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Abstract: Plant quality and survival prediction tools are useful when applied in the field in different
agricultural sectors. The objectives of this study were to conduct a review and bibliometric analysis
of the Dickson Quality Index (DQI) as a key plant quality indicator and with respect to its scientific
applications. A third objective was to identify the main morphological and physiological parameters
used in plant production research. The methodology and findings of 289 scientific articles were
analysed based on the morphological, physiological, and mathematical parameters used as plant
quality indicators in research on forest, medicinal, horticultural, aromatic, and ornamental species.
During the last 10 years, the number of publications that have used the DQI as a plant quality
parameter has increased by 150%, and Brazilian researchers stand out as the most frequent users.
Forestry is the discipline where quality parameters and their biometric relationships are most often
used to facilitate intensive plant production. Use of the DQI increases the certainty of prediction,
selection, and productivity in the plant production chain. The DQI is a robust tool with scientific
application and great potential for use in the preselection of plants with high quality standards
among a wide range of plant species.

Keywords: bibliometric analysis; allometric relationships; seedling quality; biometric parameters;
quality indicators; plant performance; root quality parameters

1. Introduction

In all agricultural sectors, the use of certified seeds and seedlings with high quality
standards has been a key to increasing seedling survival and crop productivity and to
preventing crop pest problems. According to the data reported by the Food and Agriculture
Organization Corporate Statistical Database (FAOSTAT) in 2018 [1], arable land totals more
than 4826 million ha worldwide, of which only 32.48% correspond to farmland. In turn,
forest areas amount to 4068 million ha, where natural or anthropogenic degradation and
deforestation problems pose a great challenge. In 2018, the area of forests regenerated
through reforestation programmes was estimated at only 296,500.52 ha worldwide, and
reforestation mainly occurred in (mainland) China (21.20%), the United States (7.87%), the
Russian Federation (13.19%) and other countries of the former USSR (7.43%), and Canada
(3.76%) [1]. According to Luis et al. [2] and Haase and Davis [3], the success of reforestation
and conservation programmes is strongly affected by the quality of seedlings grown in
nurseries or seedbeds. Furthermore, some countries also have intensive horticultural
systems where grafted and non-grafted quality plants are produced on a large scale in
similar proportions [4]. The total production of grafted vegetable plants is estimated at
more than 500 million per year. More than 300 million of these plants are produced in
Asia alone, whereas 90 million are produced in Europe [5] and more than 10 million in
North America. These three regions are the main producers and exporters of grafted
vegetable plants. In North Africa, Morocco is the main producer of tomato plants, at a rate
of more than 12 million per year [6], whereas on the coast of Almería (Spain), the annual
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production of vegetable plants exceeds 1500 million and uses an area of more than 200 ha
of seedbeds [7].

The concept of plant quality has been widely discussed in the literature. Generally, the
quality of a plant is determined based on the characteristics of its morphology (phenotypic
characteristics), physiology (internal factors that regulate and determine plant appearance),
and performance (measurements, such as vigour, that indicate plant behaviour when
subjected to tests and specific conditions), as well as on the quality of its root system
(the physiological capacity to readily generate new, healthy, and vigorous roots). These
characteristics may indicate that a plant meets the necessary requirements to survive and
develop properly after being transplanted into the field, while showing high vigour and
increased resistance to adverse growth conditions [8–16].

According to the International Seed Testing Association (ISTA), normal or quality
plants show high potential for continued development into satisfactory plants when grown
in good quality soil under favourable conditions of moisture, temperature, and light [13].
Mañas et al. [17] and Ellison et al. [18] mentioned that the quality of a plant depends on
its ability to rapidly generate new roots and to have a well-developed root system, high
photosynthetic efficiency, and a large stem diameter, as well as a favourable shoot/root
ratio, sufficient carbohydrate reserves, and an optimal nutritional status. Recently, Kim
and Hwang [19] reported that plant quality is related to high dry matter contents, low
Stem/Root (S/R) ratios, high Specific Leaf Areas (SLAs), and short hypocotyls. However,
in large-scale production centres, such as commercial seedbeds or nurseries, plant quality is
determined by the staff, based on their technical expertise [3,20]. The production of uniform
plants, with high vigour and quality, also largely depends on the level of knowledge of the
technical staff and on seedbed technification [21–23].

Considering the above information about plant quality, quantitative parameters and
robust tools must be used to produce high-quality plants more efficiently in any of the
agricultural sectors [11,24,25]. However, the quality of a plant may be determined by
its own genetic information and by genotype–environment interactions, together with
the agronomic management of the crop and the technological level of the production
facility [26,27]. Accordingly, preselecting plants at the seedbed stage, based on their
morphological and physiological attributes, makes it possible to quickly discard those
that do not meet the required standards. The main advantages of this non-destructive
method are that it is easily applied on a large scale and facilitates the analysis of many
plants [28–30]. However, plants with optimal morphological parameters at the seedbed
stage do not always show the best vigour or growth in the field [31].

Indices that integrate root quality parameters appear to be effective in predicting field
performance, vigour, and survival under adverse growth conditions [10,32–34]. In addition,
in some studies, plant quality is determined using biometric indices or ratios, such as the
stem/root dry weight, stem Height/Diameter (H/D) ratios, total dry weight, and the
Dickson Quality Index (DQI) [35–37]. The DQI is a quality parameter initially developed
for forest species [38] that is now widely used as a quality, vigour, and yield potential
indicator for a broad range of species [15,39]. However, few studies have described plant
quality using this index for fruit [40–43] and ornamental [24] species and for herbaceous
crops, including aromatic species and horticultural crops [44]. Therefore, the objectives of
this study were to conduct a review and bibliometric analysis of the application potential
of the DQI as a main parameter for assessing plant quality during plant production, as
well as in relation to other scientific applications of this index. A third objective was to
identify the biometric ratios and main morphological and physiological parameters used
to facilitate the production of quality plants.

2. Materials and Methods

Data from the 1989–2020 period were reviewed and analysed in the Scopus database
using Scopus smart tools and Boolean (AND, OR, and NOT) and proximity (PRE/and
W/) operators. The descriptor used as the central axis was the DQI. Quantitative analyses
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of key- or co-words ‘Dickson quality index’ OR quality AND index* W/5 seedling* were
performed using the search field ‘Article title, Abstract, and Keywords’, resulting in a total
of 662 articles and 3216 keywords.

To visualise the research topics, a bibliometric map was developed based on the
keyword co-occurrence ratio and on the similarity index, where the unit of analysis was the
set of keywords that includes the author’s keywords and indexed keywords, establishing a
keyword frequency equal to or greater than 8 (number of times that a keyword appears in
the selected publications) according to the criteria established by Chen et al. [45].

