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Abstract: Endophytic fungi have been studied in recent decades to understand how they interact
with their hosts, the types of relationships they establish, and the potential effects of this interaction.
Dark septate endophytes (DSE) are isolated from healthy plants and form melanised structures in
the roots, including inter- and intracellular hyphae and microsclerotia, causing low host specificity
and covering a wide geographic range. Many studies have revealed beneficial relationships between
DSE and their hosts, such as enhanced plant growth, nutrient uptake, and resistance to biotic and
abiotic stress. Furthermore, in recent decades, studies have revealed the ability of DSE to mitigate the
negative effects of crop diseases, thereby highlighting DSE as potential biocontrol agents of plant
diseases (BCAs). Given the importance of these fungi in nature, this article is a review of the role of
DSE as BCAs. The findings of increasing numbers of studies on these fungi and their relationships
with their plant hosts are also discussed to enable their use as a tool for the integrated management
of crop diseases and pests.
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1. Introduction

Crop production has always been threatened by biotic and abiotic stress. As a result,
different tools have been used, from chemical pesticides to genetically modified organisms
(GMO), grafts, and physical barriers, to alleviate their impact. As consumers continue to
demand products with no agrochemical residues, such as ecological and organic products,
some of the traditional methods of control cannot be employed. Biological pest control is
thus a current challenge and microorganisms serve as one of the most important tools to
enable this control.

Studies on endophytic fungi have been carried out in the last decades to understand
how they interact with their hosts, the types of relationships they establish, and the potential
effects of this interaction. The main characteristic of endophyte fungi is that they reside
and grow within plant tissues, and sporulate during host senescence [1–3].

Two major groups of endophytic fungi were previously identified [4]: the clavicip-
itaceous endophytes (C-endophytes), also known as class 1 endophytes; and the non-
clavicipitaceous endophytes (NC-endophytes), which are divided into class 2, 3, and
4 endophytes. C-endophytes are employed to infect grasses, while NC-endophytes are
found in asymptomatic tissues of non-vascular plants, ferns, allies, conifers, and an-
giosperms [4]. Unlike C-endophytes, NC-endophytes have been found in highly diverse
types of ecosystems [5].

