grid is much slower, especially in
the kNNJ on Overlapping Cells phase. This is because the Quadtree partitions the data
better since it takes into account its skewed distribution, so after the Bin kNNJ phase,
there are more final kNN lists, and therefore, the processing time for the next phase is
shorter. The kNNJ on Overlapping Cells phase is usually more costly if the number
of final kNN lists from the previous phase is smaller because, during the range query

GRID QUADTREE
0

500

1,000

1,500

2,000

2,500

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

LAKES ⇥ PARKS - kNNJQ

GRID QUADTREE
0

1

2

3

4

S
h
u
✏
e
d
d
a
t
a
(
in

G
B
)

LAKES ⇥ PARKS - kNNJQ

Repartitioning Bin kNNJ kNNJ on Overlapping Cells Merge Results

Figure 4.38: kNNJQ cost per phase considering di↵erent repartitioning techniques on
the combination of the smallest datasets. Total execution time in sec (left) and

shu✏ed data in GBytes (right).

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 153

on the nearby partitions, the number of partitions to be searched for kNN candidates
grows. Finally, the execution time required for Quadtree-based repartitioning technique
in the Repartitioning phase is very short (2% over the total time) compared to the saved
time (28% faster than Grid -based repartitioning technique).

The chart on the right, in Figure 4.38, shows the results of the same query and
parameters as in the previous experiment, but, in this case, considering the amount
of shu✏ing data exchanged in the di↵erent MapReduce phases of the Grid -based and
Quadtree-based repartitioning techniques for kNNJQ in SpatialHadoop. On the one
hand, we can observe that the di↵erence between the Bin kNNJ and kNNJ on Over-
lapping Cells phases is almost negligible. On the other hand, there are more shu✏ed
data in the Merge Results phase for Grid than for Quadtree. This confirms that the
Grid -based repartitioning technique generated more partial kNN lists, and therefore,
the Merge Results phase must process all of them for the final query result. In addition,
Grid has to process more data, and as a consequence, more time is spent in the Merge
Results phase, as we can see in Figure 4.38, left-hand chart.

Continuing with the above experiment, Figure 4.39 shows the kNNJ(P,Q, k) query
for the combination of the datasets (LAKES⇥ROAD NETWORKS) for each repar-
titioning technique and for a fixed k = 10. The left chart of Figure 4.39 shows the time
consumed by the di↵erent phases of the algorithm. The first conclusion would be that
the di↵erences are greater than for the kNNJQ with smaller datasets. The widest time
di↵erence between Grid and Quadtree appears in the kNNJ on Overlapping Cells phase
(10 times slower for Quadtree). The main reason is that the Grid -based repartitioning
technique leaves fewer final kNN lists after the Bin kNNJ phase, and so, the algorithm
generates more partitions than Quadtree, and therefore, requires more tasks. Moreover,
Grid may have problems with skewed data because its uniform partitioning does not
take into account the skewed distribution of the data, which could also generate parti-

GRID QUADTREE

0

2,000

4,000

6,000

8,000

10,000

12,000

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

LAKES ⇥ROAD NETWORKS - kNNJQ

GRID QUADTREE

0

5

10

15

20

25

S
h
u
✏
e
d
d
a
t
a
(
in

G
B
)

LAKES ⇥ROAD NETWORKS - kNNJQ

Repartitioning Bin kNNJ kNNJ on Overlapping Cells Merge Results

Figure 4.39: kNNJQ cost per phase considering di↵erent repartitioning techniques on
the combination with the biggest dataset. Total execution time in sec (left) and

shu✏ed data in GBytes (right).

© 2021 Garćıa-Garćıa, F.J.

154 4.5. PERFORMANCE EVALUATION

tions with many more spatial objects inside. As a consequence of this increment in the
number of partial results, the Merge Results phase also requires more time to return the
final result of the query. Finally, in the Repartitioning phase, the execution time required
by Quadtree-based repartitioning technique is barely 8.5% (234 sec) over the total time,
in comparison with the saved time (5 times faster than Grid). The right-hand chart
in Figure 4.39 shows the cost in shu✏ed data corresponding to the previous execution
times. With the Quadtree-based repartitioning technique, there is a bit more shu✏ed
data in the Bin kNNJ phase than with Grid since there are more partitions. The fol-
lowing kNNJ on Overlapping Cells phase presents practically the same values because
despite having more final kNN lists, the data must be sent for the largest dataset since
it is unknown in advance whether they will be used in the reduce part of that phase.
Finally, in the Merge Results phase, 9.8 times more information is exchanged with Grid
than with Quadtree since more kNN lists are generated in the previous phase.

The chart on the left, in Figure 4.40, shows the kNNJ(P,Q, k) query executed for
the combinations of P ⇥ Q: L ⇥ P , L ⇥ R, L ⇥ B and L ⇥ RN , and the shu✏ed data
cost in Gigabytes for a fixed k = 10. The first conclusion is that the shu✏ed data
for both techniques (Grid and Quadtree) grow as the size of the datasets increases.
Grid values are a little higher than Quadtree for all combinations of datasets because
it usually produces fewer final kNN lists for that fixed k. That is, with Quadtree-based
repartitioning technique, the shu✏ed data values are lower for all dataset sizes, despite
pre-indexing in the Repartitioning phase. The right-hand chart, in Figure 4.40, shows
the e↵ect of the increment of k value for the combination of the LAKES ⇥ PARKS
datasets. For small / medium k values (k 50), the shu✏ed data cost is lower for
Quadtree than Grid, but when k is large (k > 50) Grid exchanges fewer data to return
the same result of the query. As mentioned above, in an algorithm such as kNNJQ, as
the value of k increases, the possibility that the number of overlapping partitions also

L⇥ P L⇥R L⇥B L⇥RN

0

10

20

30

40

50

60

70

P⇥ Q: Datasets joined

S
h
u
✏
e
d
d
a
t
a
(
in

G
B
)

Point Datasets - kNNJQ

1 10 25 50 75 100
0

10

20

30

40

50

60

70

k: # of nearest neighbors

S
h
u
✏
e
d
d
a
t
a
(
in

G
B
)

LAKES ⇥ PARKS - kNNJQ

GRID QUADTREE

Figure 4.40: kNNJQ cost (shu✏ed bytes) considering di↵erent datasets (left) and
varying the k values (right).

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 155

increases, and thereby, the shu✏ed data size of the algorithm. This increment depends
on the morphology of the underlying partitioning technique. Grid -based repartitioning
technique shows more stable values of shu✏ed data than Quadtree-based, because its
partitioning is uniform, and all partitions are the same size and shape, as shown in
the right-hand chart in Figure 4.40. Quadtree-based repartitioning technique presents
sharper changes because its partitioning is not uniform, partitions have di↵erent sizes
and shapes, and therefore, when the distances increase in the range queries, the number
of selected partitions does not increase uniformly.

The main conclusions that we can extract for this experiment are: (1) the use of repar-
titioning techniques accelerates the answer of the kNNJQ; (2) especially the Quadtree-
based repartitioning technique obtains the best execution times since it is very good
at handling skewed data; (3) as k increases, the number of overlapping partitions and
kNN lists, also increases, shu✏ing more data and incrementing the Merge Results phase
execution time; and (4) the shu✏ed data for both repartitioning techniques (Grid and
Quadtree) grow as the size of the datasets increases. For these reasons, we have cho-
sen the Quadtree as the default repartitioning technique for the rest of the kNNJQ
experiments in SpatialHadoop.

4.5.5.2 The e↵ect of using Voronoi-Diagram based partitioning

The aim of this experiment is to study how the use of Voronoi-Diagram based parti-
tioning technique a↵ects the kNNJQ MapReduce algorithm performance. To this end,
we will use k-means++ as the partition-based sampling method since this is the best
performing technique for kNNJQ processing to find a small but representative profile
from big spatial datasets (see Section 3.6.2.1). Therefore, this experiment compares the
three pivot selection techniques (Random, k-means and OPTICS) with k-means++ as
the sampling method and Quadtree (Q) for the kNNJQ in SpatialHadoop, based on the
execution time, in each of the phases. They are denoted as Voronoikk (Vkk), VoronoikR
(VkR) and VoronoikO (VkO).

In Figure 4.41, left chart, the kNNJQ for the combination of di↵erent datasets (L⇥P ,
L⇥ R, L⇥ B and L⇥ RN) is shown for each pivot selection technique and for a fixed
k = 10. We can observe that Voronoikk exhibits the best performance in all cases.
Moreover, Quadtree is much slower, especially in the kNNJ on Overlapping Partitions
phase. This result comes from the fact that, with the three Voronoi variants, every
point of P is assigned to Q’s partition that contains at least k elements, so after the Bin
kNNJ phase, there are more final kNN lists and therefore the processing time of the next
phase is reduced. Note that the kNNJ on Overlapping Partitions phase is usually more
expensive if the number of final kNN lists from the previous phase is lower because,
when executing the range query on the nearby partitions, there is a large growth of
the number of partitions to search for kNN candidates. Notice the high execution time
needed for L⇥RN using VkO, this is because the OPTICS algorithm does not generate
a fixed number of clusters, but it depends strongly on the data distribution (and the
number of clusters is less than k). In this figure, we can also highlight the reduction
of the di↵erences in execution time between the four partitioning techniques with the
combination of the largest dataset, L ⇥ RN , mainly because the Quadtree technique

© 2021 Garćıa-Garćıa, F.J.

156 4.5. PERFORMANCE EVALUATION

returns more final kNN lists. As the volume and size of Q are much greater, the volume
of points in P that fall into partitions of Q is also greater, obtaining final results that
reduce the execution time of the kNNJQ. Another conclusion that can be drawn from
the results is that Quadtree is the fastest while Voronoikk is slower for the Repartitioning
phase. This behavior is due to the use of an algorithm based on k-means that makes
the total execution time increase slightly, in the same way to the Indexing time in the
experiments of Section 3.6.2.2. However, this preprocessing technique obtains the best
results due to the good handling of the skewed data (e.g., the time spent in the Bin
kNNJ phase is the smallest).

Moreover, similar performance can be observed in Figure 4.41, right chart, where, as
the k value is increased for the combination of the datasets, LAKES ⇥ ROADS, the
execution time of the kNNJ on Overlapping Partitions phase is also higher. Besides,
we have to emphasize the high execution time needed for k = 75 using VkR, mainly due
to the random nature of this pivot selection technique. Notice that the increase of the
Repartitioning phase time for Voronoikk is less than that shown in the Indexing process
(see Section 3.6.2.2). This reduction is because the former is done within each partition
using a MapReduce job, while the latter runs in the master node. Finally, in the Merge
Results phase, we can see how Quadtree exchanges more information than both Voronoi
variants since in the previous phase, more kNN lists have been generated for all dataset
combinations.

V
k
k

V
k
R

V
k
O Q

V
k
k

V
k
R

V
k
O Q

V
k
k

V
k
R

V
k
O Q

V
k
k

V
k
R

V
k
O Q

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

L⇥ P L⇥R L⇥B L⇥RN

T
ot
al

E
xe
cu

ti
on

T
im

e
(i
n
se
c)

P⇥Q: Datasets joined - kNNJQ

V
k
k

V
k
R

V
k
O Q

V
k
k

V
k
R

V
k
O Q

V
k
k

V
k
R

V
k
O Q

V
k
k

V
k
R

V
k
O Q

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

k = 25 k = 50 k = 75 k = 100

T
ot
al

E
xe
cu

ti
on

T
im

e
(i
n
se
c)

LAKES ⇥ROADS - kNNJQ

Repartitioning Bin kNNJ kNNJ on Overlapping Partitions Merge Results

Figure 4.41: kNNJQ cost, total execution time of di↵erent partitioning techniques for
several datasets combinations (left) and varying the k values (right).

The main conclusions that we can draw from this experiment are: (1) Voronoikk
shows the best performance for kNNJQ in SpatialHadoop; (2) Voronoikk generates more
final kNN lists after the Bin kNNJ phase reducing the execution time in the next
phase; (3) Quadtree exhibits higher execution times although it is the fastest for the
Repartitioning phase while Voronoikk is slower; and (4) the di↵erences in execution
time between the partitioning techniques based on Voronoi-Diagrams and Quadtree are
reduced when joining with the largest Q dataset, i.e., L⇥RN .

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 157

4.5.5.3 The e↵ect of the improvements

This experiment compares the best variant of Voronoi-Diagram based partitioning tech-
nique for kNNJQ MapReduce algorithm designed so far (Vkk), with the enhanced version
including all improvements proposed in Section 4.4.3 (VkkI), considering the total execu-
tion time in each of the phases. In Figure 4.42, left chart, the kNNJQ for the combination
of di↵erent datasets (L⇥P , L⇥R, L⇥B and L⇥RN) is shown for a fixed k = 10. We
can observe that the VoronoikkI exhibits the best performance in all cases. The main
reason is the reduction in the execution times of phases 3 (kNNJ on Overlapping Par-
titions) and 4 (Merge Results) accomplished by using the improvements. For instance,
the pruning rules (3 and 5) that eliminate points from the dataset Q that are not part
of the final query result and the less data technique that decreases the size of the input
set (only those points of P that have not finished) as well as the size of the shu✏ed data
between the MapReduce phases.

Moreover, the right chart of Figure 4.42 shows a similar behavior where, as the k
value is increased for the combination of the datasets, LAKES⇥ROADS, the execution
time of the VkkI increases less than for Vkk. Also, this time di↵erence grows with the
increment of the k value, due mainly to the increase in the size of the partial results
(kNN lists). In the improved version, VkkI , only non-final kNN lists are used in phases
3 and 4, causing that when k increases, the non-improved version works with more
intermediate data.

These time di↵erences are even larger when the size of the smallest dataset increases,
as can be seen in Figure 4.43, left chart. For the combination ROADS ⇥ BUILDINGS
(72M points ⇥ 115M points), we observe how the execution times are higher for the
unimproved version (VkkI 2860 sec vs. Vkk 3746 sec), especially in the phases 3 (kNNJ on
Overlapping Partitions) and 4 (Merge Results). Furthermore, this behavior is explained
with Figure 4.43, right chart, which shows that the size of the shu✏ed data of these

V
k
k

V
k
k
I

V
k
k

V
k
k
I

V
k
k

V
k
k
I

V
k
k

V
k
k
I

0

500

1,000

1,500

2,000

2,500

L⇥ P L⇥R L⇥B L⇥RN

T
ot
al

E
xe
cu

ti
on

T
im

e
(i
n
se
c)

P⇥Q: Datasets joined - kNNJQ

V
k
k

V
k
k
I

V
k
k

V
k
k
I

V
k
k

V
k
k
I

V
k
k

V
k
k
I

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

k = 25 k = 50 k = 75 k = 100

T
ot
al

E
xe
cu

ti
on

T
im

e
(i
n
se
c)

LAKES ⇥ROADS - kNNJQ

Repartitioning Bin kNNJ kNNJ on Overlapping Partitions Merge Results

Figure 4.42: kNNJQ cost, total execution time considering the improvements for
datasets combinations (left) and varying the k values (right).

© 2021 Garćıa-Garćıa, F.J.

158 4.5. PERFORMANCE EVALUATION

Voronoikk VoronoikkI

0

500

1,000

1,500

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

ROADS ⇥BUILDINGS - kNNJQ

Voronoikk VoronoikkI

0

5

10

15

20

S
h
u
✏
e
d
d
a
t
a
(
in

G
B
)

ROADS ⇥BUILDINGS - kNNJQ

Repartitioning Bin kNNJ kNNJ on Overlapping Partitions Merge Results

Figure 4.43: kNNJQ cost per phase considering the improvements on the combination
ROADS ⇥BUILDINGS. Total execution time in sec (left) and shu✏ed data in

GBytes (right).

phases is greater than double for the non-improved version. Moreover, notice that the
calculation of the Rule 6 increases the execution time of the Bin kNNJ phase, although
it is worth it for the best-obtained results.

The main conclusions that we can deduce for this experiment are the following:
(1) VoronoikkI is the clear winner for the execution time, especially in the kNNJ on
Overlapping Partitions and the Merge Results thanks to the use of prunning rules and
less data technique; (2) growing the k value, the execution time of the VkkI increases
less than for Vkk because there is less intermediate data to be processed thanks to the
less data technique and; (3) the application of the Rule 6 gets higher execution times
for the Bin kNNJ phase, but its results accelerate later phases.

4.5.5.4 Extensibility varying the P dataset area

In this experiment, as for kCPQ, we evaluate the extensibility of the proposed kNNJQ
MapReduce algorithm, considering di↵erent percentages (�) of the P dataset and keeping
Q fixed. Similar to the kCPQ, we aim to assess the performance of the kNNJQ when
the amount of data is massive, varying the smallest dataset (P) by executing a Window
Query centered on the MBR of P with a percentage (�) of the original MBR. In the
case of ROADS and the � values of 25%, 50%, 75%, and 100%, we have obtained a
percentage of points of 2%, 27%, 70%, and 100% from the original dataset P.

In Figure 4.44 it is shown that, for kNNJQ, when the size of the data is small (�
= 25%), Quadtree works better because the cost of the calculation of rules is almost
insignificant for the pruning data (very few points removed from the dataset). As the
size of the query window increases, the time di↵erences also increase for VoronoikkI ,
because although the running time of the Bin kNNJ phase is slightly higher for the
calculation of the rules, the execution times of phases 3 and 4 decrease considerably

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 159

VkkI Q VkkI Q VkkI Q VkkI Q
0

500

1,000

1,500

2,000

2,500

3,000

3,500

� = 25% � = 50% � = 75% � = 100%

T
ot
al

E
xe
cu
ti
on

T
im

e
(i
n
se
c)

ROADS ⇥BUILDINGS - kNNJQ

Repartitioning Bin kNNJ kNNJ on Overlapping Partitions Merge Results

Figure 4.44: kNNJQ cost, total execution time for the combination
ROADS ⇥BUILDINGS, considering di↵erent � values (% Dataset P = ROADS)

and k = 10.

thanks to the fact that the size of the input data (shu✏ed data) through the use of
pruning rules decreases.

4.5.5.5 Speedup of the algorithm

This final experiment intends to measure the speedup of the proposed kNNJQ MapRe-
duce algorithm changing the number of computing nodes (⌘). To assess the scalability
performance, we compare our best approach using the Voronoi-Diagram based parti-
tioning technique (VoronoikkI) to the same MapReduce algorithms using the Quadtree
partitioning method.