Following a similar procedure, an overlay visualisation map was drawn to identify
the evolution of keywords used in the set of articles analysed in this study. A thesaurus
file was constructed with synonyms or repeated concepts to increase the consistency of the
main research topics.

The data were processed and mathematically analysed using the clustering algorithm
of the VOSviewer® software version 1.6.15.

From the total sample of articles (n = 662), a representative and random sample of
289 articles was extracted, and were synthesised, exposing the usefulness of the DQI as a
potential tool to determine plant quality in a significant sample of forest, fruit, medicinal,
horticultural, aromatic, and ornamental species. Data were retrieved and analysed by
relevance from Scopus database 2020.

A quantitative, detailed, and meticulous analysis of the 289 articles was performed to
collect the data of interest, such as plant species under study, the main goal of each study.
In addition, the biometric parameters and plant quality indicators used in each article were
identified, described, and quantified.

The different themes and research topics were identified and grouped within the main
aspects of agricultural sciences that influence crops and their productivity [46].

3. Plant Morphological and Physiological Parameters
3.1. Height, Stem Diameter, and Leaf Number

Height, stem diameter, and leaf number are easy-to-measure parameters that can
be determined non-destructively. Height is defined as the distance between the apical
meristem and the level of the substrate (or 1 cm above the substrate level) and is one
of the main morphological parameters used as a quality indicator in different areas of
agriculture. Plant height plays a key role in plant survival and development, especially
after transplanting and during the first years of growth. Some researchers suggest using
small plants in reforestation programmes, because they are considered more robust plants
with less sensitivity to wind, drought, and cold stress [2,28,35,47,48].

Stem diameter is a parameter used for predicting field survival. Tsakaldimi et al. [34]
found that plants with a larger stem diameter and a higher total biomass have higher
percentages of field survival than smaller plants. Similarly, plants with a larger stem
diameter have a greater resistance to cold damage, because they dissipate heat more
efficiently through their stems [28,35,49]. In addition, stem diameter variations have been
used as indicators of the water status of plants and as a tool to schedule greenhouse
crop irrigation [50]. In general, stem diameter shows a positive correlation with the post-
transplanting performance of crops, similar to that of the DQI [32,39,48].

The emergence and increase in the number of leaves in crops is generally associated
with an increase in photosynthetic activity, improving yield and vigour after transplanting.
According to Castro Paes et al. [51], container size is a key factor in nutrient availability to
the root system, affecting the distribution of assimilates in shoots and, consequently, the leaf
number. Lima et al. [52] have reported that using organic substrates in aubergine produc-
tion increases both leaf number and photosynthetic activity, improving post-transplanting
development and vigour. The use of pig farm wastewater (with concentrations ranging
from 50% to 75%) in the nutrition of Khaya senegalensis seedlings increases both the leaf
number and area and improves the plant quality [53].
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3.2. Leaf Area

Leaf Area (LA) is one of the most important morphological parameters and is fre-
quently used in crop growth modelling and simulation [54,55]. Leaf area is a key factor that
determines the amount of photoassimilates produced by crops and thus, it substantially
affects their growth, development, and productivity. A large LA is essential for high radia-
tion interception [56]. Generally, plants with a greater LA show a higher photosynthetic
capacity; consequently, LA is important for producing plants with optimal quality and
the capacity for vigorous establishment in the field [57,58]. However, when the LA is
large, water loss by transpiration may increase. Moreover, a reduction in LA may occur
as a survival response to different types of stresses such as salinity [59,60]. According to
Bantis et al. [5], LA is considered a highly efficient quality indicator in the production of
watermelon and interspecific squash seedlings. Some factors, such as light quality and
radiation intensity [61], plant nutrition [62,63], substrate type [64], and container design
and volume [65], may affect LA and biomass accumulation in crops. Leaf area is often
determined using an LA metre or by analysing images with specialised software, such as
Windias or ImageJ [66]; however, LA can also be determined using simple models such as
the product of the leaf length × width.

3.3. Fresh Weight

Fresh weight is a good indicator of plant volume. Generally, productivity in horticul-
tural crops is determined by the fresh weight of the organ of interest (the stem, leaf, root
or fruit), rather than by its dry weight, most likely because the sale price of the product
is based on the fresh weight of the usable product. However, the quality of the product
is often related to its dry matter content. For example, simulation models enable users to
estimate fruit fresh yield based on knowledge of the dry weight/fresh weight ratio of the
fruits [57]. However, if a constant dry weight is considered, the error is significant and
surpasses 25% [67].

3.4. Dry Weight

Plant biomass accumulation, expressed as dry weight gain, is a key growth measure,
as it reflects a plant’s response to several factors, such as photosynthetic activity, CO2
concentration, and to a lesser extent, temperature [68]. Total Dry Matter (TDM) is often
used as an indicator of plant field survival. It represents the net gain in dry matter from
and is considered one of the best parameters for indicating plant quality, as plants with a
high TDM content show high growth potential and quality [17,69].

3.5. Root System Quality Parameters

Root system parameters are highly relevant in plant quality research; however, root
system analysis is a destructive process. In addition, the time required to conduct root
system analysis can be a limiting factor given that relatively long periods of time are
needed to prepare samples in order to avoid incorrect values. Owing to these drawbacks
associated with root system analysis, field survival and plant productivity have been widely
correlated with biometric parameters and ratios instead of root system parameters [33],
and the indices that integrate root parameters have shown greater precision and prediction
capacities than certain of the other parameters, such as height, stem diameter, or the H/D
ratio [10,22]. Root system parameters, such as root length, root volume, root dry matter,
Specific Surface Area of Roots (SSAR), number of First Order Lateral Roots (FOLRs), root
architectural parameters, and Root Growth Potential (RGP), may provide more effective
indicators of seedling performance [34] compared to other parameters.

A rapid and balanced development of the root system is a key plant survival and
growth strategy, mainly in low rainfall areas with low soil fertility levels. In addition, some
plants can develop different types of root systems in response to the different types of biotic
and abiotic stresses faced during the early stages of field crop development [70,71].
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3.5.1. Root Length

Root length quantitatively describes the quality of the root system of a plant and
its analysis is non-destructive. In plants with long roots, this parameter is associated
with enhanced growth and an increase in the capacity to withstand post-transplanting
stress, as evidenced by the high exploration capacity of such roots in growing media [29].
Some forest species, when grown in culture media with high porosity and low fertility
levels, have longer roots and a better root distribution in the containers compared to when
cultivated in rich, non-porous media [32]. However, different studies suggest that root
development may be limited by copper supplementation [72] and by the container type
and colour [73].

3.5.2. Root Volume

Determining root volume using the water displacement method is a simple way to
measure plant root abundance. According to Chirino et al. [71] and Oliveira et al. [57], the
greater the root volume, the greater the exploration of the growth medium, facilitating
water and nutrient absorption. An increase in root volume can improve the adaptation of
a plant to limiting conditions, thus increasing field survival [35,50]; the opposite occurs
when plants have limited root systems [34].