As mentioned above, NC-endophytes can be divided into three classes, and exist in
several hosts. The first difference among NC-endophytes is that class 3 endophytes present
highly localised infections, while class 2 and 4 endophytes can extensively colonise host
tissues. Another difference among the classes is the host tissue that they can colonise.
Class 2 can colonise the root, shoot, and rhizome; class 3 can only colonise the shoot;
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and class 4 colonises only the root of their host [4]. In this review, we will focus on
dark septate endophytes (DSE), belonging to the class 4 endophytes. DSE are conidial or
sterile septate fungal endophytes, usually isolated from healthy plants, that form melanised
structures including inter- and intracellular hyphae and microsclerotia in the roots [4]. DSEs
do not present any host specificity as they have been associated with 600 plant species,
320 genera, and 114 families [6–8], and can live in a facultative manner on different types
of organic compounds [9]. However, certain groups of species show certain preferences
regarding attachment to their host [7]. DSE exist over a large geographical range [6,8],
from South African coastal plains to tropical, temperate, subalpine, alpine, and maritime
Antarctic and Arctic zones [6,10,11]. These ecosystems are usually associated with stressful
abiotic conditions, such as Arctic or high-altitude ecosystems [10,11], arid or semiarid
regions [12,13], drought, high salt content, low fertility, high CO2 concentration or even
heavy metal-contaminated soils [14–21]. The presence of DSE in these types of conditions
implies that the DSE-host interaction is crucial to plant survival [19]. This ability can be
attributed to the development of melanised hyphae and microsclerotia production [22,23].
The general hypothesis suggested by many studies is that the high concentration of this
pigment protects plants from free radicals or heavy metal ions owing to its antioxidant
effect [24,25]. However, Graber et al. [26] revealed that salt stress tolerance is independent
of melanin accumulation. In other types of studies, melanin content was not found to affect
processes such as Agrobacterium tumefaciens-mediated transformation efficiency [27]. The
colonization of hosts by DSE follows a similar pattern and begins with the appearance
of a certain number of superficial hyphae [28]. The hyphae penetrate spaces between
adjacent epidermal cells, continuing to the main axis of the root, and passing through
the intercellular spaces of the cortical cells [6,29]. Once the hyphae are inside the root,
they form masses of packed pigmented fungal cells within the cortical cells, resulting in
microsclerotia development [28]. DSE have been characterised in many studies; however,
many of the described species do not have a common phylogenetic group [30,31]. Some
DSE species have been included in three groups of Heliotiales, while others have been
included in Pleosporales, Sordariales or Pezizales. Most DSE belong to the genera Cadophora,
Microdochium, Trichocladium and Phialocephala [32]. The Phialocephala genus includes species
closely related phylogenetically, are indistinguishable, and are grouped in the complex
named Phialocephala fortinii s.l. (sensu lato)–Acephala applanata species complex (PAC). The
most frequent DSE in natural forest ecosystems in the Northern hemisphere belong to the
PAC [31,33–36]. Phialocephala fortinii was first described in association with Pinus sylvestris
by Wang and Wilcox [37]. Since then, Phialocephala fortinii has been found in many different
plant species roots with numerous benefits for the host. Another genus of interest that
has been extensively studied is Exophiala, which was investigated by Addy et al. [30,34].
This genus is reported to be an endophyte, and can be found in soil, water, and different
hosts [38–42]. Recently, different species of Exophiala were identified as parasites of the eggs
of nematodes of species such as Heterodera schachtii [43] or Tylenchulus semipenetrans [44].
The genus Cadophora includes pathogenic plant species associated with roots or wood
colonisers [45]. Wang and Wilcox et al. [37] isolated the Cadophora finlandica strain from
Pinus sylvestris roots. To date, many other species have been characterised; however,
their roles in the interactions with their hosts are mainly unknown [46,47]. Beneficial
associations between DSE and plants include nutrient uptake [48–54], growth promoting
effects [54–63], tolerance to abiotic stress, such as heavy metals [64–68], and tolerance to
drought [13,19,21,22,57,58,61,69–75], salinity [27,76,77], biotic stress [78–81], and changes
in the rhizosphere microbiome [73,81,82], thereby positioning DSE as potential tools for
crop production and achieving biological control. According to the map shown in Figure 1,
there are few species of DSE responsible for the biological control of diseases.
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Figure 1. Network map of the co-occurrence matrix for the 547 documents published in DSE research. VOSviewer software
(version 1.6.15, Leiden University, The Netherlands) was used to map the frequency of keyword co-occurrence networks.
Differences in font size imply differences in relevance. The different colours refer to the groups or clusters formed.

2. Nutrient Uptake and Plant Growth Promotion

Nutrient uptake and plant growth are two parameters that are positively correlated.
Most studies on DSE–plant interactions could not reveal positive or negative effects [83];
however, some DSE can increase nutritional availability for plants, enabling generally
higher growth rates in plants. The effect of the interaction between DSE and the host plant
apparently depends on different factors, such as plant and fungal genotype as well as
soil fertility [84–89]. The enhancement of nutrient absorption by plants has been revealed
by numerous researchers. In fact, Xu et al. [52] revealed that the inoculation of maize
plants with E. Pisciphila H93 enhanced phosphorus absorption by the host plant. This
DSE–plant interaction seemed to occur independently of the DSE-induced genes involved
in phosphorus absorption [52]. In addition, Vergara et al. [50] reported that DSE stimulated
nutrient uptake in rice plants, increasing the accumulation of N, P, K, Mg, Fe, Ca, and Zn
in the aerial parts of rice plants. According to He et al. [69], inoculation with DSE increased
the content of N and P in plants but decreased the content of organic material and P in the
rhizosphere [14,57]. Similarly, Haselwandter and Read [90] reported increased P content
in Carex plants associated with different species of DSE. Recently, Wu et al. [54] revealed
increased expression levels of genes related to metabolic processes and genetic information
processes. Moreover, responses to environmental signals were found to be enriched under
DSE colonization.

The ability of DSE to colonise and have beneficial effects on plants can also be depen-
dent on the nutrient’s nature in the soil or substrate [89,91,92]. For instance, Yakti et al. [53]
identified different biostimulant effects exerted by Periconia macrospinosa and Cadophora
sp., increasing the root and shoot biomass of tomato plants when organic and inorganic
nutrient sources were supplied. When organic nutrient sources were applied, only Periconia
macrospinosa increased shoot and root biomass in tomato plants. However, both DSEs
promoted shoot growth when cultivated with inorganic fertilisers.
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Mutualistic symbiosis relationships between DSE and crops have been investigated.
Such relationships promote nutrient uptake and plant growth. Andrade-Linares et al. [62]
reported the biostimulant effect of three DSEs (DSE 48, DSE49 and Leptodontidium orchidicola)
on tomato plants; however, the effects were only observed in young plants, with none of the
DSE strains affecting plants after 22 weeks of cultivation. On the other hand, Usuki et al. [89]
revealed that Heteroconium chaetospira forms a mutualistic symbiosis with Chinese cabbage,
facilitating the supply of nitrogen in exchange for carbohydrates, resulting in increased
plant growth.

