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Abstract: (1) Background: Keratoconus is a non-inflammatory corneal disease characterized by
gradual thinning of the stroma, resulting in irreversible visual quality and quantity decline. Early
detection of keratoconus and subsequent prevention of possible risks are crucial factors in its pro-
gression. Random forest is a machine learning technique for classification based on the construction
of thousands of decision trees. The aim of this study was to use the random forest technique in
the classification and prediction of subclinical keratoconus, considering the metrics proposed by
Pentacam and Corvis. (2) Methods: The design was a retrospective cross-sectional study. A total of
81 eyes of 81 patients were enrolled: sixty-one eyes with healthy corneas and twenty patients with
subclinical keratoconus (SCKC): This initial stage includes patients with the following conditions:
(1) minor topographic signs of keratoconus and suspicious topographic findings (mild asymmetric
bow tie, with or without deviation; (2) average K (mean corneal curvature) < 46, 5 D; (3) minimum
corneal thickness (ECM) > 490 µm; (4) no slit lamp found; and (5) contralateral clinical keratoconus
of the eye. Pentacam topographic and Corvis biomechanical variables were collected. Decision tree
and random forest were used as machine learning techniques for classifications. Random forest
performed a ranking of the most critical variables in classification. (3) Results: The essential variable
was SP A1 (stiffness parameter A1), followed by A2 time, posterior coma 0◦, A2 velocity and peak
distance. The model efficiently predicted all patients with subclinical keratoconus (Sp = 93%) and was
also a good model for classifying healthy cases (Sen = 86%). The overall accuracy rate of the model
was 89%. (4) Conclusions: The random forest model was a good model for classifying subclinical
keratoconus. The SP A1 variable was the most critical determinant in classifying and identifying
subclinical keratoconus, followed by A2 time.

Keywords: subclinical keratoconus; deep learning; corneal topography; random forest

1. Introduction

Keratoconus is a non-inflammatory corneal disease characterized by gradual thinning
of the stroma leading to protrusions and irregular astigmatism, which are challenging to
correct optically, resulting in irreversible visual quality and quantity decline [1]. Usually,
they appear in adolescence and progress until the fourth decade [2]. Although several
theories and genetic factors have been proposed [3], the etiology has not yet been elucidated.
Currently, treatments can prevent keratoconus progressions, such as intracorneal ring
implants and cross-linking [4,5]. Therefore, early detection of keratoconus and subsequent
prevention of possible risks are crucial factors in its progression [5].

Early detection also helps us understand the natural course of keratoconus [5,6].
Advanced keratoconus can be diagnosed by classic clinical signs (Munson’s sign, Vogt’s
striae, Fleischer ring, etc.) on slit-lamp examination. However, they do not exist in the
early stage of keratoconus [7]. Computerized corneal video corneal topography is the
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most widely used tool to detect the corneal topography pattern and corneal parameters
of keratoconus, which can be used for early detection and can distinguish its natural and
therapeutic process [8]. Corneal topographical characteristics distinguish keratoconus from
normal eyes, such as increased corneal refractive power, inferior-superior (I-S) corneal
refractive asymmetry, and steeper radial axis tilt [9]. However, the large number of in-
dicators and complexity provided by video corneal imaging pose clinical challenges for
ophthalmologists. [10] Recently, deep learning (DL) has been proven to achieve higher
accuracy compared to traditional techniques. Deep learning (DL) is mainly used in medical
image analysis and datasets where the DL system shows solid diagnostic using fundus pho-
tographs and optical coherence tomography (OCT), [11] for detecting diabetic retinopathy
(DR), [12] glaucoma, [13] age-related macular degeneration (AMD) [14] and retinopathy
of prematurity (ROP). [15]. The aim has been to use the random forest technique in the
classification and prediction of subclinical keratoconus, considering the metrics proposed
by Pentacam and Corvis.