3.5.3. Specific Surface Area of Roots

The SSAR (cm2) is a root system quality indicator. Plants with a high SSAR have a
greater capacity to absorb and translocate water and essential nutrients for growth, because
they have more fine roots than those with a low SSAR. Together with root volume, SSAR
is positively correlated with field performance and survival [10,74]. The SSAR can be
calculated using the method described by Tennant [75] as well as by using specific software
such as WinRhizo Pro®, ImageJ, GiA Roots, or RhizoVision Explorer [76–78].

Root quality may be affected by crop management or developmental conditions. It has
been shown that supplementing the substrate with 40% N-urea (in the form of hydrogel)
improves the plant quality, including the SSAR system, of pepper plants [66]. Conversely,
Pimentel et al. [79] found no effects of container type or season on root quality, total volume,
or SSAR of yerba mate plantlets propagated by mini-cuttings. Similarly, Marco et al. [80]
have mentioned that incorporating peat into copper-contaminated soils improves plant
qualities or quality indices, such as root dry matter, SSAR, stem diameter, the DQI, and
the copper tolerance index, by improving the physical and chemical properties of the soil.
These same authors found that a gradual increase in copper doses in the soil (300 mg of
Cu kg−1 of soil) decreases the SSAR by 40% [12,80]. Generally, plants with a high SSAR
show high tolerance to soils contaminated with heavy metals [81], perhaps due to defence
mechanisms such as melanin accumulation in the roots.

3.5.4. Number of First Order Lateral Roots

The number of FOLRs (roots with a diameter ≥ 1 mm that branch from the taproot)
may predict the potential post-transplanting productivity of a plant [28,82]. Roots are
classified by counting the approximate number and type of high-order lateral roots in each
10 cm segment of the FOLRs [83,84]. A large number of FOLRs and a fibrous root system
improve survival and stimulate the rapid establishment of plants in the field [83]. Both the
number of FOLRs and the RGP are effective tools for quality plant selection [85].

Some practices, such as the use of mixtures of organic and inorganic substrates, have
been shown to increase the number of FOLRs in forest plants [84]. Similarly, treating forest
plants with supplementary light improves the quality of the root system by causing an
increase in root density and leads to higher order lateral roots by increasing the number of
FOLRs with a diameter ≥ 1 mm [83].
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3.5.5. Root Dry Matter

Root dry matter is one of the most important variables for determining field survival
of plants. Binotto et al. [39] have mentioned that root dry matter can be used as a quality
indicator in forest species due to its high correlation with the DQI.

3.5.6. Root Growth Potential

The physiological quality of plants can be determined based on their RGP, i.e., their
ability to generate and grow new roots (>1 cm) in the medium into which they are trans-
planted [10,86]. A high RGP is desirable as it is associated with a more vigorous root system
and, therefore, with a higher water and nutrient absorption potential, which is further
associated with greater adaptation and a higher post-transplanting survival rate [2,50,87].

In ornamental species, out of 13 morphological and physiological parameters used to
evaluate plant quality, RGP has been found to be the best tool for predicting plant vigour
in all tested treatments [24]. According to Chirino et al. [71], in forest species, the design,
volume, and depth of the container substantially affect the RGP during the early stages after
transplanting. Nevertheless, Sánchez-Aguilar et al. [73] have mentioned that the colour
of the container does not have a marked effect on root growth. Conversely, the quality
of plants has been shown to increase substantially in substrates enriched with different
concentrations of manure, as evidenced by an increase in their RGP values, and in greater
field survival and vigour [88]. The RGP is considered a potential tool for species selection
during early growth stages. Deans et al. [85] found that Sitka spruce (Picea sitchensis)
clones with a high RGP (≥30) show higher plant quality and field survival three years after
transplanting than clones with a low RGP. In addition, a high correlation (p = 0.05) between
RGP and the main morphological indicators of plant quality has been found.

3.5.7. Aggregation of Roots to the Substrate

Aggregation of roots to the substrate is used as a quality indicator and as a tool for
choosing the substrate that enhances the root growth of a plant. Wendling et al. [89] have
mentioned that aggregation of roots to the substrate can be evaluated using a numerical
scale (from 0 to 10), where zero corresponds to the worst quality plants, with a completely
disintegrated root ball, and 10 corresponds to the best quality plants, with a compact and
intact root ball after a free fall from a height of approximately one metre.

Effective root systems are highly aggregated; therefore, the production of plants with
disintegrated root balls should be avoided, as this condition exposes the roots to damage
by desiccation, thus hindering plant survival [90]. According to Dalanhol et al. [91], in-
corporating vermicompost (30% and 50%) into the substrate when growing Campomanesia
xanthocarpa (Mart.) stimulates an increase in aggregation of the roots to the substrate, in-
creasing the plant quality and the ease of seedling extraction. Similarly, Dalanhol et al. [92]
assessed that mixing vermicompost with the substrate, without further fertilisation, in-
creases Eugenia uniflora L. plant quality, because of a high aggregation of roots to the
substrate, showing a higher percentage of fine roots and a more compact root ball com-
pared to plants grown without vermicompost.

3.5.8. Seedling Extraction Ease

Seedling Extraction Ease (SEE) has been used as a parameter for assessing plant
quality at the seedbed stage. It is related to handiness at the time of extraction, where
plants grown in difficult-to-remove substrates can experience root ball disintegration and
root rupture on extraction [89]. Seedling extraction ease is a parameter that should be
considered when choosing the best cultivation substrate, as it will affect the post-extraction
plant quality [2,90].

To evaluate SSE with the least possible damage, Hassen and Davis [3] have proposed
the following numerical scale: 1 corresponds to a difficult extraction (requiring an exerting
force and pressure to extract the seedling, resulting in mechanical damage to the root and
plant); 2 corresponds to medium extraction ease (where complications may occur during
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extraction, but ultimately the seedlings can be removed without apparent mechanical dam-
age); and 3 corresponds to the greatest extraction ease (where the seedlings are extracted
from the container without any mechanical damage and with a compact root ball).

3.5.9. Primary and Secondary Metabolite Content (Soluble Sugar, Starch, Total Phenols,
and Flavonoids)

Primary and secondary metabolite contents and their distribution among different
plant tissues play key roles in adaptation strategies in response to different types of stress.