Interactions between DSE and other microorganisms have been revealed, mainly
with arbuscular mycorrhizal fungi (AMF). In many cases, the interactions may involve a
stimulation of DSE fungal development [81] or a reduction in the possible pathogenic effect
of DSE on the plant [93,94]. Li et al. [95] assayed the co-occurrence of both AMF and DSE
(P. fortinii) in epidermal cells of hair roots. Based on their results, the use of Finnish peat
moss as a symbiotic fungi inoculum could enable the establishment of symbiotic fungal
colonization and promote rooting and vegetative growth in rabbiteye blueberry cuttings.
In addition, the observed positive effect was greater when the colonisation rates of DSE and
AMF were considerably higher. Recently, Guo et al. [96] revealed that DSE and mycorrhizal
infection rate significantly improved the bacterial diversity and fruit yield of blueberry
rhizosphere soil. P. fortinii has been reported to be a plant growth promoter in Asparagus
officinalis, Brassica oleracea, and Spinacia oleracea [6,59,97–100].

Other processes also promote plant growth, such as the production of different sec-
ondary metabolites, volatile organic compounds, and phytohormones by the hyphae of
DSE [101,102].

3. Abiotic Stress

According to numerous studies, DSE can contribute to the capacity of plants to
tolerate abiotic stress, such as salinity, drought, and heavy metal contamination. Different
mechanisms have been recognised to be responsible for such protection, such as melanin
content in DSE; however, these mechanisms are still unclear, as they often depend on
different DSE–host interactions.

Farias et al. [103] revealed that the inoculation of DSE, Sordariomycetes sp-B’2 and
Melanconiella elegans-21W2, in cowpea plants induced tolerance to salt stress. The inoculated
plants had higher values for leaf area and shoot and root dry mass than control plants at the
same level of water salinity. N and P leaf content, photosynthesis and stomatal conductance
were also higher in the inoculated plants. Root colonization by Piriformospora indica was
found to increase plant growth and attenuate NaCl-induced lipid peroxidation, metabolic
heat efflux, and fatty acid desaturation in leaves of the salt-sensitive barley [104]. P. indica
significantly elevated the amount of ascorbic acid and increased the activities of antioxidant
enzymes in barley roots under salt stress conditions. Other authors revealed that P. indica
colonization promoted Arabidopsis growth under salt stress conditions, which might be
caused by modulation of the expression levels of the major Na+ and K+ ion channels [105].

Hou et al. [72] revealed that the symbiotic effect of DSE on Artemisia ordosica depended
on the DSE species and the salt concentration of the medium. Accordingly, Alternaria
chlamydosporigena was found to promote the accumulation of total biomass and enhance su-
peroxide dismutase (SOD) activity; Paraphoma chrysanthemicola promoted the accumulation
of root biomass and increased indoleacetic acid (IAA) contents; and Bipolaris sorokiniana
enhanced SOD activity and glutathione (GSH) and IAA contents, with changes in the rhizo-
sphere microbiome depending on the salt concentration. Conversely, Gonçalves et al. [106]
found that the beneficial effect of the mutualistic interaction between Salicornia and Stem-
phylium sp. decreased as the salt concentration increased.

Drought is another abiotic stress where the positive effect of DSE was revealed. The
interaction between DSE and their hosts is apparently stronger under water stress condi-
tions. Accordingly, the interaction between P. indica and water stress was found to activate
signal oxidation during stress to prevent cell damage and assist in the maintenance of the