2. Materials and Methods

This retrospective cross-sectional study was conducted at the Ophthalmology Depart-
ment of Torre Cardenas University Hospital. It was approved by the Almeria Research
Ethics Committee (CEI/CEIm) of Torre Cardenas Hospital. The committee’s reference
number is as follows: 19/2019 Helsinki Principles of the Declaration. The design was a
cross-sectional study to evaluate the aberration measurement and biomechanical variables
of SCKC, using a rotating Scheimpflug camera (Pentacam) to acquire data and the Corvis ST
device. Between January 2020 and January 2021, patients with SCKC and healthy corneas
were recruited from the ophthalmology service of Torrecárdenas Hospital in Almería, Spain.
They are collected from Pentacam and Corvis ST clinical databases. The author declares
that there were no conflicts of interest with the manufacturers of Pentacam or Corvis ST.

A total of 81 eyes of 81 patients were enrolled, and the distribution is as follows:

• Sixty-one eyes with healthy corneas. They had the following characteristics: (1) normal
morphology, (2) negative keratoconus morphology, (3) no history of eye diseases. Each
patient included only one eye;

• Twenty patients with subclinical keratoconus (SCKC): This initial stage included
patients with the following conditions: (1) minor topographic signs of keratoconus
and suspicious topographic findings (mild asymmetric bow tie, with or without
deviation; (2) average K (mean corneal curvature) <46, 5 D; (3) minimum corneal
thickness (ECM)> 490 µm; (4) no slit lamp found (no central thinning, Fleischer ring
or Vogt pattern); (5) contralateral clinical keratoconus of the eye.

The exclusion criteria applied are ocular or systemic diseases and any ocular surgery,
including intracorneal ring segments and corneal collagen cross-linking.

2.1. Patient Examination

The patient was examined by the same trained investigator (A.P.R). UCVA and BSCVA
were collected using the Snellen graph and logMAR graph. We used an automatic refrac-
tometer (KR8900, Topcon, Japan), slit-lamp and fundus to check the eye.

Corneal topography was performed in all patients, under the same light conditions
and at a central pupillary diameter of 6.0 mm. Patients with soft contact lenses did
not wear them on the examined eye (one for the patient) for three weeks and rigid gas
permeable lenses for at least five weeks before testing. Topography was performed with a
rotating chamber Scheimpflug (Pentacam HR, Oculus Optikgeräte, Wetzlar, Germany) and
biomechanics with Corvis ST.

The following Pentacam variables were collected: topographic variables of the anterior
surface of the cornea, the flattest keratometry curvature (K1) and its axis (K1 axis), the
steepest keratometry curvature (K2) and its axis (K2 axis), the mean keratometry curva-
ture (Km), the maximum curvature power at the front of the cornea (KMAX), and the
asphericity coefficient describing the corneal shape factor (Q). Topographic variables of
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the posterior surface were collected: the flatter curvature (K1) and its axis (K1 axis), the
steeper curvature (K2) and its axis (K2 axis), the mean curvature (Km) and the asphericity
(Q). Pachymetric variables: central corneal thickness (CCT), minimum corneal thickness
(MCT) with its coordinates (x, y). Related to corneal aberrometry: the mean square of total
aberrations (total RMS), the mean square of higher-order aberrations (HOA RMS) which
were calculated up to Zernike’s third order for a pupil diameter of 6. 0-mm pupil diameter,
astigmatism at 0◦ (Z22) and 45◦ (Z2-2), anterior horizontal coma at 0◦, posterior horizontal
coma at 0◦, total horizontal corneal coma at 0◦ (Z31), anterior vertical coma at 90◦, posterior
vertical coma at 90◦, total vertical corneal coma at 90◦ (Z3-1), trefoil at 0◦ (Z3-3), trefoil at
30◦ (Z33), tetrafoil at 0◦ (Z44), tetrafoil at 22 5◦ (Z4-4) and spherical aberration (Z40). In
addition, Belin/Ambrósio Enhanced Ectasia Display (BAD-D) was included.

Corvis ST variables were: velocity when the air pulse is on (time A1, length A1 and
velocity A1) and off (time A2, length A2 and velocity A2), time of highest concavity (time
HC), maximum deformation amplitude (DA max), peak distance (PD) and radius of cur-
vature (RHC) at the highest concavity (HC). Vinciguerra indexes: maximum deformation
amplitude radius at 2 and 1 mm, integrated radius, relative thickness of Ambrósio in the
horizontal profile (ARTh), stiffness parameter at the first flattening (SP-A1) and corneal
biomechanical index (CBI). Central corneal thickness (CCT) was calculated using a hori-
zontal Scheimpflug image at the apex. Intraocular pressure was calculated based on the
time of the first flattening. It was expressed as bPIO.