The sum of soluble sugars and starch is referred to as total Non-Structural Carbohy-
drates (NSC). This is a key physiological attribute that describes the quality of a plant and
predicts its response to transplanting [9]. The amount of NSC in a plant is affected by the
season, water and nutrient availability, temperature, and light levels. Therefore, a high
concentration of NSC is necessary for the successful establishment of plants in the field
and is a key indicator of the carbon source and sink capacity of the vegetation. Conversely,
low carbohydrate reserves in the different plant organs decrease plant growth and survival
rates [2,93]. Recently, Liu et al. [94] reported that plants found to be the most resistant to
drought show the highest concentrations of NSC and the main storage organ is the root.
Similarly, a high concentration of NSC in the roots is associated with species with high
shade tolerance [95]. In turn, Liu et al. [61] have mentioned that enrichment with CO2
(1050 µmol mol−1 CO2) and supplementary lighting (100 µmol m−2 s−1) can improve the
quality of plants, by promoting a higher photosynthetic activity and increasing their total
carbohydrate content. Similarly, Liu et al. [96] have reported that DIFs of 0 ◦C or >10 ◦C
substantially increase the content of primary and secondary metabolites in A. membranaceus
and C. lanceolata seedlings. In addition, Liu et al. [97] found that the physiological quality
of different medicinal species improves at a night temperature of 15 ◦C due to an increase
in CO2 assimilation and in the synthesis of carbohydrates, including soluble sugars, starch,
total phenols, and flavonoids.

4. Plant Biometric Ratios or Indices
4.1. Height/Diameter Ratio

The H/D ratio (cm mm−1), also known as the slenderness coefficient, sturdiness
quotient, or robustness index, is a robust plant quality indicator that has the advantage of
being non-destructive. This indicator is used to predict post-transplanting plant growth
and field survival [35,98]. The H/D ratio determines the growth balance between plant
height and thickness [93]. As suggested by some researchers, the ideal value of this index
for a wide range of forest and fruit species should be lower than or equal to 6 in order for a
plant to be considered in balance or of a suitable quality [21,28,99,100]. In addition, a low
H/D value is associated with more robust plants with a higher probability of field survival,
especially in areas with strong winds, landslides, drought, and salinity [14,100,101]. This
is also true for container plants [102]. Conversely, a high H/D value is an indicator of
thin plants, which are more likely to experience post-transplanting stress [2]. Similarly,
an imbalance in this indicator may be associated with a decrease in plant growth and
development [103].

4.2. Shoot/Root Ratio

The S/R ratio (g g−1) is the quotient between the shoot and root dry weights of a
plant; it indicates the balance between the transpiration area (the leaves) and the plant
roots (water and nutrient absorption regulation) [99]. This indicator is used to determine
the growth capacity of plants under adverse conditions [26,35]. Shoot/root values lower
than or equal to 2 are considered adequate. Some studies on forest species have found that
plants with ratios very close to 2 have higher field survival and drought resistance potential
than plants with lower S/R values, most likely due to their better physiological uniformity
and balance (considering photosynthesis, transpiration, and water and nutrient absorption
by the roots) [2,17,36]. A low S/R value may be indicative of limited leaf development
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and, consequently, of reduced photosynthetic activity in a plant. Nevertheless, in the early
stages of plant growth, a large root system is recommended to ensure an increased water
and nutrient absorption [17,20].

4.3. Dickson Quality Index

The DQI is derived from the integration of different morphological parameters, specif-
ically the total dry weight (g), the stem H/D ratio, and the S/R ratio, as indicated in
Equation (1).

DQI =
total dry weight (g)

height (cm)
stem diameter (mm)

+
shoot dry weight (g)
root dry weight (g)

(1)

The DQI was initially developed to evaluate the quality of forest species [82,104]
and has been applied to fruit [105,106], aromatic [23,107], ornamental [11], and horticul-
tural [108–110] species. This index was suggested and developed by Dickson et al. [38]
for forest species (Picea glauca and Pinus albicaulis) as a tool to predict the behaviour of
plants in the seedbed stage and their performance in the field.]. According to different
authors, a high DQI value is desirable, as typically found in robust plants with an opti-
mal balance between shoot and root biomass, predicting a high field performance due
to high vigour [17,24,31,40,111]. Furthermore, the DQI describes the plant survival and
growth potential in the field [22,32,71]. According to Hunt [26], for forest species such
as Douglas-fir (Pseudotsuga menziesii), lodgepole pine (Pinus contorta), and white spruce
(Picea glauca), a value greater than or equal to 0.20 is considered to indicate that a plant
meets quality standards. However, some researchers suggest that DQI calibration tests
should be established for each of the forest species of interest [39,56].

To increase the reliability of plant quality indicators, thus justifying their use, some
researchers correlate and integrate the main parameters that describe plant growth with
the DQI, increasing prediction and decision-making capacity for the selection of plants
with high quality attributes [29]. In this regard, Puttonen [9] mentions that the confidence
limit of any parameter with the potential to predict field behaviour, growth, and survival
must be higher than 70%. Tsakaldimi et al. [34] found a significant correlation between
field survival and the DQI, with R2 values ranging from 0.60 to 0.89, reaching survival
surpassing 90% when the DQI value is 0.35 and 1.1 for Pinus halepensis and Pistacia lentiscus,
respectively. Similarly, Binotto et al. [39] have found a positive correlation between TDM,
stem diameter, and the DQI in Eucalyptus grandis and Pinus elliottii var. elliottii. Additionally,
in the production of high quality Carica papaya plants, a high correlation has been found
between the DQI and the H/D ratio, S/R ratio, and TDM [43].

In contrast, Puttonen [9] has mentioned that using morphological indices describing
the yield potential, such as the DQI and the RGP, is questionable because prediction errors
may be generated when applying indices describing characteristics of a single tree or
of a reduced batch of plants to describe the behaviour and characteristics of a complete
population. In addition, integrating certain morphological and physiological parameters
may give rise to nonsensical units. Accordingly, Ivetić et al. [28] have found that the
ability of the DQI to predict the survival of forest seedlings is lower than that of height
and the H/D ratio, which are non-destructive and easy-to-measure parameters. In turn,
Mota et al. [40] analysed three quality indices, namely the H/D ratio, the R/S ratio, and
the DQI, and were unable to confirm that these indicators could represent the quality
of Eugenia dysenterica plants, as they found plants with lower growth and weight that
had a higher quality. However, preselecting plants based on their morphological and
physiological attributes such as height or H/D ratio do not always overlap with the best
vigour or growth in the field [31].

In this sense, those indices that integrate root quality parameters or indices that inte-
grate different growth variables seem to be effective in predicting field performance, vigour,
and survival under adverse environments for a wide range of growth conditions [10,32–34].
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4.4. Root/Shoot Ratio

In addition to using the S/R ratio, some researchers also use the inverse relationship,
the Root/Shoot (R/S) dry matter ratio (g g−1) as a plant quality and hardiness indicator. A
higher value of this index indicates a greater development of the root system relative to the
shoot system [112].