Figure 4.45 shows the influence of varying the number of computing nodes on the
performance of kNNJQ MapReduce algorithm, for LAKES ⇥ PARKS with the de-
fault configuration values. From this chart, as for kCPQ, we can conclude that the
performance of our approach has a direct relationship with the number of considered
computing nodes. It could also be inferred that better performance would be obtained
if more computing nodes are added to the cluster, but when this number (⌘) exceeds
the number of map tasks, there is no improvement. VoronoikkI is still showing a better
behavior than Quadtree.

4.5.5.6 Conclusions from the experimental results

We have experimentally demonstrated the e�ciency and the scalability of the proposed
kNNJQ MapReduce algorithm in SpatialHadoop. By analyzing the previous experimen-
tal results, we can derive the following conclusions:

© 2021 Garćıa-Garćıa, F.J.

160 4.5. PERFORMANCE EVALUATION

1 2 4 6 8 10 12
0

2,000

4,000

6,000

8,000

10,000

⌘: # of available computing nodes

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

LAKES ⇥ PARKS - kNNJQ

VoronoikkI Quadtree

Figure 4.45: kNNJQ cost with respect to the number of computing nodes ⌘ (Speedup).

1. The use of repartitioning techniques in SpatialHadoop considerably reduces the
total execution times and shu✏ed data, mainly when large datasets are joined in
kNNJQ. This indicates that the use of repartitioning techniques is a good policy
for MapReduce algorithms based on phases.

2. Considering the k-means++ sampling, we have compared three clustering algo-
rithms (Random, k-means, and OPTICS) for the pivot selection. The Repartition-
ing execution time for VkR is the smallest and grows almost linearly as the size of
the datasets, while, for Vkk, this increment is larger due to the use of this clustering
algorithm. The use of OPTICS, VkO, is the slowest. But Vkk exhibits the best
global performance in all cases because this combination of k-means algorithms
indexes the data appropriately for the next phases in the kNNJQ MapReduce
algorithm. Furthermore, the time consumed by k-means algorithm in the Reparti-
tioning phase (it is a MapReduce job) is compensated by the gain in performance
in subsequent phases of the query processing.

3. Vkk is also faster than Quadtree, because it deals better with skewed data and it
gets more final results in the Bin kNNJ phase.

4. The improved version of Vkk, VkkI , has been designed to decrease considerably the
total execution time, especially in the kNNJ on Overlapping Partitions and Merge
Results phases, by reducing the size of the input data, the shu✏ed data and the
data that is handled in the kNN computation through the use of di↵erent pruning
rules.

5. In the experiments of varying the � values (extensibility), if the size of the MBR
of P is very small compared to Q, Quadtree presents a better behavior than VkkI

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 161

due to lower e�ciency of the pruning rules. But when the MBR is large enough,
then VkkI shows better performance than Quadtree.

6. VoronoikkI outperforms Quadtree when the number of computing nodes (⌘) is
increased, but if there are not enough tasks available for a certain value of nodes,
no performance improvements are obtained.

4.5.6 "DRJQ experiments

This section shows the experimental results of our "DRJQMapReduce algorithm [Garćıa-
Garćıa et al., 2020c]. Given that "DRJQ and "DJQ are equivalent (see Section 4.3.5),
we have used the same real datasets from the "DJQ experiments to compare both algo-
rithms. For instance, we have used the following real-world 2d point datasets: LAKES,
PARKS, ROADS, BUILDINGS and ROADS NETWORKS. Moreover, we have set the
Quadtree partitioning technique and the Classic Semi-Circle plane-sweep algorithm as
default parameters, being the best configuration for the "DJQ performance. Table 4.8
summarizes the configuration parameters used in our experiments. Default parameters
(in parentheses) are used unless otherwise mentioned.

Parameter Values (default)

Distance threshold, " (⇥10�5) 7.5, 10, 25, 50, 75, (100)
Number of nodes, ⌘ 1, 2, 4, 6, 8, 10, (12)

Partitioning technique Quadtree
PS algorithms Classic

PS improvements Semi-Circle

Table 4.8: Configuration parameters used in our "DRJQ experiments.

4.5.6.1 Comparison with "DJQ

The following experiment compares the performance in SpatialHadoop for "DRJQ and
"DJQ. Figure 4.46 shows the execution times of both queries, with the joined datasets
(L ⇥ P , P ⇥ R, R ⇥ B and B ⇥ RN) and " = 0.001. First, the main conclusion is
that "DJQ is the clear winner for the total execution time when varying the joined
datasets, especially for the largest combination B ⇥ RN (the total execution time of
"DRJQ is double "DJQ). However, when small-to-medium datasets are joined (L ⇥ P ,
P ⇥ R and R ⇥ B), "DRJQ execution times are only slightly higher. The main reason
is that "DRJQ is a Reduce-based Join algorithm, and time is consumed by having to
perform data shu✏ing and sorting between the map and reduce phases. Therefore, this
time especially increases for the B⇥RN where the number of combinations of partitions
and spatial objects is considerably higher. However, "DJQ is a Map-based algorithm,
so it does not shu✏e data, and the final query result is already at the end of the map
phase.

© 2021 Garćıa-Garćıa, F.J.

162 4.5. PERFORMANCE EVALUATION

As shown in the right-hand chart of Figure 4.46, total execution time grows as
" increases. As concluded in Section 4.5.4 for "DJQ, the execution time of "DRJQ
increases for larger " values since more elements participate in the final results. The
performance trend is similar for both queries, but "DJQ is faster for any " value. In
addition, the total execution time grows faster for "DRJQ because the size of the data
exchanged between the map and reduce phases also increases.

L⇥ P P ⇥R R⇥B B ⇥RN

0

500

1,000

1,500

2,000

2,500

P⇥ Q: Datasets joined

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

Point datasets - "DRJQ

7.5 10 25 50 75 100
0

500

1,000

1,500

2,000

2,500

": distance values (⇥10
�5

)

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

BUILDINGS ⇥ROAD NETWORKS - "DRJQ

"DRJQ "DJQ

Figure 4.46: "DRJQ cost, total execution time considering di↵erent datasets
combinations (left) and varying the " values (right).

4.5.6.2 Speedup of the algorithm

Our last experiment measures the speedup of the proposed "DRJQ MapReduce algo-
rithm, varying the number of computing nodes (⌘). As shown in Figure 4.47, the exe-
cution times for "DRJQ, and as for kCPQ and "DJQ, has shorter values than kNNJQ,
which is based on it and both follow a processing scheme of multiple executions. Finally,
we can again conclude that a higher number of computing nodes increments performance.
However, notice that there is practically no improvement after ⌘ = 6, mainly due to some
tasks that take longer due to skewed data problems.

4.5.6.3 Conclusions from the experimental results

The most relevant experimental conclusions of "DRJQ are the following:

1. We have experimentally demonstrated the e�ciency and the scalability of the
proposed distributed algorithm for "DRJQ in SpatialHadoop.

2. The larger the " values, the higher the number of spatial objects checked, so the
total execution time increases.

3. "DRJQ is slower than "DJQ because it is a Reduce-based Join algorithm, so it
needs more time to shu✏e data between the map, and reduce phases.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 163

1 2 4 6 8 10 12
0

500

1,000

1,500

2,000

2,500

3,000

3,500

⌘: # of available computing nodes

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

BUILDINGS ⇥ PARKS - "DRJQ

"DRJQ

Figure 4.47: "DRJQ cost with respect to the number of computing nodes ⌘ (Speedup).

4. The total execution time of "DRJQ grows faster than "DJQ as the " value increases,
due to the high quantity of data shu✏ing since the first is a Reduce-based Join
algorithm and the second uses a Map-based Join algorithm.

5. "DRJQ shows better performance when the number of computing nodes (⌘) is
increased, but if there are not enough tasks available for a specific number of
nodes, no performance improvements are obtained.

4.5.7 Reverse k Nearest Neighbors experiments

In this section, we present the most representative results of our experimental evaluation
and comparison of RkNNQ algorithms in SpatialHadoop [Garćıa-Garćıa et al., 2019]. We
have used real-world 2d point datasets from Section 4.5.1 to test our RkNNQ algorithms,
that is, MRSFT and MRSLICE algorithms in SpatialHadoop. Furthermore, all datasets
have been previously partitioned by using the STR partitioning technique with a local
R-tree index per partition. Finally, to get a representative execution time, a random
sample of 100 points from the smallest dataset (LAKES) has been obtained, and the
average of the execution time of the RkNNQ of these points have been calculated since
this query mainly depends on the location of the query point concerning the dataset.

Parameter Values (default)

Number of regions, t 6, (12), 18, 24, 30
reverse nn, k 1, 5, (10), 15, 20, 25, 50

Number of nodes, ⌘ 1, 2, 4, 6, 8, 10, (12)
Partitioning technique Grid, (STR)

Table 4.9: Configuration parameters used in our RkNNQ experiments.

© 2021 Garćıa-Garćıa, F.J.

164 4.5. PERFORMANCE EVALUATION

Table 4.9 summarizes the configuration parameters used in our experiments. Default
parameters (in parentheses) are used unless otherwise mentioned.

4.5.7.1 The e↵ect of the number of regions

The first experiment of RkNNQ aims to examine the best t value (number of regions)
for MRSLICE, using the BUILDINGS dataset and the k values of 10 and 50. In Figure
4.48 we can see that there is a little di↵erence in the results obtained when the t value is
varied, especially for k = 10, being greater di↵erences when a larger k value is used (i.e.,
k = 50). On the one hand, for k = 10, smaller values of t get faster times (e.g., t = 6
has an execution time of 67 sec which is 4 sec faster than t = 12). On the other hand,
for k = 50, t = 12 gets the smallest execution time (221 sec) and for t < 12 and t > 12,
the execution time increases. Although there are no large di↵erences, the value of t that
shows better performance for both k values is t = 12, reaching the same conclusion as
in [Yang et al., 2014] but now in a distributed environment. From now on, we will use
t = 12 in all our experiments.

4.5.7.2 The e↵ect of the increment of the dataset size

Our second experiment of RkNNQ studies the scalability of the RkNNQ MapReduce
algorithms (MRSLICE andMRSFT), varying the dataset sizes. As shown in Figure 4.49
for the RkNNQ of real datasets (LAKES, PARKS, ROADS, BUILDINGS and RN)
and a fixed k = 10. The execution times of MRSLICE are much lower than those from
MRSFT (e.g., it is 477 sec faster for the largest dataset RN) thanks to how the reduced
search space and the limited number of MapReduce jobs. Note that, for MRSFT, at
least k ⇤ 20 + 1 jobs are executed, while for the case of MRSLICE, 3 jobs are launched
at most. In both algorithms, the execution times do not increase too much, showing

6 12 18 24 30

0

50

100

150

200

250

300

t: # of regions

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

BUILDINGS - MRSLICE

k = 10

k = 50

Figure 4.48: MRSLICE total execution times considering di↵erent t values.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 165

LAKES PARKS ROADS BUILDINGS RN
0

100

200

300

400

500

600

700

Real Datasets

T
ot
al

E
x
ec
u
ti
on

T
im

e
(i
n
se
c)

RkNNQ of real datasets

MRSFT

MRSLICE

Figure 4.49: RkNNQ total execution times considering di↵erent datasets.

quite stable performance, mainly for MRSLICE. This is due to the indexing mechanisms
provided by SpatialHadoop that allow fast access to only the necessary partitions for
query processing. Furthermore, this behavior shows that the number of candidates for
MRSLICE is almost constant (the expected number of candidates is less than 3.1 ⇤ k
as stated in [Yang et al., 2014]), only showing a visible increment in the execution time
for the RN dataset, due to the increase in the density of partitions and its distribution
causes the need to execute the optional job (phase 1.b) of the Filtering phase.

4.5.7.3 The e↵ect of the increment of k values

This experiment aims to measure the e↵ect of increasing the k value for the dataset
(BUILDINGS). The left chart of Figure 4.50 shows that the total execution time
grows as the value of k increases, especially for MRSFT. This is because as the value of k
increases, the number of candidates k⇤20 also grows, and for each of them, a MapReduce
job is executed. On the other hand, MRSLICE limits the number of MapReduce jobs
to 3, obtaining a much smaller increment and more stable results since the disk accesses
are reduced significantly by traversing the index of the dataset a small number of times.
Note that the small increment in the execution times when k = 25, mainly because
when reaching a certain k value, the result of the first job of the Filtering phase is not
definitive, and it has been necessary to execute the optional job (phase 1.b). In this case,
the number of involved partitions in the query increases as well. Finally, the execution
time for k = 50 increases slightly.

4.5.7.4 Speedup of the algorithms

This experiment studies the speedup of the RkNNQ MapReduce algorithms, varying the
number of computing nodes (⌘). The right chart of Figure 4.50 shows the impact of using

© 2021 Garćıa-Garćıa, F.J.

166 4.5. PERFORMANCE EVALUATION

1 5 10 15 20 25 50
0

500

1,000

1,500

2,000

k : # of reverse nearest neighbors

T
ot
al

E
x
ec
u
ti
on

T
im

e
(i
n
se
c)

BUILDINGS - RkNNQ

MRSFT
MRSLICE

1 2 4 6 8 10 12
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

⌘: # of available computing nodes

T
ot
al

E
x
ec
u
ti
on

T
im

e
(i
n
se
c)

BUILDINGS - RkNNQ

MRSFT
MRSLICE

Figure 4.50: RkNNQ cost, total execution time vs. k values (left) and vs. number of
computing nodes ⌘ (right).

several computing nodes on the performance of RkNNQ MapReduce algorithms, for
BUILDINGS with a fixed value of k = 10. From this chart, we can deduce thatMRSFT
would obtain better performance if more computing nodes are added. MRSLICE is still
outperforming MRSFT and is not a↵ected, despite reducing the number of available
computing nodes. This is because MRSLICE is an algorithm in which both the number
of partitions involved in obtaining the query result and the number of MapReduce jobs
are minimized. That is, depending on the location of the query point q and the k value,
the number of partitions is usually one, and varying the number of computing nodes
does not a↵ect the execution time. However, the use of the computing resources of the
cluster is quite small, which allows the execution of several RkNNQs in parallel, taking
advantage of the distribution of the dataset into the cluster nodes. On the other hand,
MRSFT executes several kNNQs in parallel, using all computing nodes completely for
large k values.

4.5.7.5 Conclusions from the experimental results

We can summarize the following conclusions from the previous experimental study:
1. We have experimentally demonstrated the e�ciency and the scalability of the

proposed MRSLICE algorithm for RkNNQ and we have compared it with MRSFT
algorithm in SpatialHadoop.

2. As stated in [Yang et al., 2014], the value of t (the number of equally sized regions
in which the dataset is divided) that shows the best performance is 12.

3. MRSLICE outperforms MRSFT several orders of magnitude (around five times
faster), thanks to its pruning capabilities and the limited number of MapReduce
jobs.

4. The larger the k values, the greater the number of candidates to be verified, but
for MRSLICE the number of jobs and partitions involved are quite restricted, and
the total execution time increases considerably less than for MRSFT.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 4. SPATIAL QUERY PROCESSING IN SPATIALHADOOP 167

5. The use of computing nodes by MRSLICE is small, allowing the execution of
several queries in parallel, unlike MRSFT that can leave the cluster busy.

4.6 Conclusions

This section summarizes the main conclusions of this chapter. First, it focuses on the
spatial query processing in SpatialHadoop with a detailed description of its features and
tools. The use of the SpatialFileSplitter and the SpatialRecordReader allows us to ob-
tain better performance on spatial operations over Hadoop. Next, we have described the
available spatial queries in the Operations layer of SpatialHadoop. They are organized as
spatial operations (range, knearest neighbor and spatial join queries) and computational
geometry algorithms (polygon union, skyline, convex hull, farthest pair, closest pair, and
Voronoi-Diagram). Moreover, we have designed and implemented new DBQ MapRe-
duce algorithms in SpatialHadoop: "DRQ, kNNQ, RkNNQ, "DRJQ, kCPQ, kNNJQ
and "DJQ. Then we have detailed several extensions and improvements of the previous
spatial query algorithms with the use of non-points spatial objects, several new pruning
rules, and the use of the Voronoi-Diagram based partitioning technique. Finally, the
execution of an extensive set of experiments on synthetic and real-world datasets has
demonstrated that our DBQ MapReduce algorithms are e�cient, robust, and scalable
for parameters such as dataset sizes, k, ", number of computing nodes (⌘) and others.
Furthermore, these improvements have considerably enhanced the performance of the
distributed algorithms, especially for the computation of a � upper-bound for kCPQ
and the combination of Voronoi-Diagram based partitioning, less data technique and
pruning rules for kNNJQ.

© 2021 Garćıa-Garćıa, F.J.

168 4.6. CONCLUSIONS

E�cient Query Processing in Distributed Spatial Data Management Systems

Chapter 5

Spatial Query Processing in

LocationSpark

© 2021 Garćıa-Garćıa, F.J.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 5. SPATIAL QUERY PROCESSING IN LOCATIONSPARK 169

Chapter 5

Spatial Query Processing in
LocationSpark

Contents
5.1 LocationSpark for Spatial Query Processing 171

5.2 Spatial Queries supported by LocationSpark 173

5.2.1 kNearest Neighbor Join Query 174

5.3 Enhancing LocationSpark with Distance-based Queries . 175

5.3.1 kClosest Pairs Query . 175

5.3.2 "Distance Join Query . 176

5.4 Performance Evaluation . 178

5.4.1 Experimental Setup . 178

5.4.2 kCPQ and "DJQ experiments 179

5.4.3 kNNJQ experiments . 183

5.4.4 "DRJQ experiments . 185

5.4.5 Speedup varying the number of computing nodes 186

5.4.6 Conclusions of the results . 187

5.5 Conclusions . 188

170

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 5. SPATIAL QUERY PROCESSING IN LOCATIONSPARK 171

I n this chapter, the structure and spatial operations in LocationSpark are de-
tailed. First, in Section 5.1, the general spatial query processing scheme in Location-
Spark is presented together with the di↵erent features and tools that it provides to
add spatial capabilities to Spark. Next, the spatial queries already supported by Lo-
cationSpark are exposed in Section 5.2. Moreover, new spatial queries, extensions and
improvements implemented in LocationSpark are described in Section 5.3. Finally, a
performance evaluation of several spatial query algorithms and a comparison with their
equivalents in SpatialHadoop is presented in Section 5.4.