2.2. Database Cleaning

The steps to depurate the database were:

• Normalization of N (0,1) variables: this step was not necessary in random forest and
decision trees; the explanatory variables were not normalized in these methodologies.
Other methodologies such as support vector machines, k-neighbors did require such
normalization;

• Elimination of variables with marginal variance; this type of variable does not help to
build the model;

• Elimination of variables with high correlation since highly correlated independent
variables contribute noise and can lead the researcher to erroneous conclusions;

• Elimination of linear dependencies.

2.3. Techniques for Working with Unbalanced Data

Mainly, there were two techniques for working with unbalanced data, and both
undergo resampling.

• Undersampling: This involves the underrepresentation of the most frequent class
or group. In this case, it was the NORMAL class. The NORMAL sample number
decreased from 61 to 58 observations;

• Oversampling: Passes through the overrepresentation of the less frequent class or
group. In this case, it was the SCKC class. The SCKC sample number boosted from 20
to 54 observations avoiding unbalanced data.

2.4. Decision Tree

A decision tree is a predictive model used in various fields of science and social
science. The tree starts from a node and branches according to a series of questions and
their respective answers.

2.5. Random Forest Algorithm

Every time a different partition of the data set is performed, a slightly different
classification tree will be obtained. Random forest algorithm is used to control this problem.
Random forest is a machine learning technique for classification, based on the construction
of thousands of decision trees during the training period of the model and whose answer



J. Clin. Med. 2021, 10, 4281 4 of 12

in each tree is the class with the highest mode value. The random forest methodology
protects against the problem of overfitting.

2.5.1. Importance of Variables in the Ranking

Random Forest performs a ranking of the most critical variables in classification
problems.

The ranking is calculated based on an importance score.

• Mean decrease accuracy: This shows the amount of accuracy the model loses when
excluding each variable. The more accuracy is lost, the more influential the variable is
in the ranking;

• Mean decrease in Gini: This coefficient measures how a variable contributes to the
homogeneity of the nodes and leaves in the resulting model.

The higher the values of these coefficients, the more influential the variable is in this
model.

In this project, we worked with the mean decrease accuracy.

2.5.2. Fold Cross-Validation

This method requires separating the data set into 10 subsets. A subset is selected and
kept out of the data set, using the remaining subsets to generate the model. The subset that
was isolated and separated will be used to test the model further. This process is repeated
ten times and was applied exclusively to the train set to extract the best model parameters
and then tested only once on the test set

2.5.3. Confusion Matrix and Metrics

The results were defined in a confusion matrix in which the cases of each class
predicted by the algorithm are presented in the rows and the columns the cases for each
class. The correctly classified cases are placed on the diagonal of the confusion matrix. The
metrics of the confusion matrix are shown below as true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN). Accuracy: proportion of the total number of
observations that were classified by the algorithm correctly.

Precision: (TP + TN)/(TP + TN + FP + FN)—proportion of predictions as a positive
class that is positive.

• Recall/sensitivity: TP/(TP + FN)—proportion of all positive cases correctly identified
as positive by the algorithm;

• Specificity: TN/(TN + FP)—proportion of all negative cases correctly predicted as
negative by the algorithm;

• F1-score: combines the precision and recall metrics into a single measure. It is the
harmonic mean of both metrics.

(AUROC): the area under the curve. The cumulative distribution function of sensitivity
on the y-axis versus the cumulative distribution function of (1-specificity) on the x-axis.

All statistical analyses were performed with R.3.5.1

3. Results
3.1. Descriptive Statistics

Tables 1 and 2 show demographics and clinical and biomechanical differences between
normal and subclinical keratoconus
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Table 1. Demographics and clinical data.

Mean Std. Deviation Std. Error Sig.