The allocation of plant resources to root and shoot biomass production is considered
a key factor in water use and field survival strategies, and in expressing maximum per-
formance [34,113]. For example, when nutrient availability is low, plants allocate more
resources to root growth and decrease assimilate availability to shoot growth, thereby, in-
creasing the R/S ratio without affecting their nutritional status [114–116]. Chirino et al. [71]
grew Quercus suber L. plants in deep containers and found a higher accumulation of root
biomass and, as a result, a higher R/S ratio compared to plants grown in shallow contain-
ers. Furthermore, the substrate mixed with organic waste used for growing Chamaecrista
desvauxii (Collad.) optimises plant quality [117]. Similarly, the R/S ratio increases in
E. dysenterica plants when grown using different mixtures of rice husk and vermiculite as
substrates, ultimately reaching an R/S ratio of 3.91, are most likely due to the improve-
ment in the structure of these substrates and to their high oxygenation capacity in the
container [40]. In physic nut plants, with and without mycorrhizae, the R/S ratio shows
a positive correlation with a gradual increase in soil phosphorus levels. These results are
likely due to increased synthesis of carbohydrates and long-distance transport rates be-
tween the root and stem at higher levels of phosphorus fertility [112]. In addition, Magonia
pubescens production at a 70% shade level improves the overall plant quality, increasing
the R/S ratio (to 3.63). In addition, Magonia pubescens production at a 70% shade level
improves the overall plant quality, increasing the R/S ratio (to 3.63), as well as the root dry
matter and TDM [52]. In guava plants, a moderate increase in salinity decreases the relative
growth rate, the shoot biomass, and the R/S ratio by 28% at an electrical conductivity of
3.5 dS m−1 [118].

4.5. Plant Height/Shoot Dry Matter Ratio

The plant Height/Shoot Dry Matter (H/SDM) ratio (cm g−1), where SDM is the Sum
of the Dry Weight of both the stem and leaves, is a high-potential index used to predict
field survival potential. This ratio is also used as a quality indicator in fruit [119] and
forest species [120–123]. Some studies suggest that a low value of this index is desirable,
as it is associated with more lignified and higher-quality plants [93,124,125]. According to
Silva et al. [58], incorporating controlled-release fertilisers into plant nutrition programmes
in forest species has a positive effect on plant quality, as shown by the H/SDM ratio and
DQI index values obtained at doses of 7.5 and 7.8 kg m−3, respectively. Furthermore, in
substrate base saturation treatments, Cruz et al. [69] found a positive quadratic relationship
(R2 = 0.56) for the H/SDM ratio, reaching its minimum (1.32) at a 54.8% base saturation,
thus, indicating that it is a reference for the field survival of Tabebuia impetiginosa (Mart.)
Standley seedlings. Similarly, in Machaerium nictitans (Vell.) Benth., Souza et al. [126]
found that the best quality plants have an intermediate H/SDM value (6.5) at a 45% base
saturation. However, these same authors mention that this ratio may vary with the type of
soil. In Mimosa caesalpiniaefolia Benth. and in Piptadenia gonoacantha J.F. Macbr., nitrogen
nutrition management substantially improves plant quality, as shown by the observed
H/SDM ratios of 4.1 and 3.3, respectively, regardless of the nitrogen source [124,127].
Valadão et al. [128] have found that increasing shading from 30% to 70% increases plant
quality when the H/SDM ratio is low (3.3), in line with the highest values of the DQI.

4.6. Shoot Dry Matter/Plant Height Ratio

The Shoot Dry Matter/plant Height (SDM/H) ratio (mg cm−1) is known as the
compactness index. A high value for this index is desirable, given that more robust plants
with high dry weight show high compactness [19,99]. Accordingly, biomass accumulation
is essential for producing high-quality plants in the nursery [20].
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The SDM/H ratio has been used to predict plant quality in different medicinal
species [96,97] and in horticultural crops [6]. Recently, Bantis et al. [5] evaluated dif-
ferent quantitative criteria for producing quality plants and found that the SDM/H ratio is
one of the best indicators for predicting the physiological and commercial quality of water-
melon and interspecific squash seedlings. Similarly, Kim and Hwang [19] have found that
light quality and the proportions between far-red and the red/far-red ratio substantially
affect the dry matter accumulation and the SDM/H ratio in tomato plants.

4.7. Root Dry Matter/Root Length Ratio

The Root Dry Matter/Root Length (RDW/RL) ratio (g cm−1) is considered a root
quality indicator, albeit underused among the physiological parameters that reflect plant
quality. Recently, Liu et al. [96,97] evaluated the effects of differences in temperature (DIF)
between day and night on Astragalus membranaceus and Codonopsis lanceolata seedlings
and found that a DIF of more than 10 ◦C was recommended for the production of high-
quality plants with the highest RDW/RL ratios for both species. Prior et al. [129] have
reported that a gradual increase in atmospheric CO2 concentration and moderate water
stress significantly improves the quality of the root system (both root density and dry
weight) and the RDW/RL ratio in cotton plants.

4.8. Root Quality Index

The Root Quality Index (RQI) describes the quality and characteristics of the ad-
ventitious root system. This index was proposed by Saha et al. [33] based on the DQI
(Equation (2)).

RQI =
TM

S
R + RSQ

(2)

where the RQI represents the quality of the adventitious root system; TM, the total biomass
of the rooted cutting (g·m−1); S/R, the stem/root dry weight ratio; and RSQ, the root
sturdiness quotient (average diameters of roots/total length of the root system). The
information provided by the RQI index may be complemented with the average root
diameter, an indicator of the ability of the roots to penetrate the soil.

The RQI has a high potential for root quality evaluation and is a robust and easy-to-
analyse tool. A positive correlation has been found between grey relational analysis grades
and the RQI [33]. In addition, indicators that integrate root quality parameters are known
to efficiently predict post-transplanting behaviour [10]. Currently, Saha et al. [33] propose
using algorithms to evaluate root quality and reduce measurement biases in different
eucalyptus species propagated by cuttings, thereby, increasing confidence in the choice of
genotypes with high morphological and root qualities in short periods.

4.9. Leaf Area/Root Dry Matter Ratio

The Leaf Area/Root Dry Matter (LA/RDM) ratio (cm2 g−1) is a parameter used
as a plant survival and resistance prediction tool for plants grown in soils subjected to
drought. According to Thomas [113], low irrigation of Eucalyptus pilularis Sm. seedlings and
vegetative cuttings reduces the stem diameter, leaf number, and LA. These morphological
changes due to drought-induced plant hardening modify the plant biomass distribution,
increasing the balance between shoot and root development, thus, increasing the R/S ratio,
and decreasing the LA per unit of root dry weight (cm2 g−1), promoting field survival in
all treatments with limited irrigation.