J. Fungi 2021, 7, 939 5 of 15

osmotic pressure in artichoke (Cynara scolymus). Thus, higher water stress levels in the host
plant might be attributed to the increased content of phenolics and flavonoids [107]. On the
other hand, Li et al. [75] found that Phialophora sp. and Leptosphaeria sp. improved the root
biomass, total biomass, nutrient concentration, and antioxidant enzyme activities of host
plants under water deficit conditions. The same results were found in cases of colonisation
by the DSE fungal group known as PAC (Phialocephala fortinii s.l.–Acephala applanata species
complex) [35], which increased under water stress conditions. Landold et al. [100] sug-
gested that the PAC could protect oak roots against desiccation and improve the drought
resistance of Q. pubescens due to the more extensive formation of waterproof microsclerotia.
Stroheker et al. [63] also proposed the above notion in their assessment of P. abies seedlings.
Zhang et al. [108] revealed that sorghum plants inoculated with Exophiala pisciphila showed
significantly higher growth and dry matter content than non-inoculated plants, alleviating
the negative effects of drought. In addition, plants inoculated with Exophiala pisciphila had
higher photosynthetic and leaf transpiration rates. Liu et al. [70] found that Acrocalymma
vagum could establish a symbiotic relationship with Ormosia hosiei, allowing the hosts to
improve their defence against drought stress, reduce water loss, and maintain normal
physiological activity. However, the researchers found that inoculated plants had higher
contents of chlorophyll a, chlorophyll b, and carotenoids, with increases of 13%, 28%, and
35%, respectively. Inoculation was also found to significantly enhance net photosynthetic
rate, stomatal conductance, and transpiration rates. Morphology differences were also
found in leaves, with inoculated plants displaying greater leaf length, area, dry weight,
and thicker leaves. According to Panke-Buisse et al. [109], reduced numbers of DSE are
associated with a greater drought tolerance. However, there are numerous DSE genera
found in plants, such as Paraconiothyrium, Phialophora, Darksidea, Knufia, Leptosphaeria and
Embellisia, that lead to drought resistance in other plant species [57,110].

The important role of DSE in heavy metal buffering and tolerance in plants is well
documented. Metal resistance to Cd and Zn was described to result from DSE and plant
interaction [111–117]. Zhu et al. [118] revealed that two strains of Phialophora mustea
improved the tolerance of metal stress and promoted plant growth and dry weight in
tomato plants. Similarly, P. fortinii could promote the growth and survival of Miscanthus
sinensis in mine sites under Al stress [119]. This tolerance was based on the reduction in
metal contents in roots and shoots and the limited translocation from roots to shoots in
inoculated plants compared with non-inoculated controls. DSE stimulated the activities
of antioxidant enzymes, superoxide dismutase (SOD), and peroxidase (POD), mitigating
the membrane lipid peroxidation damage caused by excessive metal ions. In another
study, Shen et al. [120] assessed how maize responds to Cd stress following Exophiala
pisciphila inoculation and found that the DSE alleviated the toxic effect of Cd excess and
promoted plant growth. Furthermore, Cd accumulation in the root cell walls was higher in
inoculated plants; thus, inoculated plants showed a decrease in Cd translocation from roots
to shoots. Shadmani et al. [113] determined the effect of Cd uptake and growth on barley
plants inoculated with Microdochium bolleyi under three Cd concentrations. Based on their
results, root and shoot growth and dry root and shoot biomass were significantly higher
in inoculated plants than control plants under all Cd concentration conditions. The study
also revealed that Cd concentration in shoots did not increase under higher levels of Cd in
the soil due to an efficient regulation system that minimised the heavy metal concentration
in the aerial parts of the plant. Similar results were obtained by Yung et al. [121] when
Leptodontidium sp. and Phialophora mustea were employed to inoculate Noccaea caerulescens
plants, which contributed to the phytoextraction of heavy metals in polluted soils and
increased plant growth.

Ban et al. [122] sought to determine the effect of different Pb concentrations on maize
growth and photosynthesis efficiency when plants were inoculated with Gaeumannomyces
cylindrosporus. Based on their results, inoculated plants had higher height, basal diameter,
root length and total biomass, and had more efficient photosynthesis parameters than
control plants. Similar to other cases, the results revealed that inoculated plants accumu-



J. Fungi 2021, 7, 939 6 of 15

lated more Pb than control plants, and this accumulation was restricted to the roots. This
finding suggests that in the inoculated plants, the translocation patterns were changed.
Consequently, Pb accumulation in the roots alleviated the aerial parts of the plants.