Age (years) Normal 45.85 20.04 2.57 0.09
SCKC 40.21 13.19 2.95

BSCVA
(decimal scale)

Normal 0.98 0.05 0.01 0.97
SCKC 0.99 0.07 0.02

Sph eq (diopters) Normal −1.04 3.16 0.47 0.52
SCKC −1.85 1.6 0.44

KMAX (diopters) Normal 45.54 2.07 0.27 0.61
SCKC 46.15 2.12 0.47

CCT (µm)
Normal 529.48 51.08 6.59 0.17
SCKC 511.4 30.04 6.72

IOP (mmHg) Normal 16.19 3.55 0.45 0.00 *
SCKC 13.61 2.06 0.46

HOA RMS (µm)
Normal 0.51 0.25 0.03 0.31
SCKC 0.63 0.3 0.07

* p < 0.05. STd Deviation= Standard Deviation, BSCVA= Best Corrected Visual Acuity, Sph eq = spherical equivalent = spheric refraction
+ 1/2 cylinder refraction; KMAX= Keratometry, CCT: Centrl Corneal Thickness, IOP= Intraocular Pressure, HOA RMS= High Order
Aberrations.

Table 2. Corvis corneal biomechanical data.

Mean Std. Deviation Std. Error p-Value

Def. Amp. Max (mm) Normal 1.03 0.1 0.01 0.01 *
SCKC 1.13 0.11 0.02

A1 Time (ms) Normal 7.52 0.39 0.05 0.00 *
SCKC 7.22 0.22 0.05

A1 Deflection Length(mm) Normal 2.35 0.31 0.04 0.24
SCKC 2.24 0.24 0.05

A1 Velocity (m/s) Normal 0.14 0.02 0 0.00 *
SCKC 0.16 0.02 0

A2 Time (ms) Normal 21.6 1.03 0.13 0.08
SCKC 22.01 0.58 0.13

A2 Deflection Length (mm) Normal 3.21 0.8 0.11 0.68
SCKC 3 0.76 0.17

A2 Velocity (m/s) Normal −0.23 0.04 0.01 0.00 *
SCKC −0.27 0.04 0.01

HC Time (ms) Normal 17.03 0.66 0.09 0.88
SCKC 17.12 0.4 0.09

Peak Dist. (mm) Normal 4.8 0.39 0.05 0.00 *
SCKC 5.1 0.25 0.06

Radius (mm) Normal 7.11 1.18 0.15 0.34
SCKC 6.75 0.78 0.18

DA Ratio Max (2 mm) Normal 4.61 3.46 0.44 1
SCKC 4.6 0.5 0.11

DA Ratio Max (1 mm) Normal 1.68 0.65 0.08 0.8
SCKC 1.61 0.06 0.01

Integrated Radius
(mm−1) Normal 8.27 1.38 0.18 0.1

SCKC 9.04 1.34 0.3
ARTh Normal 481.87 189.43 24.46 0.00 *

SCKC 332.46 67.37 15.46
SP A1 Normal 113.54 18.51 2.39 0.00 *

SCKC 89.61 15.25 3.41
CBI Normal 0.27 0.32 0.04 0.01 *

SCKC 0.59 0.38 0.09

* p < 0.05. Def Amp Max= Deformation Amplitude Max, Air pulse on (A1time, A1 length and A1 velocity) and off (A2 time, A2 length
and A2 velocity), time of highest concavity (time HC), maximum deformation amplitude (DA max), peak distance (PD) and radius of
curvature (RHC) at the highest concavity (HC). Vinciguerra Indexes: maximum deformation amplitude radius (DARatio Max) at 2 and 1
mm, integrated radius, relative thickness of Ambrósio in the horizontal profile (ARTh) and stiffness parameter at the first flattening (SP-A1),
CBI= Corvis Biomechanical Index.
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3.2. Database Cleaning

The highly correlated variables have been eliminated. The highly correlated variables
are: [1] “KMAX” “Km” [3] “Coma cornea 90◦” “Coma ant 90◦” [5] “Coma post 90◦”
“K2” [7] “Km p” “K1” [9] “Integrated Radius [mm-1]” “BCVA” [11] “K2 Axis” “A1
Deflection Length [mm]” [13] “Coma ant 0◦” “Coma cornea 0◦” [15] “DA Ratio Max (2
mm)”

Therefore, a model including the following independent variables is constructed:

• Demographic variables: age;
• General examination data: LogMAR;
• General topographic indices: K1 Axis, K1 p, K1 Axis p, K2 p, K2 Axis p, Qp, CCT;
• Aberrometric topographic indices measured by Pentacam: Total RMS, Ast 0◦, Ast 45◦,

Coma post 0◦, Trefoil 0◦, Trefoil 30◦, Tetrafoil 0◦, Tetrafoil 22.5◦, Spherical Aberration;
• Biomechanical indices measured by Corvis: A1 Deflection Length, A2 Time, A2

Deflection Length, A2 Velocity, HC Time, PeakDist, Radius, DA Ratio Max, SP A1.