4.10. Root Length/Leaf Area

The Root Length/Leaf Area (RL/LA) ratio (cm cm−2) reflects a plant’s structural
water and nutrient absorption expenditure required to maintain its specific gas exchange
capacity [130]. This ratio expresses the relative amounts of the shoot and root biomass
more accurately than the R/S ratio [131].
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Körner and Renhardt [130] have found that plants that grow at high altitudes develop,
on average, 4.5 × longer fine roots per unit of LA than plants that grow at low altitudes,
which means that the growth success of herbaceous perennials at high elevations does
not necessarily depend on a large fraction of underground biomass, but rather on longer
fine roots. In turn, Tani et al. [132] concluded that a sudden increase in radiation of
Pteridophyllum racemosum plants improves the RL/LA ratio and the specific root length
(root length/root mass ratio) due to a higher carbon allocation to the roots.

5. Crop Growth and Development Analysis

Crop growth and development analysis encompasses quantitative methods of analysis
used to understand and predict the effects of different factors that, themselves, modify plant
growth and development. Plant growth has been analysed since ancient times [133,134]
and is widely accepted as a tool in crop growth modelling and simulation [54,58]. Plant
growth analysis includes the following components: LA, Leaf Area Ratio (LAR), SLA, Leaf
Weight Ratio (LWR), and the Leaf Area Index (LAI).

5.1. Leaf Area Ratio

The Leaf Area Ratio (LAR; cm2 g−1) is the ratio between LA and the total dry weight.
This ratio indicates the efficiency of a plant in producing one gram of dry matter, as
determined by its leaves [135]. The LAR is the product of the SLA and the quotient
between the Leaf Dry Weight and the TDM (LWR). A low LAR may indicate a high plant
efficiency dry matter productivity, whereas a high LAR is desirable and associated with a
rapid growth rate. Certain factors, such as plant nutrition [37], salinity [59], and growth
conditions [136], may affect the LAR of a plant. In addition, LAR varies with time due to
changes in photoassimilate distribution during growth. In general, LAR tends to decrease
as the plant grows given the increase in total biomass in relation to the development of the
LA over time [112] (Equation (3)).

LAR =
LA

(
cm2)

total dry weight (g)
(3)

5.2. Specific Leaf Area

The SLA (cm2 g−1) is the ratio between the LA and the leaf dry mass. A high SLA
has been considered as a good plant quality indicator. Generally, in plants growing under
favourable conditions, the SLA is a reliable predictor of relative growth rate, regardless of
plant species and growth habits [19,137]. In addition, this is a crucial variable for modelling
crop growth [67] (Equation (4)).

SLA =
LA

(
cm2)

leaf dry mass (g)
(4)

In some studies, SLA, the DQI, and the K/Na ratio have been regarded as good
indicators for determining the effect of salinity stress [138]. According to Hunt and Cor-
nelissen [135], a high growth rate is strongly related to a high SLA in herbaceous crops and
forest species.

Generally, thin leaves have a high SLA, which reflects a large LA per unit of leaf
weight. For thick leaves, the SLA has a low value [68]. Consequently, for horticultural
crops, Diánez et al. [139] recommend a low SLA value, as it may be associated with thicker
leaves, which may reduce post-transplanting stress.

5.3. Leaf Weight Ratio

The LWR (g g−1) is the quotient between the leaf dry weight and the TDM of the plant
and reflects the fraction of assimilates assigned to the leaves [68].
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5.4. Leaf Area Index

The LAI (m2 m−2) is the total LA of a plant or crop per square metre of surface area.
The LAI is the most widely used variable in crop microclimate modelling and varies with
crop growth and development, reaching the lowest values during the first stages of growth,
and peaking when the crop is fully grown. According to Stanghellini et al. [68], when
the LAI is high, more photosynthetically active radiation is intercepted and absorbed,
leading to greater photosynthetic activity and crop growth. Furthermore, when the LAI is
low, the moisture level of the microclimate inside the plant canopy decreases, which may
reduce the presence of pathogenic microorganisms in the crop canopy. Considering that
the LAI of many crops is high, Marcelis et al. [56] have proposed that horticultural crop
yields may be increased by limiting leaf formation when a certain LA has been reached
(a LAI of approximately 3 to 4 m2 m−2). This excludes herbaceous crops with leaves as the
harvestable products (Equation (5)).

LAI =
LA

(
m2)

Land area above the ground (m2)
(5)

6. Dickson Quality Index Evolution, Distribution, and Application

Figure 1 shows the positive exponential trend (R2 = 0.94) in the use of the DQI in
scientific research, indicating an increase of more than 150% in the number of articles
published from 2009 to 2019. Figure 2 shows the global distribution and the percentage
of research studies conducted by country in which the DQI has been used as a quality
indicator. Studies conducted in Brazil contribute 41.6%, followed by India (20.9%), China
(16.0%), the United States (3.3%), Iran (1.6%), and, with lower percentages, Mexico, Nigeria,
and Spain (1.3%). These data correspond to the countries with the strongest reforestation,
conservation, and recovery programmes for degraded areas worldwide [140].
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Figure 1. Trend in the number of published studies in which the Dickson Quality Index has been used as an indicator of
plant quality.
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Figure 2. Global distribution of the main countries in which researchers have used the Dickson Quality Index in studies on
plant quality. The darker the colour, the higher the percentage of studies in which this index has been used. Prepared in
Arcgis® with data from Scopus, 2020.

6.1. Clustering

Our network visualisation map shows the 77 main descriptors used as keywords
in the set of publications analysed in this study (Figure 3). The different items were
grouped into five clusters, represented by different colours on the map. Each cluster
shows a set of closely related words from the same field of research. According to Chen
et al. [45], who conducted a bibliometric study based on keyword analysis, cluster size and
number may indicate variations in lines of research. The keywords that stand out most
in the network visualisation map, due to their high occurrences and total link strength
are germination, seed quality, seedling, vigour, seed, forestry, and seedling quality, which
highlight the main research topics in the studies due to their close relationship with the
different lines of agricultural research. Furthermore, within the study period, the map
shows a line of research with 25 items (cluster 1; red) that includes studies related to
biomass, composting, containers, cultivation, deciduous tree, the DQI, ecology, forestry,
fungi, growth rate, growth response, morphology, nitrogen, peat, plant nutrition, plant
(botany), reforestation, seed, seedling, seedling growth, seedling production, seedling
quality, soil, substrate, and Zea mays. Cluster 1 stands out for encompassing the current
research trends in the agricultural sciences. The overlay visualisation map (Figure 4) shows
the evolution of keywords used to describe the main content of a research study, with
the most recent terms, also being the most relevant terms, highlighted in yellow. These
keywords are: controlled study, plant growth, root length, shoot, plant root, cluster analysis,
photosynthesis, and DQI.
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software version 1.6.15.