5.1 LocationSpark for Spatial Query Processing

LocationSpark [Tang et al., 2016, Tang et al., 2020] is a library in Spark that pro-
vides an API for spatial query processing and optimization based on Spark’s stan-
dard dataflow operators. LocationSpark is implemented on top of Resilient Distributed
Datasets (RDDs); these key components of Spark are fault-tolerant collections of ele-
ments that can be operated in parallel. LocationSpark is a library for Spark and pro-
vides the Class LocationRDD for spatial operations [Tang et al., 2016]. It is an e�cient
in-memory distributed spatial query processing system (Spark-based spatial analytics
system [Pandey et al., 2018]). LocationSpark provides several optimizations to enhance
Spark for managing spatial data, and, as shown in Figure 5.1, it is organized by layers:

– Memory Management. In this layer for spatial data, LocationSpark uses the cache
capabilities of Spark to dynamically cache frequently accessed data into memory
and store the less frequently used data on disk.

– Spatial Index. LocationSpark builds two levels of spatial indexes (global and local).
To build a global index, LocationSpark samples the underlying dataset to learn the
data distribution in space and populates a grid or a region Quadtree index. In
addition, each data partition has a local index (e.g., a grid local index, an R-tree,
a variant of the Quadtree, or an IR-tree). LocationSpark adopts a new Spatial
Bitmap Filter to reduce the communication cost when dispatching queries to their
overlapping data partitions, termed sFilter. This structure is an in-memory variant
of a Quadtree with the leaf nodes indicating whether a region contains data items.
Therefore, this information can be used to speed up query processing by avoiding
needless communication with data partitions that do not contribute to the query
answer.

– Query Executor. In this layer, LocationSpark evaluates the runtime and memory
usage trade-o↵s from various alternatives and chooses the best execution plan to
run on each slave node. LocationSpark has a new layer, termed Query Scheduler,
with an automatic skew analyzer and a plan optimizer to mitigate query skew.

– Query Scheduler. LocationSpark analyzes and mitigates skew queries with an
automatic skew analyzer and a plan optimizer to be applied in the query execution

© 2021 Garćıa-Garćıa, F.J.

172 5.1. LOCATIONSPARK FOR SPATIAL QUERY PROCESSING

Figure 5.1: Architecture of LocationSpark by layers.

plan. It uses a cost model to analyze the skew to be used by the spatial operators
and a plan generation algorithm to construct a load-balanced query execution plan.
After the plan generation, local computation nodes select the proper algorithms
to improve their local performance based on the available spatial indexes and the
registered queries on each node.

– Spatial Operators. This layer provides support for spatial querying and spatial
data updates. It provides a rich set of spatial queries, including spatial range
query, kNNQ, spatial join, and kNNJQ. Moreover, it supports data updates and
spatio-textual operations.

– Spatial Analytical. Finally, and due to the importance of spatial data analysis
in this type of DSDMSs, LocationSpark provides spatial data analysis functions,
including spatial data clustering, spatial data skyline computation, and spatio-
textual topic summarization.

For processing spatial queries, LocationSpark builds a distributed spatial index struc-
ture for in-memory spatial data. As we can see in Figure 5.2, for spatial join queries,

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 5. SPATIAL QUERY PROCESSING IN LOCATIONSPARK 173

Figure 5.2: Spatial query processing in LocationSpark.

given two datasets P and Q, P is partitioned into N partitions based on a spatial index
criteria (e.g., N leaves of a R-tree) by the Partitioner leading to the PRDD (Global In-
dex). The sFilter determines whether a point is contained inside a spatial range or not.
Next, each worker has a local data partition Pi (1 i N) and builds a Local Index
(LI). QRDD is generated from Q by a member function of RDD (Resilient Distributed
Dataset) natively supported by Spark, that forwards such point to the partitions that
spatially overlap it. Now, each point of Q is replicated to the partitions that are iden-
tified using the PRDD (Global Index), leading to the Q’RDD. Then a post-processing
step (using the Skew Analyzer and the Plan Optimizer) is performed to combine the
local results to generate the final output.

5.2 Spatial Queries supported by LocationSpark

LocationSpark supports four types of spatial query predicates [Tang et al., 2016, Tang
et al., 2020]: spatial range search, kNN search (kNNQ), spatial range join and kNNJQ.

The spatial range search is a generic spatial query where one dataset and a spatial
range area (e.g., rectangle or circle) are involved. First, the global index is used to
find the overlapping partitions, and then, for each of them, a local spatial range search
exploits the local index to speed up the query.

The kNN search in LocationSpark consists of three steps similar to the approach
implemented in SpatialHadoop. Firstly, the partition where the query point belongs is
located and, a kNNQ in that partition is calculated. Next, a range search is carried out
on the overlapping partitions by the circle region centered at the query point with a
radius the distance to the k-th nearest neighbor. Finally, the points of the query range
are combined with the initial kNN result to obtain the final result of the query.

For the spatial range join, there are two algorithms in LocationSpark [Tang et al.,
2020]. The first one is an indexed nested-loops join algorithm, where the spatial index
from the largest dataset (points) is repeatedly traversed by a range query for each item
from the smallest dataset (query points). Note that it is the naive version of the "DRJQ
algorithm in LocationSpark [Garćıa-Garćıa et al., 2020c]. The second is a block-based
algorithm using a parallel tree traversal, i.e., it builds two spatial indexes over both
the input datasets and performs a depth-first search over both trees simultaneously.

© 2021 Garćıa-Garćıa, F.J.

174 5.2. SPATIAL QUERIES SUPPORTED BY LOCATIONSPARK

This algorithm is the first approach of the "DJQ algorithm in LocationSpark [Garćıa-
Garćıa et al., 2020c]. The query execution plan for spatial range join is shown in [Tang
et al., 2020]. It should be noted that the execution plan of the spatial range join treats
separately the partitions that can cause skew by repartitioning the latter to obtain better
performance, and because of that, a merge step to unify the results is also needed.

Similar to the spatial range join, for the kNNJQ there are two available algorithms,
that is, an indexed nested-loops and a block-based algorithm. For the first case, similar to
the spatial range join, indexed nested-loops algorithm can be applied to kNNJQ, where
it computes the set of kNNQ for each query point in the outer dataset. An index is built
on the inner dataset. For the second case, the block-based algorithm partitions both
datasets (query points and points) in two di↵erent set of partitions and find the kNN
candidates for query points in the same partition. Then, the post-processing refine step
computes kNNQ for each query point in the same partition. Notice that in [Pandey et al.,
2018], a performance comparison between Simba [Xie et al., 2016] and LocationSpark
determined that the indexed nested-loops version was the winner for total running time.

5.2.1 kNearest Neighbor Join Query

We know the kNearest Neighbor Join Query (kNNJQ) retrieves for each point of one
dataset, k nearest points in the other dataset. That is, given two datasets of points (P
and Q where |P| > |Q|) and a positive number k, the kNNJQ finds for each point of Q,
k nearest neighbors of this point in P.

As shown in Section 4.3.4, the kNNJQ algorithm in SpatialHadoop, adapting the
scheme presented in [Nodarakis et al., 2016a], have the following phases: (1) the Repar-
titioning phase, that redistributes the input datasets to deal with skew problems, (2) the
Bin kNNJ phase, that founds the initial kNNJ answer, (3) the kNNJ on Overlapping
partitions phase, that refines the previous results, and (4) Merge results phase, where
the results from previous phases are combined.

The kNNJQ in LocationSpark consists of similar phases to the ones designed for
SpatialHadoop but following the scheme from the spatial range join in LocationSpark.
That is, when calculating the individual kNNQ, each element of the query dataset Q
finds its individual kNNQ using the spatial index from the largest dataset P. Figure 5.3
shows the Spark DAG (Directed Acyclic Graph) or Execution Plan of the indexed nested-
loops kNNJQ in LocationSpark. In Stage 1, the dataset P and Q are partitioned, using

Figure 5.3: Execution Plan for kNNJQ in LocationSpark.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 5. SPATIAL QUERY PROCESSING IN LOCATIONSPARK 175

the same spatial partitioner, and the largest dataset P is indexed, according to a given
spatial index method. In Stage 2, the initial kNN lists (FirstkNNRDD) are calculated,
using a nested loop-based algorithm on Quadtrees, for each point in the partitions where
it is located. Stage 3 collects those points where a final answer has not been obtained
(NextRndRDD), and then a spatial range join is performed in Stages 4 and 5 using the
distance to the k-th nearest neighbor. Note that these two last stages, as mentioned
before, exist since spatial range join treats in parallel the partitions that present skew,
and therefore are repartitioned, of those that do not. Finally, in Stage 7, the results
of the correct initial kNNs lists (CorrectRDD) are combined with the distances to the
points from the range join merged in previous Stage 6.

5.3 Enhancing LocationSpark with Distance-based
Queries

As seen in the previous section, LocationSpark provides several spatial queries through
the Spatial Operators layer. However, this DSDMS does not include some of the most
studied DBQs (see Section 2.2). Consequently, this section shows several proposals
for e�cient in-memory distributed (Spark) algorithms to enrich the capabilities of the
Spatial Operators layer.

5.3.1 kClosest Pairs Query

The kClosest Pairs Query (kCPQ) is known to find the k pairs of spatial objects from
two datasets having the k smallest distances from all possible combinations. Therefore,
when joining two datasets (P and Q), the kCPQ gets the top-k pairs from P ⇥ Q with
the MinDistance between their elements as the chosen spatial operator. Section 4.3.2
detailed the kCPQ in SpatialHadoop as a generic top-k MapReduce job that uses a
selected plane-sweep kCPQ algorithm [Roumelis et al., 2016] as the spatial operator.
Moreover, a modified algorithm with the computation of an upper-bound (�) (see Section
4.4.2) improved the performance significantly. Therefore, the final scheme of the kCPQ
algorithm in SpatialHadoop consists of the following four steps: (1) � computation step,
where an upper-bound of the kCPQ is found; (2) Global kCPQ step, that selects those
pairs of partitions with a MinDistance between their MBRs less than �; (3) Local kCPQ
step, that finds the kCPQ of a selected pair of partitions; and (4) Top kCPQ step, that
obtains the final answer from the partial results.

Assuming that P is the largest dataset to be combined and Q is the smallest one,
we could follow the previous scheme of the kCPQ in SpatialHadoop and the ideas pre-
sented in [Tang et al., 2020] to design and implement a kCPQ in-memory algorithm in
LocationSpark. Consequently, we can describe its Execution Plan as follows. Stage 1
partitions the two input datasets according to a given spatial index schema. Next, Stage
2 adds statistic data to each partition, SP and SQ, and they are combined by pairs, SPQ.
In Stage 3, the partitions from P and Q with the largest density of spatial objects, P�

and Q� , are selected to be combined by using a plane-sweep kCPQ algorithm [Roumelis
et al., 2016] to compute an upper bound of the distance value of the k-th closest pair

© 2021 Garćıa-Garćıa, F.J.

176 5.3. ENHANCING LOCATIONSPARK WITH DISTANCE-BASED QUERIES

Figure 5.4: Execution Plan for kCPQ in LocationSpark.

(�). In Stage 4, the combination of all possible pairs of partitions from P and Q, SPQ, is
filtered according to the � value (i.e., only the pairs of partitions with minimum distance
between the MBRs of the partitions is smaller than or equal to � are selected), giving
rise to FSPQ, and all pairs of filtered partitions are processed by using a plane-sweep
kCPQ algorithm. Finally, the results are merged to get the final output. With the
previous Execution Plan and increasing the dataset sizes, the execution time increases
considerably due to skew and shu✏e problems. These problems arise mainly by the use
of the MapPartitions transformation from Spark that creates a wide dependency and the
redistribution of the data between workers. To solve it, we employ the same partitions
for both datasets allowing the use of the ZipPartitions transformation, which creates a
narrow dependency and reduces the data shu✏ing. Moreover, we modify Stage 4 with
the query plan used for dealing with skewed data shown in [Tang et al., 2020], leaving
the final plan as shown in Figure 5.4.

Stages 1, 2, and 3 are still present to calculate the � value that accelerates the local
pruning phase on each partition. In Stage 4, using the Query Plan Scheduler, P is
partitioned into PS and PNS being the partitions that present and do not present skew,
respectively. The same partitioning is applied to Q. In Stage 5, a plane-sweep kCPQ
algorithm [Roumelis et al., 2016] is applied between spatial objects of PS and QS, that
are in the same partition, and likewise for PNS and QNS in Stage 6. These two stages
are executed independently, and the results are combined in Stage 7. Finally, it is still
necessary to calculate if there is any missing candidate for each partition found on the
boundaries of that same partition in the other dataset. To do this, we use �0, which is
the maximum distance from the current set of candidates as a radius of a range filter
with the center in each partition to obtain possible new candidates on those boundaries.
The kCPQ calculation for each partition with its candidates is executed in Stages 8 and
9, and these results are combined in Stage 10 to obtain the final answer of the query.
Notice that, with these changes, the execution plan of kCPQ is very similar to the one
from kNNJQ, with the only di↵erence that instead of maintaining di↵erent kNN lists
for each spatial object, it only takes care of a single global kNN list.

5.3.2 "Distance Join Query

Previously, we have defined that the "Distance Join Query ("DJQ) joins two spatial
datasets (P and Q) by returning all possible pairs of spatial objects having a distance

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 5. SPATIAL QUERY PROCESSING IN LOCATIONSPARK 177

smaller than a distance threshold ". In addition, Section 4.3.3 details the "DJQ algorithm
in SpatialHadoop that follows a two-step scheme: (1) Global "DJQ step, that prunes
pairs of partitions having a MinDistance between their MBRs higher than ", and (2)
Local "DJQ step, that uses a plane-sweep algorithm to return the pairs of spatial objects
of the "DJQ for each non-pruned pair of partitions.

The Execution Plan for "DJQ in LocationSpark is a variation of the kCPQ one,
where the � and �0 computation stages (Stages 2, 3 and 7) are removed, since SPQ is
now filtered by " (i.e., � = �0 = "), which is the threshold distance known beforehand.
First, in Stage 1, P is redistributed in PS and PNS by applying the Query Plan Scheduler
to query partitions that present and do not present skew separately. Like in kCPQ, this
partitioner is applied to Q. Next, Stages 2 and 3 execute a plane-sweep "DJQ algorithm
[Roumelis et al., 2016] between spatial objects of the same partition in PS and QS for
skewed data, and in PNS and QNS for non-skewed data. Then, it is still needed to search
for possible pairs of spatial objects on the boundaries of the partitions of one dataset in
the other. Therefore, Stages 4 and 5 use a range, with the center in each partition and
" as the radius to obtain these candidates. To get the refined answer for each partition,
a plane-sweep "DJQ algorithm is applied again. Finally, Stage 6 unifies the results from
Stages 2, 3, 4, and 5 in the final query output.

As explained in Section 4.3.5, the "DJQ and "DRJQ are equivalent and report the
same results, but in a di↵erent order. Besides, the main di↵erence between both MapRe-
duce algorithms in SpatialHadoop is that "DJQ is a Map-based Join algorithm derived

Figure 5.5: Execution Plan for "DJQ in LocationSpark.

© 2021 Garćıa-Garćıa, F.J.

178 5.4. PERFORMANCE EVALUATION

from kCPQ, while "DRJQ is a Reduce-based Join algorithm that comes from kNNJQ.
Therefore, the Execution Plan for "DRJQ in LocationSpark is a simplification of the
kNNJQ one in which a pruning distance " known beforehand is used. However, and as
mentioned before, the algorithms kCPQ and kNNJQ follows a similar processing scheme
in LocationSpark, and consequently, the Execution Plans of "DJQ and "DRJQ do not
show di↵erences since they are based on kCPQ and kNNJQ, respectively.

5.4 Performance Evaluation

This section details the results of an experimental comparison [Garćıa-Garćıa et al.,
2020c] between LocationSpark and SpatialHadoop by measuring and evaluating the
e�ciency of the several DBQ algorithms presented in this chapter and Chapter 4. In
particular, Subsection 5.4.1 describes the experimental settings. Subsection 5.4.2 shows
all experiments comparing kCPQ and "DJQ, taking into account several performance
parameters. Subsection 5.4.3 shows all experiments for kNNJQ, paying special attention
to how the Quadtree-based repartitioning technique in SpatialHadoop compares to the
in-memory processing of LocationSpark. Subsection 5.4.4 compares "DRJQ in both
DSDMSs, regarding scalability of the datasets to be combined and " values. Subsection
5.4.5 shows the speedup of the proposed distributed DJQ algorithms in both DSDMSs,
varying the number of computing nodes in the cluster. Finally, in Subsection 5.4.6 a
summary of the most relevant conclusions from the experimental results is reported.

5.4.1 Experimental Setup

For the experimental comparison, we have used the implementations of SpatialHadoop1

and LocationSpark2, with the addition of our open-source DJQ algorithms, that can
be downloaded from our SpatialHadoop3 and LocationSpark4 forks. Moreover, we have
used real-world 2d points and geometric datasets to compare and analyze our distributed
DJQ algorithms in SpatialHadoop and LocationSpark. Therefore, we have used the same
datasets from OpenStreetMap already used in Section 3.6 and 4.5: LAKES (L), PARKS
(P), ROADS (R), BUILDINGS (B) and ROAD NETWORKS (RN). On the one hand,
we have used the datasets as-is for spatial objects experiments (i.e., polygons and line-
strings). On the other hand, for 2d points experiments, we have considered the center
of each MBR and the centroid of each polygon as in previous chapters.

To accomplish a fair comparison between both DSDMSs, we must take into account
the most suitable partitioning technique to execute the DJQs. In [Pandey et al., 2018],
the Quadtree is the spatial partitioning technique selected to evaluate LocationSpark and
compare it with other Spark-based DSDMSs. Due to the excellent performance results
obtained for this DSDMS in the evaluation of DJQs, we choose Quadtree partitioning
technique for LocatioSpark to use in the experiments of this section. Therefore, we will

1
Available at https://github.com/aseldawy/spatialhadoop2

2
Available at https://github.com/merlintang/SpatialSpark

3
Available at https://github.com/acgtic211/spatialhadoop2/tree/DJQ

4
Available at https://github.com/acgtic211/SpatialSpark/tree/DJQ

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 5. SPATIAL QUERY PROCESSING IN LOCATIONSPARK 179

also select Quadtree partitioning method for SpatialHadoop, as it has also obtained great
performance results, especially for kCPQ. Another interesting variation is that we need
to partition and index the datasets before doing any query processing in SpatialHadoop.
This preprocessing phase is carried out once per dataset and stored on HDFS for the
subsequent execution of several spatial queries (this can be considered an advantage of
SpatialHadoop). For instance, the times needed for the Quadtree partitioning technique
are 94 sec for LAKES, 103 sec for PARKS, 150 sec for ROADS, 175 sec for BUILDINGS
and 1053 sec for ROAD NETWORKS. For LocationSpark (in-memory-based DSDMS),
the partitions and indexes are generated for every spatial query and only cached in
memory for the current operation. Therefore, the partitions/indexes are not stored on
any persistent file system and cannot be reused in subsequent spatial operations.