3.3. Generation of the New Database

A random and balanced sample was generated from the original one, using the
oversampling technique. The final sample size was 112 observations, of which 58 cases
corresponded to healthy patients and 54 to patients with subclinical keratoconus.

3.4. Decision Trees

The proposed model makes the following decisions: Is SP A1 (biometric index mea-
sured by Corvis) greater than or equal to 102? If the answer is yes, then the model classifies
the patient directly into a group of patients who do not have subclinical keratoconus. If the
answer is no, then the model classifies the patient into the group of patients with subclinical
keratoconus.

It appears as a simple model in which only one variable (SP A1) influences. The
success rate of the model shown in Figure 1 is 71.4%.

Figure 1. Decision tree. SPA1= Stiffness Parameter at first Applanation; SCKC=Subclinical Kerato-
conus.

We move on to the model validation phase. Table 3 shows that the model efficiently
predicts all patients with subclinical keratoconus (Sp = 93%), but it is not excellent at
correctly classifying healthy cases (Sen = 50%) (see Table 4). The software (R 3.5.1version)
has taken the NORMAL class as positive.

Table 3. Decision Tree. Confusion matrix. Prediction vs reality.

NORMAL SCKC

NORMAL 7 1
SCK 7 13
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Table 4. Decision tree. Metrics of the model.

Value

Sensitivity 0.50
Specificity 0.93

Pos Pred Value 0.88
Neg Pred Value 0.65

Precision 0.88
Recall 0.50

F1 0.64
Prevalence 0.50

Detection Rate 0.25
Detection Prevalence 0.29
Balanced Accuracy 0.71

3.5. Random Forest

As explained in the previous section, each time you partition the data set differently,
you will get a slightly different classification tree. Thus, the way to choose a model is
to generate multiple trees and compare them. That is what the random forest algorithm
does. The idea of a random forest is to relate the trees that are generated by performing
each partition. Then, afterward, to reduce the variance of the trees by averaging them.
Averaging the trees helps to reduce dispersion and helps to improve performance. Finally,
mention that it avoids overfitting.

3.5.1. Number of Random Variables as Candidates in Each Branch (Mtry)

Another essential difference added by random forest is that only a random subset
of explanatory variables is considered each time a partition is performed. In contrast, in
decision trees, all explanatory variables are incorporated. In this case, the best model uses
two randomly selected explanatory variables for each branch. The best model is selected
based on the model’s percentage of correctness (accuracy) (see Figure 2).

Figure 2. Percentage of success vs. predictors of the model.

3.5.2. Number of Trees in the Forest (Ntree)

The number of trees used in the model is 500.
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3.5.3. Importance of Variables in rf

The importance of variables as a function of mean decrease accuracy is shown in
Figure 3.

Figure 3. Bar chart with the importance of the variables from highest to lowest.Total RMS = Total
Root minimum square, CCT = Central corneal thickness, DA Ratio Max = Deformation amplitude
ratio maximum, SP A1 = Stiffness parameter A1.

Figure 3 shows that the essential variable is SP A1, Stiffness parameter A1, which
coincides with the tree shown in Figure 1, followed by A2 velocity, closely followed by
PeakDist.

Table 5 shows that the model efficiently predicts all patients with subclinical kerato-
conus (Sp = 93%) and is a good model for classifying healthy cases (Sen = 86%). The overall
accuracy rate of the model is 89% (Table 6). The software (R 3.5.1 version) has taken the
normal class as positive.

Table 5. Random Forest: confusion matrix prediction vs. reality.

NORMAL SCK

NORMAL 12 1
SCKC 2 13

Table 6. Random forest: metrics values.