6.2. Main Plant Species

Figure 5 shows that, among all the articles analysed in this study (n = 289), 68.6% of the
studies focused on sustainable production of forest species, followed by those centring on
fruit (17.3%), horticultural (6.9%), medicinal (4.2%), and to a lesser extent aromatic (2.1%)
and ornamental (1.0%) species. The percentage of studies on aromatic and ornamental
species was low; this may be because different quality parameters, such as colour, stem
length, or shelf life, are used for these crops compared to the others [141].
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6.3. Study Variables and Conditions

Factorial experimental designs were followed in 40.8% and 4.1% of the articles anal-
ysed in this study, considering two and three independent quantitative variables that
affected the production of quality plants, respectively (Table 1). Studies related to growth
on substrates and plant nutrition stood out. Accordingly, more than one agronomic man-
agement strategy (factor) for increasing the production of quality plants, with high vigour
and production potential, should be assessed. In addition, it is widely known that the
growth and development of a plant is strongly affected by the management and growth
medium [21,31,102].

Table 1. Main research topics identified in the set of publications analysed in this study (n = 289).

Research Topic 1st Factor (%) 2nd Factor (%) 3rd Factor (%)

Substrate
Plant nutrition and fertilisation

Lighting control

29.07 11.42 0.69
25.61 13.84 2.42
9.34 1.73 0.00

Plant protection
Irrigation and water management

6.57 2.08 0.00
6.23 2.77 0.35

Environment and crop growth
Growth in containers

Growth regulation and plant propagation
Evaluation of plant quality indices

5.88 0.35 0.00
5.54 4.50 0.69
5.19 2.77 0.00
4.15 1.38 0.00

Plant selection and genetic improvement 2.42 0.00 0.00
100.00 40.83 4.15

Among the main research topics, growing crops on substrates and crop nutrition were
the main plant growth conditions evaluated in more than 50% of the article samples anal-
ysed in this study (Figure 6). In addition, 29.0% of the articles focused on plant production
using different substrates, analysing the physicochemical characteristics as well as the
substrate type and proportion used in mixtures with different types of soil amendments
(organic or manure), and alternative substrates (sewage sludge, urban solid waste, and
harvest pruning). Together, plant nutrition and fertilisation constituted the second most
abundant topic in the articles (25.6%); this subject included fertilisation with different doses
of macronutrients and sources (10.4%), followed by salinity management and nutrient
solutions (9.7%), and soil base saturation, controlled-release fertiliser use, and phytoreme-
diation (5.5%). Similarly, 6.2% of the publications were related to water use and integrated
management, and to different irrigation strategies because efficient plant nutrition, salinity,
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and fertigation management, in both intensive and soilless crops, is key to sustainable
development in horticultural systems [142]. In addition, light intensity management using
shading and specific spectra through LED lights in controlled environments accounted
for 9.34% of the studies. Currently, the use of complementary lighting with LED lights in
the cultivation of different herbaceous crops has made it possible to improve plant quality,
thus, increasing productivity and improving the organoleptic properties of fruits [143].
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Regarding plant protection, 6.57% of the studies evaluated the use of beneficial mi-
croorganisms, such as mycorrhizae, different species of the genus Trichoderma, and plant
growth-promoting fungi and bacteria, in the cultivation of a wide variety of forest, fruit,
and horticultural species. According to Diánez et al. [139], plant growth-promoting microor-
ganisms and biological control agents are of agricultural interest as they are alternatives to
synthetic products (fertilisers and pesticides).

Other fields of study, a grouping of 19.03% of the article samples, included envi-
ronment and crop growth (5.88%), the effect of the cultivation unit (containers) (5.54%),
different plant propagation techniques (5.19%), and plant selection and genetic improve-
ment (2.42%). According to some authors [23,71], the characteristics of the seedbeds and
the types of containers in which plants grow are the main factors that should be considered
in the production of quality plants. Furthermore, Nyoka et al. [29] have mentioned that
technical training and crop management play a key role in producing quality plants. Based
on their results, it is evident that plants produced in governmental (>83%) and private
(58.3%) seedbeds have a higher quality than those grown in communal seedbeds (33.3%).

Lastly, only 4.15% of the publications evaluated the correlation between plant quality
indices and different morphological parameters. These publications mainly focussed on
forest species, because quality indicators are widely used in research on such species.

6.4. Dickson Quality Index Values

Table S1 (The data presented in this study are available as Supplementary Materials)
shows the 214 plant species for which the DQI has been used as a quality parameter,
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grouped by family, genus, and species following the recommendations of Blanca et al. [144]
and Castroviejo [145]. In total, 49 plant families were identified, among which the dominant
families were Fabaceae, Pinaceae, Myrtaceae, and Bignoniaceae, as they included more than
51.8% of the diversity of the species analysed in these studies. The dominant genera were
Pinus spp. (7.0%), Eucalyptus spp. and Picea spp. (5.6% each), and Acacia spp., Senna spp.
and Handroanthus spp. (1.8% each). Most likely, these results can be attributed to the
high efficiency of reforestation programmes which in turn resulted from their extensive
ornamental and industrial use and economic importance worldwide [3].

The high DQI values are related to plants with excellent quality and vary with crop
management, cultivation system, treatment, relative plant age, and plant material. The
DQI values range from 0.014 to 25.00 in forest species, 0.10 to 3.40 in fruit species, 0.00032
to 18.87 in medicinal species, 0.00058 to 0.21 in horticultural species, 0.10 to 4.29 in aromatic
species, and 0.035 to 3.47 in ornamental species.

Of the 214 species analysed in these studies, 26.2% have a DQI value lower than 0.20,
without affecting the quality standards of the plants. For 36.4% and 31.3% of the species,
the DQI value ranges from 0.20 to 1 and from 1 to 6, respectively, and plant nutrition
management, substrate type, and level of seedbed technification are the factors that are
reported to have the strongest effect on quality plant production. Finally, 6.7% of the
species have higher values (from 6 to 25), especially forest and medicinal species. For
instance, in Enterolobium contortisiliquum (Vell.) Morong, the plants with the best quality
have the highest DQI values (25), most likely due to the positive effect of the substrate
(a mixture of organic substrate and vermiculite), which increases nutrient availability whilst
retaining moisture in the rhizosphere [146] Miscanthus sinensis Andersson and Thysanolaena
maxima (Roxb.) Kuntze plants have DQI values of 10.8 and 21.8, respectively, most likely
associated with their high genetic potential and enhanced resistance and survival capacity
under limiting growth conditions in manganese-contaminated soils [147]. Furthermore,
in Elaeis guineensis Jacq., the DQI value is 20.0, possibly due to different factors, including
the increase in the crop growth rate, the positive effect of using plant growth-promoting
rhizobacteria that alter the plant hormonal balance, and the improvement of both the crop
yield and the plant quality biometric attributes [25]. In medicinal plants such as Moringa
oleifera Lam., controlled-release fertilisers enhance plant vigour and quality, as shown by
a DQI of 18.8 at a fertilisation dose of 5.37 kg m−3 of substrate [148] (Refs. [149–329] in
the Supplementary Materials). In general terms, these values are similar to the Dickson
threshold value considered optimal for forest species [38]. However, standard values are
not reported in the literature for most of the species analysed in these studies, even though
the DQI has been used in plant production as a tool to predict responses to a wide variety of
treatments under different cultivation systems, and to increase efficiency in the production
of high-quality plants.