The performance measure that we have adopted in our experiments was the total
execution time (i.e., running time or response time); this measurement is reported in
seconds (sec) and represents the time spent by the execution of each distributed DJQ
algorithm in both DSDMSs.

Moreover, all experiments were conducted on the same 12 nodes OpenStack cluster
outlined in Section 3.6. Additionally, for LocationSpark, we have used Spark 1.6.2 in
cluster mode over YARN in the aforementioned cluster.

Finally, Table 5.1 summarizes the configuration parameters used in our experimental
comparison. Default parameters (in parentheses) are used unless otherwise mentioned.

Parameter Values (default)

of nearest neighbors for kCPQ, k 1, 10, (102), 103, 104, 105

of nearest neighbors for kNNJQ, k 1, (10), 25, 50, 75, 100
Distance threshold, " (⇥10�5) 7.5, 10, 25, 50, 75, (100)

Number of nodes, ⌘ 1, 2, 4, 6, 8, 10, (12)
Partitioning technique Quadtree

Repartitioning technique Quadtree
DSDMS SpatialHadoop, LocationSpark

Table 5.1: Configuration parameters used in our experiments to compare
SpatialHadoop and LocationSpark.

5.4.2 kCPQ and "DJQ experiments

Our first set of experiments aims to measure the behavior of the kCPQ and "DJQ
algorithms on both DSDMSs (SpatialHadoop and LocationSpark) varying di↵erent pa-
rameters, as the dataset sizes, the type of spatial objects, and the values of k and ".

In Figure 5.6, the chart on the left compares the kCP (P,Q, k) for point datasets
(where P⇥Q ⌘ LAKES⇥PARKS (L⇥P), PARKS⇥ROADS (P ⇥P), ROADS⇥
BUILDINGS (R ⇥ B) and BUILDINGS ⇥ ROAD NETWORKS (B ⇥ RN)) con-
cerning the execution time, for a fixed k = 100. The main outcome of this experiment
is that the larger the dataset, the higher the execution time for both DSDMSs. For the

© 2021 Garćıa-Garćıa, F.J.

180 5.4. PERFORMANCE EVALUATION

combinations of L⇥P and P ⇥R, LocationSpark is faster than SpatialHadoop (e.g., for
P⇥R LocationSpark is 48% (74 sec) faster), but the combinations of the biggest datasets
(R ⇥ B and B ⇥ RN) SpatialHadoop is the fastest, e.g., for B ⇥ RN SpatialHadoop
is 38% (740 sec) faster than LocationSpark. That is, LocationSpark exhibits smaller
runtime values for small-medium dataset sizes, even though neither pre-partitioning nor
pre-indexing is done. However, SpatialHadoop is the fastest for the largest datasets,
although it needs a pre-indexing time for each one, and that di↵erence can be caused
by memory constraints on the cluster. By increasing the size of the joined datasets,
there is more data in each partition, and the memory pressure of the tasks increases.
Therefore, we can conclude that LocationSpark is more a↵ected by memory constraints
than SpatialHadoop for the same cluster.

For real spatial object datasets (L ⇥ P : polygons ⇥ polygons, P ⇥ R: polygons ⇥
line-strings, R⇥B: line-strings ⇥ polygons and B ⇥RN : polygons ⇥ line-strings), the
right chart of Figure 5.6 shows the execution time for the kCPQ. The trend is similar
than for points (left chart), where LocationSpark is the fastest for the combination
of small-medium dataset sizes, although SpatialHadoop shows higher performance for
the biggest dataset combinations. Moreover, if we compare both charts in Figure 5.6,
we can see that when we execute a kCPQ between two datasets of spatial objects,
the execution time increases for both DSDMSs. Remember that the running time was
already slightly higher for spatial objects than for points when studying the kCPQ
in SpatialHadoop (see Section 4.5.3.5). The reasons are that the distance between two
spatial objects is computationally more expensive and that distance value is smaller than
the distance between two points, so the e↵ect of pruning is reduced and more pairs have
to be considered. In this experiment, we can see that LocationSpark behaves similar to
SpatialHadoop but with lower relative increase of the execution time (e.g., for B ⇥RN
the relative increment for LocationSpark is 17% (345 sec) while for SpatialHadoop is
24% (294 sec)).

L⇥ P P ⇥R R⇥B B ⇥RN

0

500

1,000

1,500

2,000

2,500

P⇥ Q: Datasets joined

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

Point Datasets - kCPQ

L⇥ P P ⇥R R⇥B B ⇥RN

0

500

1,000

1,500

2,000

2,500

P⇥ Q: Datasets joined

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

Spatial Objects Datasets - kCPQ

SpatialHadoop QUADTREE LocationSpark QUADTREE

Figure 5.6: kCPQ cost, total execution time joining points (left) and non-points spatial
objects (right).

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 5. SPATIAL QUERY PROCESSING IN LOCATIONSPARK 181

Figure 5.7 shows the results for "DJ(P,Q, ") execution times with the same config-
uration as that of Figure 5.6, for a fixed " = 0.001 (100 ⇥ 10�5). In the left chart, we
can see similar results to the previous kCPQ experiment. For instance, SpatialHadoop
exhibits the best performance for point datasets, being LocationSpark faster only for
the smallest dataset combination (L⇥P). Especially for the combinations of the biggest
datasets (R ⇥ B and B ⇥ RN), SpatialHadoop is the clear winner, e.g., for B ⇥ RN is
2.8 times (1938 sec) faster than LocationSpark. On the one hand, problems of mem-
ory pressure in LocationSpark appear again due to the dataset sizes, the number of
elements computed in each partition, and the shu✏ing data and garbage collection pro-
cesses performed on them. On the other hand, SpatialHadoop has better performance
against this problem due to the use of CombineFileSplits [Karanth, 2014], which allows
performing the join by partitioning at disk reading level and therefore, eliminating the
Reduce shu✏ing cost.

In Figure 5.7, the right chart exposes the results of "DJQ for real spatial object
datasets with respect to the execution time (" = 0.001). The behavior is again compa-
rable to the point datasets, with SpatialHadoop being the fastest for all combinations,
except for the smallest one (L⇥P). Note that for the combination of the largest datasets
(B ⇥RN), LocationSpark shows memory pressure problems again. Another conclusion
is that a "DJQ between two spatial objects datasets expends more execution time than
for points for both DSDMSs. We have already seen in Section 4.5.4.4 that this behav-
ior when joining spatial objects is similar to kCPQ. Therefore, because the distances
between spatial objects are smaller, the same " value returns more results, increasing
the execution time. When comparing both DSDMSs, we can see that for "DJQ, the
relative increase in execution time is similar for LocationSpark and SpatialHadoop (e.g.,
for R⇥B, this relative increment is around 100% for both).

L⇥ P P ⇥R R⇥B B ⇥RN

0

1,000

2,000

3,000

4,000

5,000

P⇥ Q: Datasets joined

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

Point Datasets - "DJQ

L⇥ P P ⇥R R⇥B B ⇥RN

0

1,000

2,000

3,000

4,000

5,000

P⇥ Q: Datasets joined

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

Spatial Objects Datasets - "DJQ

SpatialHadoop QUADTREE LocationSpark QUADTREE

Figure 5.7: "DJQ cost, total execution time joining points (left) and non-points spatial
objects (right).

© 2021 Garćıa-Garćıa, F.J.

182 5.4. PERFORMANCE EVALUATION

Figure 5.8 shows the e↵ect of increasing both k and " values for the combination of
the biggest datasets (BUILDINGS⇥ROAD NETWORKS) for kCPQ and "DJQ. In
Figure 5.8, the left chart shows that as the number of results to be obtained (k) increases,
the total execution time grows slowly. The first conclusion is that SpatialHadoop shows
the best performance when joining either points or spatial objects (polygons ⇥ line-
strings), and even for large k values (e.g., k = 105). This behavior is thanks to the
combination of Quadtree-based partitioning performed in the preprocessing step and
the filtering function that reduces the number of candidates even before reading the
data from the HDFS. LocationSpark, that also uses the Quadtree, is stable when k is
small or medium (k 103); however, for higher k values (k = 104 and k = 105), the
execution time is very high due to memory constraints in the cluster. With the increment
of k, the possibility of selecting more cells augment since the value of the distance of
the k-th closest pair increases as well. Due to this, the resources needed by the kCPQ
algorithm increment. Finally, note that the execution times of the algorithms show
divergence with the highest values of k (see Figure 5.8), especially for LocationSpark.

As shown in the right chart of Figure 5.8, the total execution time of "DJQ grows
as the " value is increased. Both DSDMSs have similar relative performance for all
" values, SpatialHadoop being faster in all cases, even when the datasets of spatial
objects are combined. This di↵erence is due to the way in which "DJQ is calculated in
SpatialHadoop and its the preprocessing step that reduces time considerably even for
the largest datasets. For higher " values, both systems start to increase their execution
times due to the increase of the number of elements that are part of the query results. A
special case is for LocationSpark when " = 10�3, the execution time is very high because
it has memory pressure problems again, more prominent than SpatialHadoop.

1 10 102 103 104 105
0

500

1,000

1,500

2,000

2,500

3,000

k : # of closest pairs

T
ot
al

E
x
ec
u
ti
on

T
im

e
(i
n
se
c)

BUILDINGS ⇥ ROAD NETWORKS - kCPQ

7.5 10 25 50 75 100
0

500

1,000

1,500

2,000

2,500

3,000

": distance values (⇥10�5)

T
ot
al

E
x
ec
u
ti
on

T
im

e
(i
n
se
c)

BUILDINGS ⇥ ROAD NETWORKS - "DJQ

SpatialHadoop Points SpatialHadoop Spatial Objects LocationSpark Points

Figure 5.8: kCPQ cost, total execution time vs. k values (left). "DJQ cost, total
execution time vs. " values (right).

The main conclusions that we can draw from this set of experiments (kCPQ and
"DJQ) are:

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 5. SPATIAL QUERY PROCESSING IN LOCATIONSPARK 183

1. The higher k or " values, the greater the possibility that pairs of candidates are
not pruned, more tasks are needed, and more total execution time is consumed.

2. SpatialHadoop shows better performance, especially for higher values of k and
", thanks to Quadtree partitioning technique and the reduction of the number of
candidates by using the preprocessing step.

3. The trend of SpatialHadoop is quite stable for the execution time, even if the
biggest datasets of spatial objects are combined, where the cost is more expensive
than for points.

4. SpatialHadoop "DJQ shows the lowest and most stable execution times, demon-
strating the benefits of its Map-based join implementation and the use of Com-
bineFileSplits [Karanth, 2014].

5. LocationSpark is faster than SpatialHadoop for small and medium dataset sizes,
but for the largest datasets, it needs more time to execute the kCPQ and "DJQ,
even for small k and " values; this is due to memory pressure problems resulting
from the increase of the number of processed elements and the size of consumed
memory, as well as the increase in the processing time needed for the shu✏ing data
and garbage collection.

5.4.3 kNNJQ experiments

Similarly to the previous experiments, the following evaluation of the kNNJQ algorithms
in LocationSpark and SpatialHadoop aims to measure the variation of di↵erent param-
eters as the dataset sizes to be joined (scalability) and k values. For LocationSpark, we
have chosen the Quadtree as it got the best performance for kNNJQ in [Pandey et al.,
2018]. For SpatialHadoop, we are using the Quadtree for both the preprocessing step
and repartitioning phase to do a fair comparison with LocationSpark. Moreover, we
have fixed the parameters L = 100000 (maximum number of elements in each partition)
and r = 2% (sample ratio) for this repartitioning technique as they were the best setup
for kNNJQ in SpatialHadoop (see Section 4.5.5).

In Figure 5.9, the left chart shows the kNNJ(P,Q, k) query for both DSDMSs
concerning the execution time and a fixed k = 10, where the smallest dataset P is
fixed to LAKES and the other dataset Q is assigned to particular datasets (PARKS,
ROADS, BUILDINGS and ROAD NETWORKS), creating the following combina-
tions of P ⇥ Q: L ⇥ P , L ⇥ R, L ⇥ B and L ⇥ RN . The first conclusion that we can
extract is that SpatialHadoop is the fastest, with a di↵erence of around 40%. This
greater performance from SpatialHadoop with Quadtree-based repartitioning technique
than LocationSpark is due to the excellent results when dealing with skewed data. While
this technique in SpatialHadoop processes those partitions that exceed a certain num-
ber of elements, LocationSpark, in the current implementation, treats only the number
of cells with the highest number of elements based on the input datasets. Note that
for the same execution conditions in our cluster, LocationSpark could not execute the
kNNJQ for the combination of L ⇥ RN because it consumes all available resources on

© 2021 Garćıa-Garćıa, F.J.

184 5.4. PERFORMANCE EVALUATION

some workers, having to abort the execution. However, both DSDMSs exhibit quite
stable execution times, and their increment is sub-linear as the size of the datasets (Q)
is augmented. Note that for SpatialHadoop, the relative increment of execution time
from L ⇥ P to L ⇥ RN was around the 53.4% (1491 sec), while the increment in the
number of points was massive from PARKS (10M) to ROAD NETWORKS (717M).

The right chart of Figure 5.9 shows the e↵ect of varying the value of k for the
combination of the datasets (LAKES ⇥ PARKS). Comparing the DSDMSs, we can
observe that SpatialHadoop is faster than LocationSpark, except for k = 50, where
LocationSpark spends less execution time. At first sight, LocationSpark seems to scale
better when increasing the value of k, but from k = 75, problems start to appear due
to memory limitations in the cluster because of the increase in the number of elements
and partitions. Consequently, it is demonstrated again that LocationSpark is more
sensitive to this type of problem than SpatialHadoop since it is a memory-based DSDMS.
Remember that for a kNNJQ, the higher the k value, the higher the possibility of
selecting more partitions to refine the initial kNN lists (kNNJ on Overlapping Partitions
for SpatialHadoop, and Stages 4 and 5 for LocationSpark). Therefore, the same point
must be compared in more than one partition, increasing the size of shu✏ed data and
having partial kNN lists for each partition that must be combined in the last phase of
the algorithm.

L⇥ P L⇥R L⇥B L⇥RN

0

500

1,000

1,500

2,000

2,500

3,000

P⇥ Q: Datasets joined

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

Point Datasets - kNNJQ

1 10 25 50 75 100
0

2,500

5,000

7,500

10,000

12,500

k: # of nearest neighbors

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

LAKES ⇥ PARKS - kNNJQ

SpatialHadoop QUADTREE LocationSpark QUADTREE

Figure 5.9: kNNJQ cost, total execution time considering di↵erent datasets (left) and
varying the k values (right).

From this set of experiments, comparing the kNNJQ algorithm in SpatialHadoop
and LocationSpark, we can conclude with the following:

1. SpatialHadoop is the fastest, especially for lower values of k, thanks to using the
Quadtree for both the preprocessing step and repartitioning phase that greatly
reduces the number of candidates.

2. LocationSpark presents low and stable execution times with small and medium

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 5. SPATIAL QUERY PROCESSING IN LOCATIONSPARK 185

dataset sizes, and for small k values, but it shows poor results for larger datasets
and k values since it is more sensitive to memory constraints problems.

3. Similarly to kCPQ, the higher the k value, the greater the possibility of more
unpruned pairs of candidates, more needed tasks, and higher total execution time.

5.4.4 "DRJQ experiments

The next experiment compares the "DRJQ, in terms of execution time, in both Spatial-
Hadoop and LocationSpark. The left chart of Figure 5.10 shows the results for "DRJQ
execution times with several point dataset combinations (L ⇥ P , P ⇥ R, R ⇥ B and
B ⇥ RN) and " = 0.001. Firstly, for the combinations of the smallest datasets (L ⇥ P
and P ⇥ R), SpatialHadoop exhibits slightly larger execution times. These execution
times stem from being a Reduce-based join algorithm since there is extra time spent
when performing the shu✏ing and sorting of the data between the Map and Reduce
phases. However, for the combinations of the biggest datasets (R ⇥ B and B ⇥ RN)
SpatialHadoop is faster than LocationSpark (e.g., for B⇥RN is 40% faster). Therefore,
the problems of memory pressure in LocationSpark seem to influence more in the exe-
cution time than those caused by the shu✏ed data in SpatialHadoop. As shown in the
right chart of Figure 5.10, the total execution time grows as the " value increases. Both
DSDMSs have similar relative performance for all " values, with SpatialHadoop being
faster in all cases.

L⇥ P P ⇥R R⇥B B ⇥RN

0

500

1,000

1,500

2,000

2,500

3,000

P⇥ Q: Datasets joined

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

Point Datasets - "DRJQ

7.5 10 25 50 75 100
0

500

1,000

1,500

2,000

2,500

3,000

": distance values (⇥10
�5

)

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

BUILDINGS ⇥ROAD NETWORK - "DRJQ

SpatialHadoop QUADTREE LocationSpark QUADTREE

Figure 5.10: "DRJQ cost, total execution time considering di↵erent datasets (left) and
varying the " values (right).

The main conclusions extracted for this performance comparison are:

1. "DRJQ in SpatialHadoop is faster than LocationSpark for large datasets and any
" value.

© 2021 Garćıa-Garćıa, F.J.

186 5.4. PERFORMANCE EVALUATION

2. LocationSpark is the fastest for small-medium datasets (L ⇥ P and P ⇥ R), but
when the dataset sizes grow, its performance degrades in terms of running time
because of memory pressure problems.

5.4.5 Speedup varying the number of computing nodes

Our last experiment aims to measure and compare the speedup of all the DJQ MapRe-
duce algorithms (kCPQ, "DJQ, kNNJQ, and "DRJQ) in both DSDMSs, for the number
of computing nodes (⌘). The first chart of Figure 5.11 shows the impact of varying
the number of computing nodes on the performance of distributed kCPQ algorithm, for
BUILDINGS ⇥ PARKS with the default configuration values. From this chart, it
could be concluded that the performance of our approach has a direct relationship with
the number of computing nodes. It could also be deduced that better performance would
be obtained if more computing nodes are added, but when the number of computing
nodes exceeds the number of map tasks, no improvement is obtained. LocationSpark is
still showing better behavior than SpatialHadoop for kCPQ.