Value

Sensitivity 0.86
Specificity 0.93

Pos Pred Value 0.92
Neg Pred Value 0.87

Precision 0.92
Recall 0.86

F1 0.89
Prevalence 0.50

Detection Rate 0.43
Detection Prevalence 0.46
Balanced Accuracy 0.89
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4. Discussion

This work aimed to use the random forest technique in the classification and prediction
of subclinical keratoconus, considering the metrics proposed by Pentacam and Corvis.
Traditional predictive methods generate global models in which a single equation applies to
the entire sample space. When the use case involves multiple predictors, which interact in
a complex and nonlinear way, it is not easy to find a single global model that can reflect the
relationship between the variables. Tree-based statistical and machine learning methods
encompass a set of non-parametric supervised techniques that manage to segment the
space of predictors into simple regions, within which it is easier to handle interactions. It is
this feature that gives them much of their potential.

Tree-based methods have become one of the benchmarks in the predictive field due to
the good results they generate in a wide variety of problems. Throughout this paper, we
explore how random forest models are built and predicted. Since the fundamental element
of a random forest model is the decision trees, it is essential to understand how the latter
work. The main advantages are that they can automatically select predictors and apply
them to regression and classification problems. Trees can, in theory, handle both numerical
and categorical predictors without creating dummy or one-hot-encoding variables. In
practice, this depends on each library’s implementation of the algorithm.

Since these are non-parametric methods, no specific distribution is required. In
general, they require much less data cleaning and pre-processing compared to other
statistical learning methods. Outliers do not significantly influence them. Suppose for any
observation, the value of a predictor is not available, despite not reaching any terminal
node. In that case, a prediction can be achieved using all observations belonging to the
last node reached. The accuracy of the prediction will be reduced, but at least it can be
obtained. They are useful in data exploration; they quickly and efficiently identify the most
critical variables (predictors). They have good scalability; they can be applied to data sets
with a large number of observations.

There are disadvantages: when combining multiple trees, the interpretability of single-
tree models is lost. When handling continuous predictors, they lose certain information
when categorizing them when splitting the nodes.

As described below, the creation of tree branches is achieved by the recursive binary
splitting algorithm. This algorithm identifies and evaluates the possible splits of each
predictor according to a given measure (RSS, Gini, entropy, etc.). Continuous or qualitative
predictors with many levels are more likely to contain a certain optimal cut-off point by
chance; thus, they are usually favored in creating the trees.

The main limitation of the decision tree is that each time you partition the data set
differently, you will obtain a slightly different classification tree when using decision trees.
Thus, the way to choose a model is actually to generate multiple trees and compare them.
It is how the random forest algorithm works. The idea of a random forest is to relate the
trees that are generated by doing each partition. Then, reduce the variance of the trees by
averaging them. Averaging the trees helps to reduce dispersion and also helps to improve
performance. Finally, random forest avoids overfitting.

Regarding the diagnosis of subclinical keratoconus, several authors have used several
methods for the automatic diagnosis of ectatic corneal disorders using corneal topography,
such as discriminant analysis [6], and subsequently, a neural network approach [16].
These approaches achieved an overall sensitivity of 94.1% and an overall specificity of
97.6% (98.6% for keratoconus only) in the test set. [17] Hwang et al. [18] used multivariate
logistic regression analysis to extract available variables from slit-scanning tomography and
spectral-domain OCT for clinically normal fellow eyes of patients with highly asymmetric
keratoconus. Our team has published several articles on the early diagnosis of keratoconus
based on multivariate regression models [19,20].