The use of DSE fungi in phytoremediation can help to minimise the effect of high
TE-polluted soils on plants [123]. Previously, Berthelot et al. [124] identified different DSE
species isolated from the roots of poplar trees that could produce VOCs and phytohor-
mones, and promote the development of Betula pendula, Eucalyptus globulus and Lolium
perenne. Similarly, Exserohilum pedicellatum, Ophiosphaerella sp. and Alternaria alternata
displayed technological potential for application in phytoremediation processes owing
to their ability to degrade oil [125]. DSE can also contribute to a reduction in the damage
caused by global warming in different ecosystems, individually or in combination with
other microorganisms [126].

4. Biotic Stress: Biological Control
4.1. Mechanisms of Action

Several researchers evaluated the role of DSE as biocontrol agents of plant diseases,
reporting positive results via in vitro and in vivo assays. Fungal strains can establish
different types of interactions, such as competition for space, nutrients (Figure 2), or an-
tibiosis, or the development of plant resistance to phytopathogens. Secondary metabolites,
such as siderophores or acid compounds, can mobilise nutrients in favour of one strain,
thereby limiting the nutritional resources to the other. Secondary metabolites can also
reduce growth on the other fungus, generating an antibiosis response [127]. DSE-induced
resistance to plant diseases has also been described [128].

Figure 2. (A). Microsclerotia formed by DSE Rutstroemia calopus. (B). Inhibitory effect of DSE R. calopus against F. solani on
PDA medium. Effect of salt stress (C): PDA amended with 5 g·L−1 of NaCl; (D): PDA amended with 20 g·L−1 of NaCl) on
microbial antagonism of R. calopus against Sclerotinia sclerotiorum. High salt concentrations significantly reduced the number
of microsclerotia and melanin accumulation. No reduction in the antagonistic effect of DSE was observed.

Interactions between DSE-hosts and biological control mechanisms have been re-
ported in many studies. For instance, Tellenbach et al. [78] studied the mechanism em-
ployed by Phialocephala strains to control Phytophthora species. The P. europaea strain
significantly reduced Phytophthora plurivora growth compared with the other strains eval-
uated. During the evaluation of metabolite production, four compounds were found:
sclerin, sclerolide, sclerotinin A, and sclerotinin B. Iron is an essential micronutrient for
every organism. Bartholdy et al. [129] tested the capacity of Phialocephala fortinii strains to
excrete siderophores into the nutrient medium for the mobilization and uptake of nutrients,
limiting the resource for other fungi. In the assay, the researchers identified ferricrocin,
ferrirubin, and ferrichrome C as the main types of excretions. Siderophore production is in-
fluenced by several factors. For example, the researchers measured the highest siderophore
concentrations at low pH values (4–4.5), whereas the highest levels of pH tended to inhibit
siderophore excretion. The initial Fe concentration also affected siderophore synthesis.
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Although some initial Fe concentration is required for growth, high iron concentration
inhibited siderophore synthesis. Thus, optimal levels depend on each individual organism.

Su et al. [130] found that Harpophora oryzae could control Magnaporthe oryzae in rice
plants by inducing the accumulation of H2O2, an important type of ROS, in the site of
infection; this effect was proportional to the stage of development of the DSE. In addition,
the presence of ROS in the non-infected cells adjacent to the primary infection could be
observed, inducing resistance to secondary infections. When foliar infection was analysed,
it was clear that unlike susceptible control, plants inoculated with H. oryzae limited the
lesions of M. oryzae to localised spots, controlling the damage, and indicated that H. oryzae
induced systemic resistance to the disease. Deng et al. [79] studied how Phialocephala
bamuru and Rhizoctonia solani affect physiological indices in Pinus Sylvestris var. mongolica.
By comparing P. bamuru and control seedlings inoculated with R. solani, the researchers
found that β–1,3-Glucanase and chitinase activity, proline, and soluble protein contents
in seedlings from treatment via DSE inoculation increased by 18.41%, 92.54%, 101.27%,
and 30.48%, respectively, in comparison to the control. In the study, the survival rate
significantly increased from 33% with control treatment to 80% with P. bamuru treatment.

Understanding the mechanisms of action of the different DSE that can control diseases,
as well as the different interactions that occur between DSE, the host and other microorgan-
isms present in the rhizosphere of the plant, is of great importance for its potential use in
agriculture. It is important to unravel not only the advantages, but also the disadvantages,
such as potential risk of toxicity to the environment or human health. From a commercial
perspective, the high microsclerotia formation (Figure 2A) rate of DSE can lead to higher
viability of the future formulation. In addition, it is important to understand whether any
additional requirements are necessary to increase the benefit of DSE in the plant, or if, on
the contrary, the nutrient solution and/or water requirements can be adjusted without any
loss in production.