In the second chart of Figure 5.11, we observe a similar trend for "DJQ MapReduce
algorithm in SpatialHadoop, with less execution time when the number of available nodes
is less than 8; However, in this case, LocationSpark shows the worse performance for a
smaller number of nodes. The main reason is that LocationSpark and especially "DJQ
depends tightly on the available memory. Thus, when the number of nodes decreases,
this memory also decreases considerably.

The third chart of Figure 5.11 shows much higher execution times for kNNJQ than
for previous DJQ algorithms, mainly since it is a much more complex algorithm and
consists of several phases. However, both systems follow a similar behavior tendency
to the one shown in kCPQ, exhibiting the lowest execution times in SpatialHadoop for
kNNJQ.

Finally, the last chart of Figure 5.11 shows the execution times for "DRJQ, and as it
happens between kCPQ and "DJQ, this algorithm has lower times than kNNJQ, which
it is based on that. Furthermore, as seen for "DRJQ, SpatialHadoop shows a better
behavior than LocationSpark when there are fewer computing nodes in use due to the
sensitivity of the latter to memory constraints as the availability of this resource reduces
by decreasing the number of nodes.

The main conclusions that we can extract for these experiments, varying the number
of computing nodes (⌘), are:

1. All algorithms behave better when the number of computing nodes increases,
however when not enough tasks available, no performance improvement can be
obtained.

2. For LocationSpark, the value of the number of nodes is not as a determinant
parameter for the speedup of the algorithms, as is the availability of memory
resources.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 5. SPATIAL QUERY PROCESSING IN LOCATIONSPARK 187

1 2 4 6 8 10 12
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

⌘: # of available computing nodes

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

BUILDINGS ⇥ PARKS - kCPQ

1 2 4 6 8 10 12
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

⌘: # of available computing nodes

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

BUILDINGS ⇥ PARKS - "DJQ

1 2 4 6 8 10 12
0

2,500

5,000

7,500

10,000

12,500

15,000

17,500

⌘: # of available computing nodes

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

LAKES ⇥ PARKS - kNNJQ

1 2 4 6 8 10 12
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

⌘: # of available computing nodes

T
o
t
a
l
E
x
e
c
u
t
io
n
T
im

e
(
in

s
e
c
)

BUILDINGS ⇥ PARKS - "DRJQ

SpatialHadoop QUADTREE LocationSpark QUADTREE

Figure 5.11: kCPQ, "DJQ, kNNJQ and "DRJQ cost with respect to the number of
computing nodes ⌘ (Speedup).

5.4.6 Conclusions of the results

By analyzing all the previous experimental results, we can extract several important
conclusions that are summarized below:

1. We have experimentally compared the e�ciency (in terms of total execution time)
and the scalability (in terms of k and " values, sizes of datasets, and the number
of computing nodes, ⌘) of the proposed distributed algorithms for DJQs in Spa-
tialHadoop and LocationSpark.

2. For kCPQ and "DJQ, the larger the k or " values, the larger the probability
of unpruned pairs of candidates, more needed tasks, and higher consumed total
execution time for reporting the final result. On the one hand, SpatialHadoop
shows excellent performance for large k and " values thanks to the use of the
Quadtree partitioning technique. On the other hand, LocationSpark is faster than
SpatialHadoop for small and medium dataset sizes, but for the largest datasets,
it needs more time to execute the queries, even for large k and " values due to
memory pressure problems. When real spatial objects are combined, the running
time for both DSDMSs is a bit higher than for points, following a similar trend.

© 2021 Garćıa-Garćıa, F.J.

188 5.5. CONCLUSIONS

3. We have compared the built-in LocationSpark kNNJQ algorithm with our pro-
posed MapReduce algorithm in SpatialHadoop (see Section 4.3.4) that we have
improved by using an initial phase for repartitioning the dense partitions (see Sec-
tion 4.4.3). Due to this, SpatialHadoop is the fastest, especially for lower k values,
thanks to Quadtree-based repartitioning technique and the reduction of the num-
ber of candidates by using the Repartitioning phase. LocationSpark, using the
currently available implementation, presents low and stable execution times with
small and medium dataset sizes and for small k values. However, it shows poor
results for larger datasets and k values due to being more sensitive to memory
constraints problems.

4. For "DRJQ, SpatialHadoop is the fastest for the largest datasets and any " value,
except for small-medium dataset sizes where LocationSpark exhibits the best per-
formance.

5. The larger the number of computing nodes (⌘), the faster the DJQ MapReduce
algorithms.

6. The use of CombineFileSplits [Karanth, 2014] in SpatialHadoop [Eldawy and Mok-
bel, 2015] allows reducing the execution times considerably by avoiding the cost of
shu✏ing and sorting of the reduce phase. Thus, it would be interesting to study
its use to improve other algorithms such as kNNJQ, in which the size of shu✏ing
data is a determinant factor.

7. LocationSpark is very sensitive to problems caused by memory restrictions, making
it has worse performance than SpatialHadoop for the same cluster for heavy-sized
datasets or high k and " values.

8. Finally, as a general conclusion, both DSDMSs have similar performance trends in
terms of execution time. However, LocationSpark shows better performance values
when medium datasets are combined (if providing a suitable number of computing
nodes with adequate memory resources), even though neither pre-partitioning nor
pre-indexing is done. Therefore, LocationSpark, which is a recent DSDMS, needs
further improvements, like the treatment of skewed data. On the other hand, Spa-
tialHadoop is a more robust and mature DSDMS, since it has received numerous
enhancements over the years (e.g., this thesis includes several improvements for
kNNJQ in Section 4.4.3), so it exhibits better performance for the studied DJQ
MapReduce algorithms when the sizes of the datasets increase.

5.5 Conclusions

This section highlights the main conclusions of this chapter. First, we have detailed the
general spatial query processing scheme in LocationSpark and its numerous features and
tools for handling spatial data in Spark. Especially, the Spatial Index and the Query
Scheduler layers make the di↵erence from other Spark-based spatial analytics systems,
thanks to the analysis and mitigation of skew data in spatial queries. Next, we have

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 5. SPATIAL QUERY PROCESSING IN LOCATIONSPARK 189

described the available spatial queries (i.e., spatial range search, kNN search (kNNQ),
spatial range join, and kNNJQ) in the Spatial Operators layer of LocationSpark. More-
over, we have focused and explained the Execution Plan of the indexed nested-loops
kNNJQ in LocationSpark to compare it with the one proposed for SpatialHadoop. Then
we have exposed new spatial queries (i.e., kCPQ, "DJQ, and "DRJQ) for LocationSpark
and some improvements over their original Execution Plans. Finally, the execution of
an extensive set of experiments has compared these new DJQ distributed algorithms in
LocationSpark with our proposed MapReduce DJQ algorithms in SpatialHadoop from
Chapter 4. Besides, they have been tested in terms of e�ciency, robustness, and scal-
ability for parameters such as dataset sizes, k, ", number of computing nodes (⌘), and
others. On the one hand, LocationSpark is the clear winner for the execution time when
up to medium-sized datasets are joined due to the e�ciency of the in-memory process-
ing provided by Spark and additional improvements (e.g., Query Scheduler layer). On
the other hand, SpatialHadoop is faster when joining heavy-sized real-world datasets
because it is a more mature and robust DSDMS due to the time invested in research
and development (e.g., it provides more spatial partitioning techniques, computational
geometry algorithms, repartitioning techniques for skewed data, etc.).

© 2021 Garćıa-Garćıa, F.J.

190 5.5. CONCLUSIONS

E�cient Query Processing in Distributed Spatial Data Management Systems

Chapter 6

Conclusions and

Future Work

© 2021 Garćıa-Garćıa, F.J.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 191

Chapter 6

Conclusions and
Future Work

Contents
6.1 Conclusions . 193

6.2 Future Work . 198

192

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 193

I n this chapter, we conclude this dissertation. First, in Section 6.1, we provide the
most important conclusions and results arising from the research in this thesis. Finally,
in Section 6.2, we discuss related future work on open research lines.

6.1 Conclusions

Nowadays, a significant portion of Big Data is spatial data, and the size of such data is
growing rapidly, at least by 20% every year. Big Spatial Data refers to spatial datasets
exceeding the capacity of standard computing systems, and it also describes the process
of capturing, storing, managing, analyzing, and visualizing huge amounts of spatial data,
not using traditional tools and systems. Distributed computing has established itself as a
successful paradigm to solve a big problem by dividing it into multiple tasks, where each
of them is calculated on individual computers in a distributed system. Recent big spatial
data developments have motivated the emergence of new technologies for distributed
processing of large-scale spatial datasets in shared-nothing clusters of computers, leading
to Distributed Spatial Data Management Systems (DSDMSs). These DSDMSs can be
classified as disk-based or in-memory-based. The disk-based DSDMSs are characterized
as Hadoop-based systems, and the most representative is SpatialHadoop. On the other
hand, the in-memory-based DSDMSs are characterized as Spark-based systems, and one
of the most complete and recognized is LocationSpark.

The most important architectural features of these DSDMSs are related to data
partitioning methods, indexing schemes, and spatial queries that they support. Ac-
cordingly, an interesting challenge is to enrich these DSDMSs on these architectural
functionalities to make them more competitive and complete. The overarching goal
of this thesis is to research in detail existing DSDMSs (SpatialHadoop and Location-
Spark), enhancing them by including new spatial data partitioning techniques, new local
spatial indexing methods, and new DBQ algorithms for processing large real-world spa-
tial datasets. In particular, we aim at making such DSDMSs richer by implementing
Voronoi-Diagram based partitioning technique in SpatialHadoop, Quadtree as a local in-
dex in SpatialHadoop and new distance-based queries ("DRQ, kNNQ, kCPQ, kNNJQ,
RkNNQ, "DJQ, "DRJQ, etc.) in SpatialHadoop and LocationSpark. Moreover, an
extensive performance evaluation of multiple enhancements (spatial query algorithms,
extensions, and improvements) in both DSDMSs is achieved. Finally, a comparative
study between SpatialHadoop and LocationSpark is also carried out by executing an
exhaustive set of experiments of several DBQs to identify which DSDMSs is the most
appropriate for the distributed query processing of large volumes of spatial data.

First, we have developed a survey of the state-of-the-art Hadoop-based and Spark-
based DSDMSs. For this aim, we have examined the most representative research pro-
totypes of DSDMSs that appear in the literature and compare them based on structural
features like spatial index and spatial queries they support. Moreover, we have also
reviewed the most common spatial data partitioning techniques and classified them by
how they use data or space properties to split the spatial datasets. Finally, an overview

© 2021 Garćıa-Garćıa, F.J.

194 6.1. CONCLUSIONS

of the most studied and known distance-based queries in the spatial context is thor-
oughly analyzed. In particular, we emphasize this study on distance-based join queries
(kCPQ, kNNJQ, "DJQ, "DRJQ, and others), where two datasets are combined. We
have presented all these surveys in Chapter 2.

The next objective of this dissertation was to propose a new spatial data partitioning
technique based on Voronoi-Diagrams for SpatialHadoop. This data partitioning scheme
is especially suitable for DBQs like kNNQ and kNNJQ since it is a distance-based par-
titioning method to split the spatial dataset into smaller units, enabling the processing
of DBQ in parallel and reducing the I/O activity by only visiting the partitions that
contain the relevant data to the query constraint. An extensive experimental evaluation
of the spatial partitioning methods that are already implemented in SpatialHadoop and
a comparison with the Voronoi-Diagram based technique for kCPQ and kNNJQ is also
accomplished. We have also included the Quadtree as a local index in SpatialHadoop
since this spatial access method is widely used in commercial spatial database systems.
A comparative study between R-tree and Quadtree as local indexes for kNNQ and kCPQ
has been carried out and has demonstrated the excellent performance of the Quadtree
for these top-k queries in SpatialHadoop. All this material has been proposed in Chapter
3, along with interesting experimental conclusions as shown below:

1. To implement the Voronoi-Diagram based partitioning technique in SpatialHadoop,
the best sampling technique to find a small but representative profile of the
large spatial dataset for DJQ processing is k-means++ (partition-based sampling
method).

2. The use of k-means++, as a clustering method for pivot selection, obtained the
best results for the generation of the partitions based on Voronoi-Diagrams for
the kNNJQ MapReduce algorithm in SpatialHadoop. VkkI represents the use of
k-means++ both in the sampling technique and the pivot selection in the Voronoi-
Diagram based partitioning technique in SpatialHadoop, with additional improve-
ments using new pruning rules relied on Voronoi-Diagram based distances and less
data technique.

3. For kNNJQ (it follows a multiple nearest neighbor queries processing schema),
VkkI is faster than Quadtree partitioning because it deals better with skewed data
and it gets more results earlier. For kCPQ (it follows a global query processing
schema), Quadtree outperforms VkkI because Quadtree generates less map tasks
when large spatial datasets are combined.

4. For kCPQ, Quadtree outperforms R-tree, as a local index, due to the morphology
of the nodes and the number of generated partitions. The nodes of the Quadtree
show a more regular shape that causes a smaller number of overlaps between nodes,
which implies a reduction in the number of pairs to process.

5. For kNNQ and kCPQ, when the value of k or the size of the datasets varies,
Quadtree, as a local index, is the clear winner, and its execution times are more
stable than those of R-tree when dealing with higher values of k or larger spatial
datasets. Moreover, both R-tree and Quadtree show better performance when the

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 195

number of computing nodes (⌘) is increased. But for kCPQ, if there are not enough
tasks available for a specific number of nodes, no performance improvements are
obtained. Besides, Quadtree takes much less time than R-tree when there is only
one computing node available.

Related to the enhancement of SpatialHadoop with new spatial queries using the
MapReduce programming model, we have proposed the design and implementation of
new distance-based queries ("DRQ, kNNQ, kCPQ, kNNJQ, "DJQ, "DRJQ, RkNNQ,
etc.). In the first stage, we have programmed MapReduce algorithms for "DRQ and
kNNQ, based on range and k nearest neighbor queries included in SpatialHadoop. Next,
we have designed and implemented new MapReduce algorithms to perform DJQs like
kCPQ and "DJQ e�ciently. For this aim, we have utilized plane-sweep-based kCPQ
algorithms and improved them to compute an upper bound of the distance of the k-
th closest pair (�) and make the original version of the kCPQ MapReduce algorithm
more e�cient and faster. We have also implemented a new version of the distributed
kCPQ algorithm using R-trees as a local index(es) provided by SpatialHadoop, and we
compared this approach to the plane-sweep-based version (without indexes). Finally,
we have evaluated the performance of the proposed distributed algorithms in several
situations with large real-world as well as synthetic datasets. The experimental results
have demonstrated the e�ciency and scalability of our proposals. Part of Chapter
4 shows all these DJQ MapReduce algorithms together with interesting experimental
conclusions listened below:

1. The use of local sampling to compute � makes the kCPQ MapReduce algorithm
faster than the other two alternatives (global sampling and approximate technique)
because the time required to perform the local sampling is very small. The use
of � improves the execution time of the individual map tasks. The use of local
sampling generates low � values, and the power of pruning increases when it is
passed to the map tasks.

2. The improved version of the plane-sweep-based algorithm (Reverse Run) in the
MapReduce implementation of kCPQ in SpatialHadoop obtains the best perfor-
mances in terms of execution time. Moreover, it is faster than using local indices
(R-trees) in each map task.

3. For kCPQ and "DJQ, the Quadtree spatial partitioning technique, included in
SpatialHadoop, significantly reduces the total execution time. That is, Quadtree
outperforms STR, Hilbert, and STR. This is due to Quadtree partitions space
according to the data distribution (the concentration of the cells depends on the
concentration of points).

4. The larger the k or " values, the larger the probability that pairs of partitions are
not pruned. It means more map tasks will be needed for the query processing, and
more total execution time is spent for reporting the final query result.

5. The larger the number of computing nodes (⌘), the faster the DJQ MapReduce
algorithms are, but when ⌘ exceeds the number of map tasks, no improvement for
the whole job is obtained.

© 2021 Garćıa-Garćıa, F.J.

196 6.1. CONCLUSIONS

Continuing with the upgrade of SpatialHadoop, we have designed and implemented
new MapReduce algorithms to perform DJQs like kNNJQ and "DRJQ e�ciently. These
DJQs follow a multiple query processing schema (kNNQ and "DRQ, respectively). We
have also extended these DJQ MapReduce algorithms for managing non-points spatial
objects like rectangles and line-segments. Improved versions of kNNJQ and "DRJQ
MapReduce algorithms have been designed and implemented by using repartitioning
techniques to handling dense areas (i.e., to repartition the densest generated partitions).
For these DJQs, we have also incorporated into SpatialHadoop the less data technique
to try to move as little data as possible between computing nodes and reduce the size
of the output data. As a last enhancement of SpatialHadoop, we have proposed the
design and implementation of two new RkNNQ MapReduce algorithms: MRSFT is
the baseline MapReduce algorithm based on the SFT algorithm, and MRSLICE is the
MapReduce version of SLICE algorithm, which is the state-of-the-art in RkNNQ. Finally,
we have evaluated the performance of the proposed MapReduce algorithms in several
situations with large real-world datasets, showing the e�ciency and scalability of our
proposals. The other part of Chapter 4 shows all these distributed DBQ algorithms
beside interesting experimental conclusions like the following:

1. For kNNJQ and "DRJQ, the Quadtree-based partitioning technique, included
in SpatialHadoop, significantly reduces the total execution time for large points
datasets. When more complex spatial objects (rectangles and line-segments) are
combined, the running time is a bit more costly than for points, following a similar
trend.

2. The use of repartitioning and less data techniques in SpatialHadoop considerably
reduces the total execution time and the shu✏ed data, mainly when large spatial
datasets are combined in kNNJQ and "DRJQ. This reduction indicates that repar-
titioning of densest partitions is a good policy for MapReduce algorithms based
on phases. And the less data technique transfers the necessary data for the query
between computing nodes.

3. The best method to make the kNNJQ and "DRJQ MapReduce algorithms faster is
to use the Quadtree-based repartitioning technique since the total time in Merge
Results phase is considerably reduced. Moreover, this repartitioning based on
Quadtree is the best choice to reduce the shu✏ed data between nodes.