A large number of studies have been performed with artificial intelligence for kera-
toconus diagnosis. Thus, Arbelaez et al. [21] performed a study based on support vector
machines (SVM) with Sirius obtaining sensitivity 92%, specificity 97.7%, accuracy 97.3%
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and precision 78.80% to differentiate subclinical keratoconus and normal corneas. Other
authors, such as Smadja et al. [22], used decision trees obtaining results after pruning of
sensitivity 90.0% and specificity 86.0% to differentiate subclinical keratoconus and normal
corneas. Ambrósio et al. [23] used a support vector machine (SVM) and random forest
method and obtained a sensitivity of 90.4%, a specificity of 96%, and an AUC of 0.96 for the
use of the TBI (tomographic biomechanical index) parameter. Kovács et al. [24] gave great
importance to the height decentration index (HDI). They analyzed the patients’ multilayer
perceptron in their database, obtaining sensitivity 90.00%, specificity 90.00% and AUC 0.96
to differentiate subclinical and normal keratoconus. In 2019, Castro-Luna et al. [25] used
Bayesian classifiers, obtaining a sensitivity, specificity, precision and accuracy of 100% to
differentiate normal corneas and keratoconus. Issarti et al. [26] developed a mathematical
model called CAD (computer-aided diagnosis) for early keratoconus detection using feed-
forward neural network combined with Grossberg-Runge-Kutta architecture (feedforward
neural network and a Grossberg-Runge Kutta architecture). The results of the CAD model
were sensitivity 97.78%, specificity 95.56%, accuracy 96.56% and precision 95.65%. It was
compared with the TKC (topographical keratoconus classification) index, the BAD-D (Be-
lin/Ambrosio deviation) index and the CMM-FFN (feedforward neural network combined
with mathematical model) model. Xie et al. [27] created a deep learning model named
Pentacam inception ResNet V2 screening system (PIRSS) by taking anterior and posterior
elevation and corneal thickness data. The model achieved a sensitivity of 92.00%, specificity
of 99.10%, accuracy of 98.00% and an AUC of 1.00. Ruiz Hidalgo et al. [28] created a model
through support vector machines (SVM). The results obtained when comparing normals
with early stages of keratoconus were sensitivity 79.1%, specificity 97.9%, precision 93.0%,
accuracy 93.1%, and an AUC of 0.92. Lavric et al. [29] have performed a keratoconus
detection algorithm using convolutional neural networks (CNNs) named Keratodetect,
obtaining an accuracy of 99.33%.

Several reviews have been performed in the literature about artificial intelligence
studies in keratoconus. [30,31].

In this study, a model has been made with the tomographic data through a random
forest (RF) that efficiently predicts all those patients with subclinical keratoconus (Sp = 93%),
and it is also a good model for classifying healthy cases (Sen = 86%). The overall accuracy
rate of the model is 89%. In the study by Lopes et al. [32], the random forest provided
the highest accuracy among AI models with a sensitivity of 100% for clinical ectasia. It
was named Pentacam random forest index (PRFI). The PRFI had an area under the curve
(AUC) of 0.992 (sensitivity = 94.2%, specificity = 98.8% and cutoff point = 0.216), statistically
superior to the Belin-Ambrósio deviation (BAD-D; AUC = 0.960, sensitivity = 87.3% and
specificity = 97.5%). In our case, for a k = 10 (CV), the random forest model proposed in this
work has proven to be an excellent model for the classification of subclinical keratoconus
(the accuracy rate is over 89%). The model has 500 decision trees and uses only two
random variables in each partition. The SP variable A1 is the most important determinant
variable in classifying and identifying subclinical keratoconus, followed by A2 Time. Peris-
Martinez et al. [33] published that A2 speed was the best parameter to diagnose patients
with subclinical keratoconus. In a recent study, Ren et al. [34] demonstrated that ARTh and
SP-A1 variables were lower in eyes with subclinical keratoconus than in normal eyes.

Stiffness parameters are defined as resultant pressure at inward applanation (A1)
divided by corneal displacement. Stiffness parameter A1 uses displacement between
the undeformed cornea and A1 and stiffness parameter highest concavity (HC) uses
displacement from A1 to maximum deflection during HC [35].

Loss of structural integrity could initiate the reduction in biomechanical properties
in keratoconus patients. Subsequently, the focal area will strain more significantly than
the surrounding normal area under the same intraocular pressure. The results in thinning
of the cornea, further decreasing its biomechanical properties, and further thinning. The
outcomes support this hypothesis, describing reduced corneal biomechanical stability
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before the alteration of corneal shape. SP-A1 could be a potential biomarker evaluating the
progression of keratoconus [36].

There are limitations to this study. The main limitation is the paucity of the sample;
thus, oversampling techniques must be used. New, more extensive, multicenter studies
would help to contrast the results.

5. Conclusions

The random forest model is a good model for the classification of subclinical ker-
atoconus. The SP A1 variable turns out to be the most important and determinant in
classifying and identifying subclinical keratoconus, followed by A2 Time.
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