6.5. Plant Quality Morphometric Parameters

Figure 7 shows the main morphological and physiological parameters and the bio-
metric ratios used as quality indicators, and their ability to predict survival, vigour, and
performance potential (Table 2).

Regarding the morphological characteristics of plants, leaf number and area were
used as the quality parameters in 31.8% and 25.3% of the studies (n = 289), respectively
(Figure 7A), followed by root morphological and physiological parameters, which were
used in 44.3% of such studies (Figure 7B), particularly root length, which accounted for
more than 20.1% of these. Furthermore, within the physiological quality parameters, the
content of primary and secondary root metabolites and the root growth potential were the
parameters most utilised in 3.4% and 2.4% of the studies, respectively (Figure 7C). Plant
nutritional status has also been established as a quality parameter, and classical nutritional
diagnosis and the chlorophyll metre are the most commonly used soil-plant development
analysis methods. Although absolute and relative growth analyses are crucial tools for
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understanding plant growth, the data from this review shows that only 3.8% of the articles
simultaneously included these concepts along with plant quality parameters (Figure 7D).
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Table 2. Potential tools for prediction of growth, development, survival, vigour, plant performance, and plant quality for a
representative sample of forest, fruit, horticultural, aromatic, and ornamental species (n = 289).

Parameter Growth Development Quality Survival Vigour Performance Desired
Value

Destructive
Nature

Height * ** * No
Stem Diameter * * * No
Leaf Number * ** * * No

Leaf Area * ** * Yes
Fresh Weight ** Yes
Dry Weight * ** * * High Yes
Root Length ** No
Root Volume * * No

Root Dry Weight ** * High Yes
Root Density ** High Yes
Root Fibrosity * Yes

Specific Surface Area of the
Roots (SSAR (cm2))

* * No

Number of First Order
Lateral Roots (FOLRs) ** * * Yes

Root Growth
Potential (RGP) *** * * * High Yes

Root Aggregation to the
Substrate ** No
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Table 2. Cont.

Parameter Growth Development Quality Survival Vigour Performance Desired
Value

Destructive
Nature

Seedling Extraction
Ease (SEE) ** No

Height/Basal
Diameter Ratio

[H/D ratio cm mm−1]
* ** * Low (≤6) No

Shoot/Root Dry Weight
Ratio [S/R ratio (g g−1)]

** * Low (≤2) Yes

Dickson Quality
Index (DQI) * ** * * * High

(≥0.20) Yes

Root/Shoot Ratio [R/S
ratio (g g−1)] ** * Low

(≤10) Yes

Height/Shoot Dry Matter
Ratio [H/SDM
ratio (cm g−1)]

** High Yes

Shoot Dry Matter/Height
Ratio [SDM/H (mg cm−1)]

** * * High Yes

Root Dry Matter/Root
Length [RDW/RL ratio

(g cm−1)]
** * Yes

Root Quality Index (RQI) * ** High Yes
Height/Root Length Ratio

[H/RL ratio (cm cm−1)]
*** High Yes

Leaf Area/Root Dry Matter
Ratio [LA/RDM ratio

(cm2 g−1)]
** High Yes

Root Length/Leaf Area
[RL/LA ratio (cm cm−2)]

* *** High

Total Non-Structural
Carbohydrates (NSC) *** * High Yes

Leaf Area Ratio [LAR
(cm2 g−1)] * ** High Yes

Specific Leaf Area [SLA
(cm2 g−1)]

** High Yes

Leaf Weight Ratio [LWR
(g g−1)]

* *

Leaf Area Index [LAI
(m2 m−2)] ** High Yes

Absolute and Relative
Growth * ** * High Yes

Physiological
Measurements * *** Yes

Vegetation Indices ** No
Plant Analysis and
Nutritional Status * * ** May be

* Predictive ability associated with the quality parameter; ** Morphological quality indicator; *** Parameter used to assess physiological
plant quality.

6.6. Plant Quality Indicators and Their Biometric Ratios

As the DQI was the main descriptor, the parameters that make up the DQI, such as the
plant total dry weight, the S/R ratio, and the H/D ratio accounted for 100% of the articles.
Figure 8 shows the biometric ratios that were used in plant quality studies under a wide
range of growing conditions and crops.

At 13.8%, the H/SDM ratio was the most widely used indicator, followed by the
R/S ratio (10.0%). Both these parameters stood out for their potential use as plant quality
predictors. The other key components of plant growth analysis were the SLA (6.2%),
the LAR (2.4%), and to a lesser extent the LAI (1%). In contrast, the SDM/H ratio was
primarily used as a quality indicator in horticultural and medicinal species in 1.7% of the
articles. These findings indicate that the indices that integrate physiological and root quality
parameters show great relevance and efficacy due to their high precision in predicting
post-transplanting crop quality and survival.
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7. Conclusions

The use of morphophysiological characteristics of plants and biometric ratios as quan-
titative and qualitative tools reinforces safety in the commercial, technical, and scientific
production of plants with high quality standards. The DQI increases the efficiency in the
selection and mass screening of plants with high quality attributes and improves crop
survival and growth capacity in a wide range of plant species after transplanting. This
bibliometric analysis has revealed that the agronomic characteristics of plants and the
quality indicators are positively correlated, indicating that they are robust, reliable tools,
capable of predicting plant productivity and quality. This review has gathered the refer-
ence values of the DQI for more than 200 species of agronomic interest. Calibration tests
should be conducted, because the relative age of the plant, the genotypic variation, and the
cultivation conditions affect plant agronomic traits and their biometric ratios.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agronomy11112305/s1, Table S1A–F. Dickson’s values (DQI) associated with the production of
hight quality plants related to the research topic and relative planta age in forest species. Table S1B.
Dickson’s values (DQI) associated with the production of hight quality plants related to the research
topic and relative planta age in fruit species. Table S1C. Dickson’s values (DQI) associated with the
production of hight quality plants related to the research topic and relative planta age in ornamental
species. Table S1D. Dickson’s values (DQI) associated with the production of hight quality plants
related to the research topic and relative planta age in aromatic species. Table S1E. Dickson’s values
(DQI) associated with the production of hight quality plants re-lated to the research topic and relative
planta age in medicinal species. Table S1F. Dickson’s values (DQI) associated with the production of
hight quality plants related to the research topic and relative planta age in horticultural species.
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