4. For kNNJQ and "DRJQ, the larger k or ", the higher the possibility that pairs
of candidates will not be pruned, more tasks will be needed, and longer total
execution time will be consumed for reporting the query result.

5. MRSLICE outperforms MRSFT several orders of magnitude, thanks to its pruning
capabilities and the limited number of MapReduce jobs used in the executions.

6. The larger the k values, the greater the number of candidates to be verified, but
for MRSLICE, the number of jobs and partitions involved is quite restricted, and
the total execution time increases substantially less than for MRSFT.

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 197

7. The use of computing nodes (⌘) by MRSLICE is small, allowing the execution of
several queries in parallel, unlike MRSFT that can leave the cluster busy.

Comparing a Hadoop-based DSDMS (SpatialHadoop) with Spark-based DSDMS
(LocationSpark) is a demanding challenge. To carry out this comparison, we had to
thoroughly study LocationSpark and design and implement new distributed DBQ al-
gorithms ("DRQ, kCPQ, "DJQ, and "DRJQ). We have also extended the distributed
DBQ algorithms for managing non-points spatial objects and improved them (for exam-
ple, we have improved the kNNJQ included in LocationSpark) with similar techniques
used in SpatialHadoop. Lastly, we have accomplished the performance evaluation of
the proposed distributed DBQ algorithms in LocationSpark (using the Quadtree-based
partitioning technique) with large real-world datasets and the experimental comparison
with SpatialHadoop. All this information has been shown in Chapter 5, and next, we
synthesize the most relevant experimental conclusions.

1. LocationSpark for kCPQ and "DJQ, the larger the k or " values, the larger the
possibility that pairs of candidates are not pruned, and more total execution time
is needed. However, it is very fast for small and medium dataset sizes.

2. For the native implementation of kNNJQ, LocationSpark’s execution times are
fast and stable with small and medium dataset sizes and small k values, but its
results are slower for larger datasets and higher k values since it is more sensitive
to memory constraints.

3. For "DRJQ, LocationSpark is fast for small and medium datasets, but when the
dataset sizes grow, its performance in terms of running time declines because of
memory pressure problems.

4. For LocationSpark, the number of computing nodes (⌘) is not a determinant pa-
rameter for speedup of the algorithms as the availability of enough memory re-
sources is.

5. For kCPQ and "DJQ, LocationSpark was faster than SpatialHadoop for small and
medium dataset sizes. But for larger datasets, it required more time to execute
the queries, even for large k and " values due to memory pressure problems.

6. For kNNJQ and "DRJQ, SpatialHadoop is the fastest for large datasets and, for
any k or " value, except for small-to-medium dataset sizes where LocationSpark
performance is the best.

7. As a general conclusion, performance trends of both DSDMSs are similar in terms
of total execution time although, LocationSpark is the clear winner for execution
time when small-medium datasets are combined, due to the e�ciency of in-memory
processing provided by Spark and additional improvements, like the Query Plan
Scheduler. However, SpatialHadoop is faster when joining large real-world datasets
because it is a more mature and robust DSDMS due to the time invested in re-
search and development (e.g., it provides more spatial partitioning techniques,
computational geometry algorithms, repartitioning techniques for skewed data,
etc.).

© 2021 Garćıa-Garćıa, F.J.

198 6.2. FUTURE WORK

In summary, in this thesis, we have studied and enhanced SpatialHadoop with the
design and implementation of a new spatial partitioning technique based on Voronoi-
Diagrams, new local indexing (Quadtree) and new DBQs ("DRQ, kNNQ, kCPQ, kNNJQ,
RkNNQ, "DJQ, "DRJQ, etc.) MapReduce algorithms. LocationSpark has been also
studied and enriched with new distributed DBQs (kCPQ, "DJQ, and "DRJQ) algo-
rithms. We have thoroughly evaluated and compared both DSDMSs using various
benchmark queries and large real-world datasets. This dissertation makes fundamental
contributions in the two thrust areas of distributed spatial query processing and bench-
marking DSDMSs. These advances are critical to the design of DSDMSs and significantly
advances the state-of-the-art in that field.

6.2 Future Work

The continuing growth of spatial data sources, the advance of novel spatial data ap-
plications with new spatial queries, and the evolution of the infrastructure of DSDMSs
result in new and interesting research challenges. While some of these future research
directions are direct extensions of the contributions presented in this thesis, others look
more innovative and challenging.

Spatial joins are traditionally defined and studied concerning geometries or locations
while ignoring other types of information attached to the input objects like text or social
information. An example of these extended join operations is spatio-textual similarity
join [Bouros et al., 2012] which comes as a hybrid of a spatial "-distance join and a set
similarity join. One interesting research direction could be to design and implement top-
k spatio-textual similarity join (e.g., to identify the top-k similar pairs by considering
both textual relevancy and spatial proximity) [Hu et al., 2016] in SpatialHadoop and/or
LocationSpark. Another related top-k join that is worth studying to include in such
DSDMSs would be top-k spatial distance join [Qi et al., 2020].

A multi-way spatial join is a specific spatial query that addresses spatial join issues for
multiple inputs. This extension of spatial join has been recently studied in MapReduce
frameworks [Gupta et al., 2013], providing improvements in the context of communi-
cation costs [Bhattu et al., 2020], treatment of skewed data distribution [Kadari et al.,
2019], etc. Considering this problem and all these enhancements, another interesting
challenge could be the design and implementation of multi-way spatial join in DSDMSs
based on Spark (e.g., LocationSpark). In the same research direction, it would be excit-
ing to extend multi-way distance join [Corral et al., 2004b] to Spark-based DSDMSs.

A recent survey [Alam et al., 2021] reviews the existing ecosystems of spatial and
spatio-temporal data analytics. They can be classified into three categories: (1) spatial
databases (SQL and NoSQL), (2) big spatio-temporal data processing infrastructures,
and (3) programming languages and software tools for processing spatio-temporal data.
In the area of big spatio-temporal data processing infrastructures, a major challenge
could be to enhance Spatio-Temporal-Hadoop [Alarabi et al., 2018] or STARK [Hagedorn
and Räth, 2017] with more complex spatio-temporal operations like spatio-temporal joins
[Whitman et al., 2019] and spatio-temporal distance-based joins.

Two of the most recent and actively maintained spatial and spatio-temporal data an-

E�cient Query Processing in Distributed Spatial Data Management Systems

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 199

alytics systems are Sedona1 (formerly GeoSpark) and Beast2 (formerly SpatialHadoop).
Sedona [Yu et al., 2019], as a full-edged cluster computing framework that can process
vector data at scale, extends the core engine of Apache Spark and SparkSQL to support
spatial data types, indexes, and geometrical operations; with the aim of being able to
load, process, and analyze large-scale spatial data. Beast [Zhang and Eldawy, 2020]
is another Spark-based system for Big Exploratory Analytics on Spatio-Temporal data
that supports both vector and raster data with multidimensional data types and index
structures. It extends the Spark RDD API by adding geometry data types, spatio-
temporal input formats, multidimensional indexes, query processing, and visualization.
The base systems of Beast are Spark and Hadoop since it provides the several improve-
ments over SpatialHadoop: (1) support of multidimensional data; (2) inclusion of new
spatial partitioning techniques like R⇤-Grove [Vu and Eldawy, 2020]; (3) support of pro-
cessing raster and vector data concurrently, etc. Therefore, another interesting research
line could be to design and implement new spatial, spatio-temporal, and spatio-textual
queries in these Big Spatial and Spatio-Temporal Data Analytics Systems.

Due to the fact that Beast is a recent system for Big Exploratory Analytics on Spatio-
Temporal data that supports both vector and raster data, we can study the possibility to
incorporate new indexes for points like xBR+-tree [Roumelis et al., 2015] and raster like
k2-tree [Brisaboa et al., 2017] or k2-raster [Silva-Coira et al., 2020] to perform e�cient
spatial and/or spatio-temporal queries between points [Roumelis et al., 2017], and points
with raster data [Silva-Coira et al., 2020].

Big spatial data processing can be mainly classified into batch-only, streaming-only,
and hybrid processing. Some applications are gaining much prominence today, such
as IoT platforms or other sensor-based systems, in which data is constantly changing.
For these systems, it is more appropriate to treat them as a continuous flow of data in
which spatial continuous queries are performed better than through batch processing on
a dataset created with a snapshot. Apache Flink3 [Carbone et al., 2015] has emerged
as an open-source system that provides a unified and scalable model for processing
streaming and batch (hybrid) data under the premise that both types can be expressed
and executed as pipelined fault-tolerant dataflows. Because Flink does not natively
support spatial data processing, there have been e↵orts to provide its support. GeoFlink
[Shaikh et al., 2020] is a system that provides e�cient processing of spatial continuous
queries (i.e., spatial range, spatial kNN, and spatial join queries) on point data streams
and through the use of a Grid-based index. Consequently, one interesting challenge
could be to design and implement spatial continuous queries over Apache Flink, either
by extending it or by improving GeoFlink with new indexes and queries.

Finally, the number of frameworks with which to process Big Data grows at a similar
speed to this one. We have multiple options to perform both batch and stream processing
of data, and when a better framework emerges, it takes time to have to rewrite and adapt
algorithms and queries. Apache Beam4 appears as an open-source unified framework
that allows the implementation of batch and streaming data processing jobs that run

1
Available at https://sedona.apache.org/

2
Available at https://bitbucket.org/eldawy/beast/src/master/

3
Available at https://flink.apache.org/

4
Available at https://beam.apache.org/

© 2021 Garćıa-Garćıa, F.J.

200 6.2. FUTURE WORK

on any execution engine. Once a data pipeline is created, it can be processed by any of
the supported runner back-ends like Apache Flink, Apache Samza, Apache Spark, and
Google Cloud Dataflow. Also, in [Jacobs and Surdy, 2016] where Apache Flink vs. Spark
is compared (concluding that the former provides better performance, lower latency,
and better batch processing than the latter), it is described that Apache Beam comes to
fix the shortcomings of both data processing frameworks. However, there is no native
support for managing spatial data, although runners may use some of the previously
discussed frameworks. GeoBeam [He et al., 2019] extends the Apache Beam Model for
the spatial domain with a spatial pipeline, collection, and several transforms to support
e�cient spatial query processing. Moreover, the authors show the results of di↵erent
experiments to test the e�ciency of a range query operation on top of Spark and Flink
clusters. Therefore, another open research line could be to design and implement new
spatial queries, either batch or continuous, on top of this unified model.

E�cient Query Processing in Distributed Spatial Data Management Systems

Acronyms

© 2021 Garćıa-Garćıa, F.J.

E�cient Query Processing in Distributed Spatial Data Management Systems

ACRONYMS I-1

Acronyms

API Application Programming Interface

BEAST Big Exploratory Analytics for Spatio-Temporal data

BF Best-First

BSD Big Spatial Data

BSDAS Big Spatial Data Analytics System

BSP Binary Space Partitioning

CHQ Convex Hull Query

CP Closest Pair

CPQ Closest Pair Query

CPU Central Processing Unit

DBQ Distance-Based Query

DF Depth-First

DJQ Distance-based Join Query

"DJQ "Distance Join Query

"DRJQ "Distance Range Join Query

"DRQ "Distance Range Query

DSDMS Distributed Spatial Data Management System

HDFS Hadoop Distributed File System

FINCH Fast rknn processing using INtersections’ Convex Hull

FPQ Farthest Pair Query

GB GigaBytes

GFS Grid File Spatial

I-2 ACRONYMS

GIS Geographic Information Systems

GNN Group kNearest Neighbor Query

GNN Group Nearest Neighbor

GPS Global Positioning System

GS Global Sampling

HP Half-Plane

kCPQ kClosest Pairs Query

kNN kNearest Neighbor

kNNJQ kNearest Neighbor Join Query

kNNQ kNearest Neighbor Query

LAN Local Area Network

LS Local Sampling

MB MegaBytes

MBR Minimum Bounding Rectangle

MR MapReduce

NE North East

NN Nearest Neighbor

NW North West

PBSM Partition-Based Spatial-Merge

PDDAI Pair Data Density Area Intersection

PGBJ Partitioning-Grouping Block-based Join

PS Plane-Sweep

PSKCPQ Plane-Sweep kClosest Pairs Query

PSKNNQ Plane-Sweep kNearest Neighbor Query

PUQ Polygon Union Query

RBF Recursive Best-First search

RDD Resilient Distributed Dataset

RkNNQ Reverse kNearest Neighbor Query

RQ Range Query

SATO Sample, Analyze, Tear and Optimize

E�cient Query Processing in Distributed Spatial Data Management Systems

ACRONYMS I-3

SBD Spatial Big Data

SCM Spatial Coding Matrix

SE South East

SIS Sensing Information Set

SJQ Spatial Join Query

SMS Short Message Service

SPM Spatial Partitioning Matrix

SQ Skyline Query

SQL Structured Query Language

SRDD Spatial Resilient Distributed Dataset

ST Spatio-Temporal

STR Sort-Tile-Recursive

SW South West

VC Voronoi-Cell

VD Voronoi-Diagram

VDQ Voronoi-Diagram Query

WAN Wide Area Network

© 2021 Garćıa-Garćıa, F.J.

I-4 ACRONYMS

E�cient Query Processing in Distributed Spatial Data Management Systems

Bibliography

© 2021 Garćıa-Garćıa, F.J.

E�cient Query Processing in Distributed Spatial Data Management Systems

BIBLIOGRAPHY II-1

Bibliography

[Aji et al., 2015] Aji, A., Vo, H., and Wang, F. (2015). E↵ective spatial data partitioning
for scalable query processing. CoRR, abs/1509.00910:1–12.

[Aji et al., 2013] Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., and Saltz,
J. H. (2013). Hadoop-GIS: A high performance spatial data warehousing system over
MapReduce. PVLDB, 6(11):1009–1020.

[Akdogan et al., 2010] Akdogan, A., Demiryurek, U., Kashani, F. B., and Shahabi, C.
(2010). Voronoi-based geospatial query processing with MapReduce. In CloudCom
Conference, pages 9–16.

[Alam et al., 2021] Alam, M. M., Torgo, L., and Bifet, A. (2021). A survey on spatio-
temporal data analytics systems. CoRR, abs/2103.09883:1–44.

[Alarabi et al., 2018] Alarabi, L., Mokbel, M. F., and Musleh, M. (2018). St-hadoop: a
mapreduce framework for spatio-temporal data. GeoInformatica, 22(4):785–813.

[Andrew, 1979] Andrew, A. M. (1979). Another e�cient algorithm for convex hulls in
two dimensions. Information Processing Letters, 9(5):216–219.

[Ankerst et al., 1999] Ankerst, M., Breunig, M. M., Kriegel, H., and Sander, J. (1999).
OPTICS: ordering points to identify the clustering structure. In SIGMOD Conference,
pages 49–60.

[Arge et al., 2008] Arge, L., de Berg, M., Haverkort, H. J., and Yi, K. (2008). The pri-
ority r-tree: A practically e�cient and worst-case optimal r-tree. ACM Transactions
on Algorithms, 4(1):9:1–9:30.

[Arthur and Vassilvitskii, 2007] Arthur, D. and Vassilvitskii, S. (2007). k-means++:
the advantages of careful seeding. In SODA Conference, pages 1027–1035.

[Aurenhammer, 1991] Aurenhammer, F. (1991). Voronoi diagrams - A survey of a fun-
damental geometric data structure. ACM Computing Surveys, 23(3):345–405.

[Baig et al., 2017] Baig, F., Vo, H., Kurç, T. M., Saltz, J. H., and Wang, F. (2017).
Sparkgis: Resource aware e�cient in-memory spatial query processing. In SIGSPA-
TIAL Conference, pages 28:1–28:10.

II-2 BIBLIOGRAPHY

[Bechini et al., 2016] Bechini, A., Marcelloni, F., and Segatori, A. (2016). A mapreduce
solution for associative classification of big data. Information Sciences, 332:33–55.

[Beckmann et al., 1990] Beckmann, N., Kriegel, H., Schneider, R., and Seeger, B.
(1990). The r*-tree: An e�cient and robust access method for points and rectan-
gles. In SIGMOD Conference, pages 322–331.

[Belussi et al., 2020a] Belussi, A., Migliorini, S., and Eldawy, A. (2020a). Cost estima-
tion of spatial join in spatialhadoop. GeoInformatica, 24(4):1021–1059.

[Belussi et al., 2020b] Belussi, A., Migliorini, S., and Eldawy, A. (2020b). Skewness-
based partitioning in spatialhadoop. ISPRS International Journal of Geo-
Information, 9(4):201.

[Bentley, 1975] Bentley, J. L. (1975). Multidimensional binary search trees used for
associative searching. Communications of the ACM, 18(9):509–517.

[Bhattu et al., 2020] Bhattu, S. N., Potluri, A., Kadari, P., and Subramanyam, R. B. V.
(2020). Generalized communication cost e�cient multi-way spatial join: revisiting the
curse of the last reducer. GeoInformatica, 24(3):557–589.

[Blömer et al., 2016] Blömer, J., Lammersen, C., Schmidt, M., and Sohler, C. (2016).
Theoretical analysis of the k-means algorithm - A survey. CoRR, abs/1602.08254:1–
35.

[Böhm and Krebs, 2004] Böhm, C. and Krebs, F. (2004). The k -nearest neighbour join:
Turbo charging the KDD process. Knowledge and Information Systems, 6(6):728–749.

[Bouros et al., 2012] Bouros, P., Ge, S., and Mamoulis, N. (2012). Spatio-textual simi-
larity joins. PVLDB, 6(1):1–12.

[Brisaboa et al., 2017] Brisaboa, N. R., de Bernardo, G., Gutiérrez, G., Luaces, M. R.,
and Paramá, J. R. (2017). E�ciently querying vector and raster data. Computer
Journal, 60(9):1395–1413.

[Carbone et al., 2015] Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S.,
and Tzoumas, K. (2015). Apache flink: Stream and batch processing in a single engine.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering,
38(4):28–38.

[Chaudhuri et al., 1999] Chaudhuri, S., Motwani, R., and Narasayya, V. R. (1999). On
random sampling over joins. In SIGMOD Conference, pages 263–274.

[Cheema et al., 2011] Cheema, M. A., Lin, X., Zhang, W., and Zhang, Y. (2011). In-
fluence zone: E�ciently processing reverse k nearest neighbors queries. In ICDE
Conference, pages 577–588.