4.2. Biological Control Assays

The role of DSE in the biological control of plant diseases has been less studied
than their effects as biostimulants under abiotic stress conditions. Nevertheless, several
studies have reported that DSE fungi can be used as biocontrol agents for pathogenic
fungi (Table 1). The beneficial effects of their application in plants include changes in root
architecture, disease alleviation, and improved plant growth, among other benefits.

Table 1. In vitro and in vivo biological control tests carried out using DSE.

DSE Phytopathogen Host References

Cadophora sp. Fusarium oxysporum f. sp. meloni Cucumis melo [131]
Verticillium dahliae In vitro/tomato [132]
Rhizoctonia solani In vitro/tomato [132]

Pythium aphanidermatum In vitro/tomato [132]
Heterobasidion annosum In vitro [127]

Cladophialophora chaetospira Fusarium oxysporum Brassica pekinensis [133]

Cladosporium cladosporioides Bursaphelenchus xylophilus Pinus tabulaeformis [134,135]
Fragaria vesca [133]

Cryptosporiopsis ericae Heterobasidionparviporum In vitro [136]

Cryptosporiopsis sp. Phytophtora pini, Heterobasidion parviporum In vitro [137]
Botrytis cinerea

Exophiala pisciphila Fusarium oxysporum Brassica pekinensis [133]
Fusarium oxysporum f. sp. fragariae Fragaria vesca [134]

Tylenchulus semipenetrans Screening/in vitro [44]
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Table 1. Cont.

DSE Phytopathogen Host References

Exophiala salmonis Bursaphelenchus xylophilus Pinus tabulaeformis [134]

Exophiala sp. Fusarium oxysporum Brassica pekinensis [133]
Fusarium oxysporum f. sp. fragariae Fragaria vesca [133]

Heterodera schachti Beta vulgaris [43]
Ophiostoma ulmi Ulmus [138]

Gaeumannomyces
cylindrosporus Bursaphelenchus xylophilus Pinus spp. [135]

Bursaphelenchus xylophilus Pinus tabulaeformis [134]

Harpophora oryzae Magnaporthe oryzae Rice [130]

Heteroconium chaetospira Verticillium longisporum, Plasmodiophora brassicae Brassica pekinensis [80,139]
Pseudomonas syringae pv. Macricola, A. brassicae [128]

Leptodontidium orchidicola Verticillium dahliae Tomato [62]

Leptodontidium sp. Pythium intermedium, Phytophthora citricola,
H. annosum In vitro [127]

Meliniomyces variabilis Verticillium longisporum Brassica pekinensis [80,140]

Paraphoma chrysanthemicola Bursaphelenchus xylophilus Pinus spp. [135]
Pinus tabulaeformis [134]

Phialocephala bamuru Rhizoctonia solani Pinus silvestris [79]

Phialocephala sphareoides Heterobasidionparviporum In vitro/Picea abies [134]

Phialocephala europaea Phytophthora citrícola In vitro [127]

Phialocephala fortinii Verticillium longisporum Brassica pekinensis [80]
Fusarium oxysporum f. sp. asparagi Asparagus officinalis [141]

PAC Heterobasidionparviporum In vitro [136]

Phialophora mustea Phytophtora citricola, Pythium intermedium H. annosum In vitro [127]
Bursaphelenchus xylophilus Pinus tabulaeformis [134]

Phialocephala subalpina Phytophthora plurivora In vitro [132]
Elongisporangium undulatum In vitro [132]

Veronaeopsis simplex Fusarium oxysporum In vitro [142]

Vascular diseases caused by Fusarium and Verticillium are controlled using different
DSE species. Khastini et al. [131] studied the control of Fusarium wilt by applying Cadophora
sp. to melon seedlings in petri dish and field tests. The results revealed disease alleviation
of 40–65% in both types of tests, with greater hyphal colonisation in the roots when the
amino acid valine was added to the medium.