[Chen and Zhang, 2014] Chen, C. L. P. and Zhang, C. (2014). Data-intensive applica-
tions, challenges, techniques and technologies: A survey on big data. Information
Sciences, 275:314–347.

E�cient Query Processing in Distributed Spatial Data Management Systems

BIBLIOGRAPHY II-3

[Chen and Patel, 2007] Chen, Y. and Patel, J. M. (2007). E�cient evaluation of all-
nearest-neighbor queries. In ICDE Conference, pages 1056–1065.

[Comer, 1979] Comer, D. (1979). The ubiquitous b-tree. ACM Computing Surveys,
11(2):121–137.

[Cormen et al., 2009] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
(2009). Introduction to Algorithms (3. ed.). MIT Press.

[Corral, 2002] Corral, A. (2002). Algorithms for Processing of Spatial Queries using R-
trees. The Closest Pairs Query and its Application in Spatial Databases. PhD thesis,
University of Almeria.

[Corral and Almendros-Jimenez, 2007] Corral, A. and Almendros-Jimenez, J. M.
(2007). A performance comparison of distance-based query algorithms using r-trees
in spatial databases. Information Sciences, 177(11):2207–2237.

[Corral et al., 2000] Corral, A., Manolopoulos, Y., Theodoridis, Y., and Vassilakopou-
los, M. (2000). Closest pair queries in spatial databases. In SIGMOD Conference,
pages 189–200.

[Corral et al., 2004a] Corral, A., Manolopoulos, Y., Theodoridis, Y., and Vassilakopou-
los, M. (2004a). Algorithms for processing k-closest-pair queries in spatial databases.
Data & Knowledge Engineering, 49(1):67–104.

[Corral et al., 2004b] Corral, A., Manolopoulos, Y., Theodoridis, Y., and Vassilakopou-
los, M. (2004b). Multi-way distance join queries in spatial databases. GeoInformatica,
8(4):373–402.

[Corral et al., 2006] Corral, A., Manolopoulos, Y., Theodoridis, Y., and Vassilakopou-
los, M. (2006). Cost models for distance joins queries using r-trees. Data & Knowledge
Engineering, 57(1):1–36.

[Corral and Vassilakopoulos, 2005] Corral, A. and Vassilakopoulos, M. (2005). On ap-
proximate algorithms for distance-based queries using r-trees. Computer Journal,
48(2):220–238.

[de Berg et al., 2008] de Berg, M., Cheong, O., van Kreveld, M. J., and Overmars, M. H.
(2008). Computational geometry: algorithms and applications. Springer.

[de Carvalho Castro et al., 2020] de Carvalho Castro, J. P., Carniel, A. C., and
de Aguiar Ciferri, C. D. (2020). Analyzing spatial analytics systems based on hadoop
and spark: A user perspective. Software - Practice and Experience, 50(12):2121–2144.

[Dean and Ghemawat, 2004] Dean, J. and Ghemawat, S. (2004). Mapreduce: Simplified
data processing on large clusters. In OSDI Conference, pages 137–150.

[Doulkeridis and Nørv̊ag, 2014] Doulkeridis, C. and Nørv̊ag, K. (2014). A survey of
large-scale analytical query processing in mapreduce. VLDB Journal, 23(3):355–380.

© 2021 Garćıa-Garćıa, F.J.

II-4 BIBLIOGRAPHY

[Elashry et al., 2018] Elashry, A., Shehab, A., Riad, A. M., and Aboul-Fotouh, A.
(2018). 2dpr-tree: Two-dimensional priority r-tree algorithm for spatial partition-
ing in spatialhadoop. ISPRS International Journal of Geo-Information, 7(5):179.

[Eldawy et al., 2015] Eldawy, A., Alarabi, L., and Mokbel, M. F. (2015). Spatial parti-
tioning techniques in spatialhadoop. PVLDB, 8(12):1602–1613.

[Eldawy et al., 2013] Eldawy, A., Li, Y., Mokbel, M. F., and Janardan, R. (2013).
Cg hadoop: computational geometry in mapreduce. In SIGSPATIAL Conference,
pages 284–293.

[Eldawy and Mokbel, 2015] Eldawy, A. and Mokbel, M. F. (2015). Spatialhadoop: A
mapreduce framework for spatial data. In ICDE Conference, pages 1352–1363.

[Eldawy and Mokbel, 2017] Eldawy, A. and Mokbel, M. F. (2017). The era of big spatial
data. PVLDB, 10(12):1992–1995.

[Emrich et al., 2010] Emrich, T., Graf, F., Kriegel, H., Schubert, M., and Thoma, M.
(2010). Optimizing all-nearest-neighbor queries with trigonometric pruning. In SS-
DBM Conference, pages 501–518.

[Emrich et al., 2013a] Emrich, T., Kriegel, H., Kröger, P., Niedermayer, J., Renz, M.,
and Züfle, A. (2013a). Reverse-k-nearest-neighbor join processing. In SSTD Confer-
ence, pages 277–294.

[Emrich et al., 2015] Emrich, T., Kriegel, H., Kröger, P., Niedermayer, J., Renz, M., and
Züfle, A. (2015). On reverse-k-nearest-neighbor joins. GeoInformatica, 19(2):299–330.

[Emrich et al., 2013b] Emrich, T., Kröger, P., Niedermayer, J., Renz, M., and Züfle, A.
(2013b). A mutual pruning approach for rknn join processing. In BTW Conference,
pages 21–35.

[Ester et al., 1996] Ester, M., Kriegel, H., Sander, J., and Xu, X. (1996). A density-
based algorithm for discovering clusters in large spatial databases with noise. In KDD
Conference, pages 226–231.

[Evans et al., 2014] Evans, M. R., Oliver, D., Zhou, X., and Shekhar, S. (2014). Spatial
big data: Case studies on volume, velocity, and variety. In Karimi, H. A., editor,
Big Data: Techniques and Technologies in Geoinformatics, chapter 8, pages 149–176.
CRC Press.

[Faloutsos and Roseman, 1989] Faloutsos, C. and Roseman, S. (1989). Fractals for sec-
ondary key retrieval. In PODS Conference, pages 247–252.

[Finkel and Bentley, 1974] Finkel, R. A. and Bentley, J. L. (1974). Quad trees: A data
structure for retrieval on composite keys. Acta Informatica, 4:1–9.

[Fuchs et al., 1980] Fuchs, H., Kedem, Z. M., and Naylor, B. F. (1980). On visible
surface generation by a priori tree structures. In SIGGRAPH Conference, pages 124–
133.

E�cient Query Processing in Distributed Spatial Data Management Systems

BIBLIOGRAPHY II-5

[Gaede and Günther, 1998] Gaede, V. and Günther, O. (1998). Multidimensional access
methods. ACM Computing Surveys, 30(2):170–231.

[Gao et al., 2015] Gao, Y., Chen, L., Li, X., Yao, B., and Chen, G. (2015). E�cient
k-closest pair queries in general metric spaces. VLDB Journal, 24(3):415–439.

[Garćıa-Garćıa et al., 2020a] Garćıa-Garćıa, F., Corral, A., and Iribarne, L. (2020a).
Including the quadtree index in spatialhadoop. In Panhellenic Conference on Infor-
matics, pages 376–379.

[Garćıa-Garćıa et al., 2017a] Garćıa-Garćıa, F., Corral, A., Iribarne, L., Mavrommatis,
G., and Vassilakopoulos, M. (2017a). A comparison of distributed spatial data man-
agement systems for processing distance join queries. In ADBIS Conference, pages
214–228.

[Garćıa-Garćıa et al., 2016a] Garćıa-Garćıa, F., Corral, A., Iribarne, L., and Vassi-
lakopoulos, M. (2016a). Distance range queries in spatialhadoop. In JISBD Con-
ference, pages 1–14.

[Garćıa-Garćıa et al., 2017b] Garćıa-Garćıa, F., Corral, A., Iribarne, L., and Vassi-
lakopoulos, M. (2017b). Rknn query processing in distributed spatial infrastructures:
A performance study. In MEDI Conference, pages 200–207.

[Garćıa-Garćıa et al., 2018a] Garćıa-Garćıa, F., Corral, A., Iribarne, L., and Vassi-
lakopoulos, M. (2018a). Voronoi-diagram based partitioning for distance join query
processing in spatialhadoop. In MEDI Conference, pages 251–267.

[Garćıa-Garćıa et al., 2019] Garćıa-Garćıa, F., Corral, A., Iribarne, L., and Vassi-
lakopoulos, M. (2019). MRSLICE: e�cient rknn query processing in spatialhadoop.
In MEDI Conference, pages 235–250.

[Garćıa-Garćıa et al., 2020b] Garćıa-Garćıa, F., Corral, A., Iribarne, L., and Vassi-
lakopoulos, M. (2020b). Improving distance-join query processing with voronoi-
diagram based partitioning in spatialhadoop. Future Generation Computer Systems,
111:723–740.

[Garćıa-Garćıa et al., 2021] Garćıa-Garćıa, F., Corral, A., Iribarne, L., and Vassi-
lakopoulos, M. (2021). Enhancing sedona (formerly geospark) with e�cient k nearest
neighbor join processing. In MEDI Conference, page Submitted.

[Garćıa-Garćıa et al., 2016b] Garćıa-Garćıa, F., Corral, A., Iribarne, L., Vassilakopou-
los, M., and Manolopoulos, Y. (2016b). Enhancing spatialhadoop with closest pair
queries. In ADBIS Conference, pages 212–225.

[Garćıa-Garćıa et al., 2018b] Garćıa-Garćıa, F., Corral, A., Iribarne, L., Vassilakopou-
los, M., and Manolopoulos, Y. (2018b). E�cient large-scale distance-based join queries
in spatialhadoop. GeoInformatica, 22(2):171–209.

© 2021 Garćıa-Garćıa, F.J.

II-6 BIBLIOGRAPHY

[Garćıa-Garćıa et al., 2020c] Garćıa-Garćıa, F., Corral, A., Iribarne, L., Vassilakopou-
los, M., and Manolopoulos, Y. (2020c). E�cient distance join query processing in
distributed spatial data management systems. Information Sciences, 512:985–1008.

[Gounaris and Torres, 2018] Gounaris, A. and Torres, J. (2018). A methodology for
spark parameter tuning. Big Data Research, 11:22–32.

[Gupta et al., 2013] Gupta, H., Chawda, B., Negi, S., Faruquie, T. A., Subramaniam,
L. V., and Mohania, M. K. (2013). Processing multi-way spatial joins on map-reduce.
In EDBT Conference, pages 113–124.

[Gutierrez and Sáez, 2013] Gutierrez, G. and Sáez, P. (2013). The k closest pairs in
spatial databases - when only one set is indexed. GeoInformatica, 17(4):543–565.

[Güting et al., 2010] Güting, R. H., Behr, T., and Düntgen, C. (2010). SECONDO:
A platform for moving objects database research and for publishing and integrating
research implementations. IEEE Data Engineering Bulletin, 33(2):56–63.

[Guttman, 1984] Guttman, A. (1984). R-trees: A dynamic index structure for spatial
searching. In SIGMOD Conference, pages 47–57.

[Hagedorn and Räth, 2017] Hagedorn, S. and Räth, T. (2017). E�cient spatio-temporal
event processing with STARK. In EDBT Conference, pages 570–573.

[Harada et al., 1990] Harada, L., Nakano, M., Kitsuregawa, M., and Takagi, M. (1990).
Query processing for multi-attribute clustered records. In VLDB Conference, pages
59–70.

[Hassani, 2017] Hassani, H. (2017). Research methods in computer science: The chal-
lenges and issues. CoRR, abs/1703.04080:1–16.

[He et al., 2019] He, Z., Liu, G., Ma, X., and Chen, Q. (2019). Geobeam: A distributed
computing framework for spatial data. Computers & Geosciences, 131:15–22.

[Hilbert, 1891] Hilbert, D. (1891). Ueber die reellen züge algebraischer curven. Mathe-
matische Annalen, 38(1):115–138.

[Hjaltason and Samet, 1998] Hjaltason, G. R. and Samet, H. (1998). Incremental dis-
tance join algorithms for spatial databases. In SIGMOD Conference, pages 237–248.

[Hjaltason and Samet, 1999] Hjaltason, G. R. and Samet, H. (1999). Improved bulk-
loading algorithms for quadtrees. In ACM-GIS Conference, pages 110–115.

[Hjaltason and Samet, 2003] Hjaltason, G. R. and Samet, H. (2003). Index-driven simi-
larity search in metric spaces. ACM Transactions on Database Systems, 28(4):517–580.

[Hu et al., 2016] Hu, H., Li, G., Bao, Z., Feng, J., Wu, Y., Gong, Z., and Xu, Y.
(2016). Top-k spatio-textual similarity join. IEEE Transactions on Knowledge and
Data Engineering, 28(2):551–565.

E�cient Query Processing in Distributed Spatial Data Management Systems

BIBLIOGRAPHY II-7

[Hu et al., 2020] Hu, Y., Peng, G., Wang, Z., Cui, Y., and Qin, H. (2020). Partition
selection for large-scale data management using knn join processing. Mathematical
Problems in Engineering, 2020(7898230):1–14.

[Hughes et al., 2015] Hughes, J. N., Annex, A., Eichelberger, C. N., Fox, A., Hulbert,
A., and Ronquest, M. (2015). Geomesa: a distributed architecture for spatio-temporal
fusion. In Geospatial Informatics, Fusion, and Motion Video Analytics V, volume
9473, page 94730F.

[Jacobs and Surdy, 2016] Jacobs, K. and Surdy, K. (2016). Apache flink: Distributed
stream data processing. Technical report, CERN.

[Jacox and Samet, 2007] Jacox, E. H. and Samet, H. (2007). Spatial join techniques.
ACM Transactions on Database Systems, 32(1):7:1–44.

[Jacox and Samet, 2008] Jacox, E. H. and Samet, H. (2008). Metric space similarity
joins. ACM Transactions on Database Systems, 33(2):1–38.

[Jain et al., 1999] Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering:
A review. ACM Computing Surveys, 31(3):264–323.

[Ji et al., 2013] Ji, C., Hu, H., Xu, Y., Li, Y., and Qu, W. (2013). E�cient multi-
dimensional spatial rknn query processing with MapReduce. In ChinaGrid Confer-
ence, pages 63–68.

[Ji et al., 2015] Ji, C., Qu, W., Li, Z., Xu, Y., Li, Y., and Wu, J. (2015). Scalable
multi-dimensional RNN query processing. Concurrency and Computation: Practice
and Experience, 27(16):4156–4171.

[Kadari et al., 2019] Kadari, P., Potluri, A., Sristy, N. B., Subramanyam, R. B. V., and
Kumar, N. V. N. (2019). Skew aware partitioning techniques for multi-way spatial
join. In MIKE Conference, pages 52–61.

[Kalyvas and Maragoudakis, 2019] Kalyvas, C. and Maragoudakis, M. (2019). Skyline
and reverse skyline query processing in spatialhadoop. Data & Knowledge Engineer-
ing, 122:55–80.

[Karanth, 2014] Karanth, S. (2014). Mastering Hadoop. Packt Publishing.

[Karim et al., 2018] Karim, M. R., Cochez, M., Beyan, O. D., Ahmed, C. F., and Decker,
S. (2018). Mining maximal frequent patterns in transactional databases and dynamic
data streams: A spark-based approach. Information Sciences, 432:278–300.

[Kim et al., 2016] Kim, W., Kim, Y., and Shim, K. (2016). Parallel computation of
k-nearest neighbor joins using mapreduce. In Big Data Conference, pages 696–705.

[Kim and Patel, 2010] Kim, Y. J. and Patel, J. M. (2010). Performance comparison of
the r*-tree and the quadtree for knn and distance join queries. IEEE Transactions on
Knowledge and Data Engineering, 22(7):1014–1027.

© 2021 Garćıa-Garćıa, F.J.

II-8 BIBLIOGRAPHY

[Kini and Emanuele, 2014] Kini, A. and Emanuele, R. (2014). Geotrellis: Adding
geospatial capabilities to spark. Spark Summit.

[Korn and Muthukrishnan, 2000] Korn, F. and Muthukrishnan, S. (2000). Influence sets
based on reverse nearest neighbor queries. In SIGMOD Conference, pages 201–212.

[Kuhlman et al., 2017] Kuhlman, C., Yan, Y., Cao, L., and Rundensteiner, E. A. (2017).
Pivot-based distributed k-nearest neighbor mining. In ECML/PKDD Conference,
pages 843–860.

[Leutenegger et al., 1997] Leutenegger, S. T., Edgington, J. M., and López, M. A.
(1997). STR: A simple and e�cient algorithm for r-tree packing. In ICDE Con-
ference, pages 497–506.

[Li et al., 2014] Li, F., Ooi, B. C., Özsu, M. T., and Wu, S. (2014). Distributed data
management using mapreduce. ACM Computing Surveys, 46(3):31:1–31:42.

[Li and Taniar, 2017] Li, L. and Taniar, D. (2017). A taxonomy for distance-based
spatial join queries. International Journal of Data Warehousing and Mining, 13(3):1–
24.

[Li et al., 2019] Li, Y., Eldawy, A., Xue, J., Knorozova, N., Mokbel, M. F., and Ja-
nardan, R. (2019). Scalable computational geometry in mapreduce. VLDB Journal,
28(4):523–548.

[Li et al., 2011] Li, Z., Lee, K. C. K., Zheng, B., Lee, W., Lee, D. L., and Wang, X.
(2011). Ir-tree: An e�cient index for geographic document search. IEEE Transactions
on Knowledge and Data Engineering, 23(4):585–599.

[Lu and Güting, 2012] Lu, J. and Güting, R. H. (2012). Parallel secondo: Boosting
database engines with Hadoop. In ICPADS Conference, pages 738–743.

[Lu et al., 2012] Lu, W., Shen, Y., Chen, S., and Ooi, B. C. (2012). E�cient processing
of k nearest neighbor joins using MapReduce. PVLDB, 5(10):1016–1027.

[Ma et al., 2009] Ma, Q., Yang, B., Qian, W., and Zhou, A. (2009). Query processing
of massive trajectory data based on MapReduce. In CloudDb Conference, pages 9–16.

[MacQueen, 1967] MacQueen, J. (1967). Some methods for classification and analysis
of multivariate observations. In Berkeley Symposium on Mathematical Statistics and
Probability, pages 281–297.

[Mavrommatis et al., 2017] Mavrommatis, G., Moutafis, P., Vassilakopoulos, M.,
Garćıa-Garćıa, F., and Corral, A. (2017). Slicenbound: Solving closest pairs and
distance join queries in apache spark. In ADBIS Conference, pages 199–213.

[Mokbel et al., 2003] Mokbel, M. F., Aref, W. G., and Kamel, I. (2003). Analysis of
multi-dimensional space-filling curves. GeoInformatica, 7(3):179–209.

E�cient Query Processing in Distributed Spatial Data Management Systems

BIBLIOGRAPHY II-9

[Moutafis et al., 2019a] Moutafis, P., Garćıa-Garćıa, F., Mavrommatis, G., Vassi-
lakopoulos, M., Corral, A., and Iribarne, L. (2019a). Mapreduce algorithms for the K
group nearest-neighbor query. In ACM SAC Conference, pages 448–455.

[Moutafis et al., 2021] Moutafis, P., Garćıa-Garćıa, F., Mavrommatis, G., Vassilakopou-
los, M., Corral, A., and Iribarne, L. (2021). Algorithms for processing the group k
nearest-neighbor query on distributed frameworks. Distributed and Parallel Databases,
In Press.

[Moutafis et al., 2019b] Moutafis, P., Mavrommatis, G., Vassilakopoulos, M., and
Sioutas, S. (2019b). E�cient processing of all-k-nearest-neighbor queries in the mapre-
duce programming framework. Data & Knowledge Engineering, 121:42–70.

[Nievergelt et al., 1984] Nievergelt, J., Hinterberger, H., and Sevcik, K. C. (1984). The
grid file: An adaptable, symmetric multikey file structure. ACM Transactions on
Database Systems, 9(1):38–71.

[Nodarakis et al., 2016a] Nodarakis, N., Pitoura, E., Sioutas, S., Tsakalidis, A. K.,
Tsoumakos, D., and Tzimas, G. (2016a). kdann+: A rapid aknn classifier for big
data. Transactions on Large-Scale Data- and Knowledge-Centered Systems, 24:139–
168.

[Nodarakis et al., 2016b] Nodarakis, N., Rapti, A., Sioutas, S., Tsakalidis, A. K., Tsolis,
D., Tzimas, G., and Panagis, Y. (2016b). (a)knn query processing on the cloud: A
survey. In ALGOCLOUD Conference, Revised Selected Papers, pages 26–40.

[Okabe et al., 2000] Okabe, A., Boots, B., Sugihara, K., and Chiu, S. N. (2000). Spatial
Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley.

[Orenstein and Merrett, 1984] Orenstein, J. A. and Merrett, T. H. (1984). A class of
data structures for associative searching. In PODS Conference, pages 181–190.

[Pandey et al., 2018] Pandey, V., Kipf, A., Neumann, T., and Kemper, A. (2018). How
good are modern spatial analytics systems? PVLDB, 11(11):1661–1673.

[Papadopoulos et al., 2006] Papadopoulos, A. N., Nanopoulos, A., and Manolopoulos,
Y. (2006). Processing distance join queries with constraints. Computer Journal,
49(3):281–296.

[Patel and DeWitt, 1996] Patel, J. M. and DeWitt, D. J. (1996). Partition based spatial-
merge join. In SIGMOD Conference, pages 259–270.

[Peano, 1890] Peano, G. (1890). Sur une courbe, qui remplit toute une aire plane.
Mathematische Annalen, 36(1):157–160.

[Pertesis and Doulkeridis, 2015] Pertesis, D. and Doulkeridis, C. (2015). E�cient skyline
query processing in spatialhadoop. Information Systems, 54:325–335.

[Phillips, 2002] Phillips, S. J. (2002). Acceleration of k-means and related clustering
algorithms. In ALENEX Conference, pages 166–177.

© 2021 Garćıa-Garćıa, F.J.

II-10 BIBLIOGRAPHY

[Preparata and Shamos, 1985] Preparata, F. P. and Shamos, M. I. (1985). Computa-
tional Geometry - An Introduction. Springer.

[Qi et al., 2020] Qi, S., Bouros, P., and Mamoulis, N. (2020). Top-k spatial distance
joins. GeoInformatica, 24(3):591–631.

[Ros and Guillaume, 2016] Ros, F. and Guillaume, S. (2016). DENDIS: a new density-
based sampling for clustering algorithm. Expert Systems with Applications, 56:349–
359.

[Ros and Guillaume, 2017] Ros, F. and Guillaume, S. (2017). DIDES: a fast and ef-
fective sampling for clustering algorithm. Knowledge and Information Systems,
50(2):543–568.

[Roumelis et al., 2014] Roumelis, G., Corral, A., Vassilakopoulos, M., and Manolopou-
los, Y. (2014). A new plane-sweep algorithm for the k-closest-pairs query. In SOFSEM
Conference, pages 478–490.

[Roumelis et al., 2016] Roumelis, G., Vassilakopoulos, M., Corral, A., and Manolopou-
los, Y. (2016). New plane-sweep algorithms for distance-based join queries in spatial
databases. GeoInformatica, 20(4):571–628.

[Roumelis et al., 2017] Roumelis, G., Vassilakopoulos, M., Corral, A., and Manolopou-
los, Y. (2017). E�cient query processing on large spatial databases: A performance
study. Journal of Systems and Software, 132:165–185.

[Roumelis et al., 2015] Roumelis, G., Vassilakopoulos, M., Loukopoulos, T., Corral, A.,
and Manolopoulos, Y. (2015). The xbr+-tree: An e�cient access method for points.
In DEXA Conference, pages 43–58.

[Roussopoulos et al., 1995] Roussopoulos, N., Kelley, S., and Vincent, F. (1995). Near-
est neighbor queries. In SIGMOD Conference, pages 71–79.

[Sagan, 2012] Sagan, H. (2012). Space-filling curves. Springer Science & Business Media.

[Samet, 1984] Samet, H. (1984). The quadtree and related hierarchical data structures.
ACM Computing Surveys, 16(2):187–260.

[Schneider and Vlachos, 2013] Schneider, J. and Vlachos, M. (2013). Fast parameterless
density-based clustering via random projections. In CIKM Conference, pages 861–866.

[Schneider, 2009] Schneider, M. (2009). Spatial data types. In Liu, L. and Özsu, M. T.,
editors, Encyclopedia of Database Systems, pages 2698–2702. Springer US.

[Schoier and Gregorio, 2017] Schoier, G. and Gregorio, C. (2017). Clustering algorithms
for spatial big data. In ICCSA Conference, pages 571–583.

[Schubert and Gertz, 2018] Schubert, E. and Gertz, M. (2018). Improving the cluster
structure extracted from OPTICS plots. In LWDA Conference, pages 318–329.

E�cient Query Processing in Distributed Spatial Data Management Systems

BIBLIOGRAPHY II-11

[Schubert and Zimek, 2019] Schubert, E. and Zimek, A. (2019). ELKI: a large open-
source library for data analysis. CoRR, abs/1902.03616:1–134.

[Sellis et al., 1987] Sellis, T. K., Roussopoulos, N., and Faloutsos, C. (1987). The r+-
tree: A dynamic index for multi-dimensional objects. In VLDB Conference, pages
507–518.

[Shaikh et al., 2020] Shaikh, S. A., Mariam, K., Kitagawa, H., and Kim, K. (2020).
Geoflink: A distributed and scalable framework for the real-time processing of spatial
streams. In CIKM Conference, pages 3149–3156.

[Sharker and Karimi, 2014] Sharker, M. H. and Karimi, H. A. (2014). Distributed and
parallel computing. In Karimi, H. A., editor, Big Data: Techniques and Technologies
in Geoinformatics, chapter 1, pages 1–29. CRC Press.

[Shekhar and Chawla, 2003] Shekhar, S. and Chawla, S. (2003). Spatial databases - a
tour. Prentice Hall.

[Shin et al., 2003] Shin, H., Moon, B., and Lee, S. (2003). Adaptive and incremental
processing for distance join queries. IEEE Transactions on Knowledge and Data
Engineering, 15(6):1561–1578.

[Shou et al., 2003] Shou, Y., Mamoulis, N., Cao, H., Papadias, D., and Cheung, D. W.
(2003). Evaluation of iceberg distance joins. In SSTD Conference, pages 270–288.

[Silva and Reed, 2012] Silva, Y. N. and Reed, J. M. (2012). Exploiting mapreduce-based
similarity joins. In SIGMOD Conference, pages 693–696.

[Silva-Coira et al., 2020] Silva-Coira, F., Paramá, J. R., Ladra, S., López, J., and
Gutiérrez, G. (2020). E�cient processing of raster and vector data. PLoS ONE,
15(1):1–35.

[Singh et al., 2003] Singh, A., Ferhatosmanoglu, H., and Tosun, A. S. (2003). High
dimensional reverse nearest neighbor queries. In CIKM Conference, pages 91–98.

[Song et al., 2016] Song, G., Rochas, J., Beze, L. E., Huet, F., and Magoulès, F. (2016).
K nearest neighbour joins for big data on mapreduce: A theoretical and experimental
analysis. IEEE Transactions on Knowledge and Data Engineering, 28(9):2376–2392.

[Sriharsha, 2021] Sriharsha, R. (2018 (accessed March 3, 2021)). Magellan: Geospatial
Analytics Using Spark.

[Stanoi et al., 2000] Stanoi, I., Agrawal, D., and El Abbadi, A. (2000). Reverse nearest
neighbor queries for dynamic databases. In ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery, pages 44–53.

[Tan et al., 2012] Tan, H., Luo, W., and Ni, L. M. (2012). Clost: a hadoop-based storage
system for big spatio-temporal data analytics. In CIKM Conference, pages 2139–2143.

© 2021 Garćıa-Garćıa, F.J.

II-12 BIBLIOGRAPHY

[Tang et al., 2020] Tang, M., Yu, Y., Mahmood, A. R., Malluhi, Q. M., Ouzzani, M.,
and Aref, W. G. (2020). Locationspark: In-memory distributed spatial query process-
ing and optimization. Frontiers Big Data, 3:30.

[Tang et al., 2016] Tang, M., Yu, Y., Malluhi, Q. M., Ouzzani, M., and Aref, W. G.
(2016). Locationspark: A distributed in-memory data management system for big
spatial data. PVLDB, 9(13):1565–1568.

[Tao et al., 2004] Tao, Y., Papadias, D., and Lian, X. (2004). Reverse knn search in
arbitrary dimensionality. In VLDB Conference, pages 744–755.

[Thusoo et al., 2009] Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Anthony,
S., Liu, H., Wycko↵, P., and Murthy, R. (2009). Hive - A warehousing solution over
a MapReduce framework. PVLDB, 2(2):1626–1629.

[Velentzas et al., 2021] Velentzas, P., Corral, A., and Vassilakopoulos, M. (2021). Big
spatial and spatio-temporal data analytics systems. Transactions on Large-Scale Data-
and Knowledge-Centered Systems, 47:155–180.

[Vo et al., 2014] Vo, H., Aji, A., and Wang, F. (2014). SATO: a spatial data partitioning
framework for scalable query processing. In SIGSPATIAL Conference, pages 545–548.

[Vu et al., 2020] Vu, T., Belussi, A., Migliorini, S., and Eldawy, A. (2020). Using deep
learning for big spatial data partitioning. ACM Transactions on Spatial Algorithms
and Systems, 7(1):3:1–3:37.

[Vu and Eldawy, 2020] Vu, T. and Eldawy, A. (2020). R*-grove: Balanced spatial par-
titioning for large-scale datasets. Frontiers Big Data, 3:28.

[Weber et al., 1998] Weber, R., Schek, H.-J., and Blott, S. (1998). A quantitative anal-
ysis and performance study for similarity-search methods in high-dimensional spaces.
In VLDB Conference, pages 194–205.

[Whitman et al., 2019] Whitman, R. T., Marsh, B. G., Park, M. B., and Hoel, E. G.
(2019). Distributed spatial and spatio-temporal join on apache spark. ACM Trans-
actions on Spatial Algorithms and Systems, 5(1):6:1–6:28.

[Whitman et al., 2017] Whitman, R. T., Park, M. B., Marsh, B. G., and Hoel, E. G.
(2017). Spatio-temporal join on apache spark. In SIGSPATIAL Conference, pages
20:1–20:10.

[Wilson et al., 2016] Wilson, B., Palamuttam, R., Whitehall, K., Mattmann, C., Good-
man, A., Boustani, M., Shah, S., Zimdars, P., and Ramirez, P. M. (2016). Scispark:
Highly interactive in-memory science data analytics. In BigData Conference, pages
2964–2973.

[Wu et al., 2019] Wu, J., Zhang, Y., Wang, J., Lin, C., Fu, Y., and Xing, C. (2019).
Improving distributed similarity join in metric space with error-bounded sampling.
CoRR, abs/1905.05981:1–17.

E�cient Query Processing in Distributed Spatial Data Management Systems

BIBLIOGRAPHY II-13

[Wu et al., 2008] Wu, W., Yang, F., Chan, C. Y., and Tan, K. (2008). FINCH: evalu-
ating reverse k-nearest-neighbor queries on location data. PVLDB, 1(1):1056–1067.

[Xia et al., 2004] Xia, C., Lu, H., Ooi, B. C., and Hu, J. (2004). Gorder: An e�cient
method for KNN join processing. In VLDB Conference, pages 756–767.

[Xie et al., 2016] Xie, D., Li, F., Yao, B., Li, G., Zhou, L., and Guo, M. (2016). Simba:
E�cient in-memory spatial analytics. In SIGMOD Conference, pages 1071–1085.

[Xu and Tian, 2015] Xu, D. and Tian, Y. (2015). A comprehensive survey of clustering
algorithms. Annals of Data Science, 2(2):165–193.

[Yang and Lin, 2001] Yang, C. and Lin, K. (2001). An index structure for e�cient
reverse nearest neighbor queries. In ICDE Conference, pages 485–492.

[Yang and Lin, 2002] Yang, C. and Lin, K. (2002). An index structure for improving
closest pairs and related join queries in spatial databases. In IDEAS Conference,
pages 140–149.

[Yang et al., 2015] Yang, S., Cheema, M. A., Lin, X., and Wang, W. (2015). Reverse k
nearest neighbors query processing: Experiments and analysis. PVLDB, 8(5):605–616.

[Yang et al., 2014] Yang, S., Cheema, M. A., Lin, X., and Zhang, Y. (2014). SLICE:
reviving regions-based pruning for reverse k nearest neighbors queries. In ICDE Con-
ference, pages 760–771.

[Yang et al., 2017] Yang, S., Cheema, M. A., Lin, X., Zhang, Y., and Zhang, W. (2017).
Reverse k nearest neighbors queries and spatial reverse top-k queries. VLDB Journal,
26(2):151–176.

[Yao and Li, 2018] Yao, X. and Li, G. (2018). Big spatial vector data management: a
review. Big Earth Data, 2(1):108–129.

[Yao et al., 2017] Yao, X., Mokbel, M. F., Alarabi, L., Eldawy, A., Yang, J., Yun, W.,
Li, L., Ye, S., and Zhu, D. (2017). Spatial coding-based approach for partitioning big
spatial data in hadoop. Computers & Geosciences, 106:60–67.

[Yokoyama et al., 2012] Yokoyama, T., Ishikawa, Y., and Suzuki, Y. (2012). Processing
all k-nearest neighbor queries in hadoop. In WAIM Conference, pages 346–351.

[You et al., 2015] You, S., Zhang, J., and Gruenwald, L. (2015). Large-scale spatial join
query processing in cloud. In ICDE Workshops, pages 34–41.

[Yu et al., 2015] Yu, J., Wu, J., and Sarwat, M. (2015). Geospark: a cluster computing
framework for processing large-scale spatial data. In SIGSPATIAL Conference, pages
70:1–70:4.

[Yu et al., 2019] Yu, J., Zhang, Z., and Sarwat, M. (2019). Spatial data management in
apache spark: the geospark perspective and beyond. GeoInformatica, 23(1):37–78.

© 2021 Garćıa-Garćıa, F.J.

II-14 BIBLIOGRAPHY

[Zaharia et al., 2012] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly,
M., Franklin, M. J., Shenker, S., and Stoica, I. (2012). Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In NSDI Conference,
pages 15–28.

[Zeidan et al., 2018] Zeidan, A., Lagerspetz, E., Zhao, K., Nurmi, P., Tarkoma, S., and
Vo, H. T. (2018). Geomatch: E�cient large-scale map matching on apache spark. In
Big Data Conference, pages 384–391.

[Zhang et al., 2012] Zhang, C., Li, F., and Jestes, J. (2012). E�cient parallel kNN joins
for large data in MapReduce. In EDBT Conference, pages 38–49.

[Zhang et al., 2015] Zhang, H., Chen, G., Ooi, B. C., Tan, K., and Zhang, M. (2015).
In-memory big data management and processing: A survey. IEEE Transactions on
Knowledge and Data Engineering, 27(7):1920–1948.

[Zhang et al., 2004] Zhang, J., Mamoulis, N., Papadias, D., and Tao, Y. (2004). All-
nearest-neighbors queries in spatial databases. In SSDBM Conference, pages 297–306.

[Zhang et al., 2009a] Zhang, S., Han, J., Liu, Z., Wang, K., and Feng, S. (2009a). Spatial
queries evaluation with MapReduce. In GCC Conference, pages 287–292.

[Zhang et al., 2009b] Zhang, S., Han, J., Liu, Z., Wang, K., and Xu, Z. (2009b). SJMR:
parallelizing spatial join with MapReduce on clusters. In CLUSTER Conference,
pages 1–8.

[Zhang and Eldawy, 2020] Zhang, Y. and Eldawy, A. (2020). Evaluating computational
geometry libraries for big spatial data exploration. In ACM SIGMOD Workshop on
Managing and Mining Enriched Geo-Spatial Data, pages 3:1–3:6.

[Zhao et al., 2018] Zhao, X., Zhang, J., and Qin, X. (2018). knn-dp: Handling data
skewness in kNN joins using mapreduce. IEEE Transactions on Parallel and Dis-
tributed Systems, 29(3):600–613.

E�cient Query Processing in Distributed Spatial Data Management Systems

This file has been generated using LATEX.

All Figures and Tables in this file are originals

E�cient Query Processing in
Distributed Spatial Data Management Systems

Francisco José Garćıa Garćıa
Departament of Informatics
Grupo de Investigación de Informática Aplicada (TIC-211)
University of Almeŕıa
Almeŕıa, June, 2021

http://acg.ual.es

E�cient Query Processing in Distributed Spatial Data Management Systems