Appositions and thickenings were observed in the cells of the plant cell wall. Similar
results were found in a biocontrol assay of Veronaeopsis simplex against Fusarium oxysporum
in Chinese cabbage [142], which resulted in 70% disease alleviation. Competition for
space or infection sites between V. simplex and F. oxysporum was observed; however, no
direct antagonistic activity was demonstrated in vitro. On the other hand, Surono [141]
detected 100% disease alleviation caused by Fusarium oxysporum f. sp. asparagi by applying
Phialocephala fortinii. Harsonowati et al. [133] reported the control of Fusarium oxysporum
f. sp. fragariae by Exophiala sp., Exophiala pisciphila, and Cladophialophora chaetospira, each
causing disease alleviation of 62, 85, and 90%, respectively. In addition, DSE promoted
plant growth by increasing photosynthetic rates and accelerating flower initiation and
fruit formation.

Andrade-Linares et al. [62] reported the control of Verticillium dahliae in tomato plant
assays using DSE49 and Leptodontidium orchidicola, which reduced the severity of the disease
by 30% under field conditions. Narisawa et al. [80] also evaluated the interaction between
Phialocephala fortinii and Heteroconium chaetospira against Verticillium longisporum in Chinese
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cabbage under field conditions and found a reduction in the disease by 80% and 50%,
respectively. Other important pathogens have also been studied. Berthelot et al. [127]
evaluated the interaction between DSE and pathogen in dual cultures, and reported that
the growth of the pathogen, Heterobasidion annosum, was inhibited by Phialophora mustea
and Cadophora sp. Moreover, P. mustea was found to inhibit Phytophthora citricola. On
the other hand, Berthelot et al. [127] employed DSE/DSE strains but did not find any
negative effects in the interaction. Finally, Tellenbach and Sieber [143] demonstrated that
Phialocephala subalpina could reduce disease intensity caused by Elongisporangium undulatum
and Phytophthora plurivora in Norway spruce seedlings.

As previously discussed, the parasitism of nematode eggs and juveniles by DSE has
been revealed [43,44,134,135]. Gené et al. [44] found that parasitism was related to the
presence of eggs or females and to the amount of magnesium or phosphorus in the soil.
Disease alleviation by DSE was related to changes in root architecture as well as changes
and conservation of the microbiota present in the rhizosphere. However, to our knowledge,
very few studies have examined the control of bacterial diseases by DSE [128].

DSE do not always suppress pathogens. For instance, Yakti et al. [132] studied the
in vitro interaction between Cadophora sp and three pathogens, namely Verticillium dahliae,
Rhizoctonia solani, and Pythium aphanidermatum. Based on their findings, although Cadophora
sp. reduced the growth of pathogens, the pathogens also reduced the growth of DSE at a
higher percentage. As this behaviour was not observed in plant tests, the in vitro results
were not consistent with the in vivo results. Similarly, Martínez-Arias et al. [138] did
not obtain good results for control of Ophiostoma ulmi in Ulmus by applying Exophiala sp.
However, studies revealed the inhibition of the pathogen, but to the detriment of plant
growth [144]. In general, the interactions between DSE and their hosts are not necessarily
beneficial. Although DSE do not behave as a pathogen, they can lead to a reduction in
plant growth [144].

According to Berthelot et al. [102], studies to date are still at an early stage and thus
require more mature validation. New DSE with different functions are being charac-
terised [145], such as the production of anticancer metabolites which, however, showed no
biostimulant effect in the tested plant species [146], or biostimulants of growth and produc-
tion of anticancer compounds in plants [147]. More studies are required to understand the
different interactions of DSE within cultivation systems and to incorporate DSE into pest
and disease management methods. Compatibility studies with fungicides commonly used
in agriculture are also needed [148].

5. Conclusions

Although more information has been obtained concerning the role of DSE in alleviating
biotic stress, much work remains to be done before DSE can be successfully introduced into
the market. Market trends and legislation for agricultural production systems highlight the
need for products that are environmentally friendly and waste-free and are produced under
environmentally sustainable parameters. Consequently, workers in the agricultural sector
must follow these trends and develop production models that meet these requirements. As
part of this adaptation, alternatives to disease control that eliminate the use of chemical
tools as much as possible should be discovered and employed. As revealed in this review,
DSE can colonise and establish relationships with their hosts, resulting in benefits to plants
not only in terms of disease control, but also in terms of growth, nutrient solubilisation and
absorption, and tolerance to abiotic stresses, such as salinity and drought. Accordingly, we
believe that these types of fungi can become a very important player in new agricultural
production methods that will be presented in the short and medium term. Therefore, their
behaviour within these methods must be studied. Agronomic studies are necessary to
determine how the DSE present in each ecosystem can be incorporated into the current
production systems of each region and crop, integrating them as tools for daily use.
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