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Abstract 7 

Greenhouse microclimate modelling is a difficult task mainly due to the strong nonlinearity of the model and the 8 

uncertainty of some of its physical and non-physical parameters. The uncertainty stems from the fact that these 9 

parameters are unmeasurable or difficult to be measured and some of them are time-varying. All of this indicates the 10 

need for the online estimation of these parameters. In this paper, an online parameter estimator is developed based on 11 

an enhanced variant of the Bat Algorithm called the Random Scaling-based Bat Algorithm. This work concentrates 12 

on two important variables of a greenhouse climate model: the internal air temperature and the internal solar radiation. 13 

The developed algorithm estimates the parameters of the greenhouse microclimate model sample-by-sample by 14 

minimizing a cost function. Constraints on the search range for the parameters are imposed to respect their physical 15 

sense. The online estimator was tested in a real greenhouse, and the experimental results illustrate the successful model 16 

adaptation in different agri-seasons, presenting an average error of less than 0.28 °C for air temperature prediction and 17 

20 Wm−2 for solar radiation simulation. This proves the usefulness of the developed online parameter estimator as a 18 

suitable tool for this type of model adaptation problems. 19 

 20 
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1. Introduction 24 

The agricultural greenhouse is an enclosure generally based on a metal structure covered by a transparent 25 

plastic or glass cover that allows solar radiation to pass through. Inside the enclosed structure, an isolated environment 26 

is created, and it is commonly called the greenhouse microclimate. Nowadays, modern agriculture is outstandingly 27 

affected by the greenhouse production system, which plays a very important role in enhancing the management, 28 

qualities, and quantities of agricultural productions. The continuous optimisation of the greenhouse production system 29 

is required to suit the increasing strict standards of the local and international markets. The very essential optimisation 30 

level in the hierarchical structure of the greenhouse production system is the microclimate variables prediction and 31 

control tasks that affect directly the crop growth and yield (Van Straten et al., 2010; Rodríguez et al., 2015). 32 

The microclimate variables prediction inside a greenhouse has been studied in the literature using different 33 

grey-box and black-box models (Fourati., 2014; Rodríguez et al., 2015; Ali et al., 2018; Choabet al., 2019; Hoyo et 34 

al., 2019; Hasni et al., 2011; Yu et al., 2016; Li et al., 2020). To reach good prediction performance despite the high 35 

nonlinearity of the phenomena and their physical interconnection and the presence of uncertainties, these models were 36 

identified using various optimisation or estimation approaches based on either numerical or artificial intelligence 37 

algorithms. In all these works, the datasets of one or a few days have been used in the estimation phase and the 38 

validation has been carried out in a short period. Thus, they are suitable only for short-term usage.  In the long-term 39 

applications, they might be inappropriate because of the presence of the time-varying parameters which depend on 40 

the external weather conditions and the state of the crop (Vanthoor et al., 2011). Those time-varying parameters are 41 

usually unmeasurable, or their measuring instrumentation or procedures are unaffordable (Choabet al., 2019; 42 

Guesbaya et al., 2019; Ma et al., 2019), so their online estimation is a fundamental need.  43 

Online parameter estimation consists of estimating the values of the model parameters in parallel with the 44 

operation of the model, using the available data from the real system to achieve the model adaptivity. Very few 45 

proposals on online parameter estimation and adaptive modelling have been reported in the literature with the 46 

application to greenhouses. In (Pérez-González et al., 2018), the authors proposed a two-stage identification 47 

methodology consisting of an offline pre-estimation stage and online sample-to-sample estimation stage. It is applied 48 

for real-time estimation of the air temperature and relative humidity models. The prediction accuracy in the cited work 49 
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is satisfactory, showing a good fit between measured and predicted variables. However, only one sample of the 50 

measures data has been used for the model adaptation. Consequently, the required sampling time is one second which 51 

is very small and will probably increase the complexity and the computational cost. Moreover, the greenhouse used 52 

in the experimental study is an empty greenhouse prototype, so the effect of the presence and evolution of the crop 53 

state is not assessed. Another interesting study was reported in (Frausto et al., 2003), where the authors have 54 

investigated in a first step the modelling of the greenhouse temperature using the auto-regressive models with 55 

exogenous variables (ARX) and autoregressive–moving-average (ARMAX) models at the beginning and the middle 56 

of each season. In a second step, they have proposed to construct a general model for each type (ARX and ARMAX) 57 

from the corresponding seasonal models for the sake of having sufficient accuracy throughout the complete year. 58 

Then, they have investigated the retuning of the obtained general models at fixed time intervals (7 and 30 days) and 59 

when the accuracy falls below a predefined threshold value (70%). The results were obtained from a simulation study 60 

using simulated datasets obtained from Gembloux dynamic greenhouse climate model. They revealed the superiority 61 

of the ARX model over the ARMAX and the retuning when the performance falls below a predefined threshold value 62 

over fixed time interval retuning. They also revealed the inability of the developed model to maintain acceptable 63 

accuracy in the ventilation periods. In (Speetjens et al., 2009), the authors have proved the suitability of using the 64 

extended Kalman filter (EKF) for greenhouse climate model adaptation. However, they declared that the estimation 65 

only works well when the number of parameters to be estimated is not too large (four parameters). The work shows 66 

only the monthly quantitative performance of the model, but not the daily one which is highly important. In the current 67 

work, the number of the time-varying parameters to be estimated is ten, and the performance of the model is 68 

quantitatively shown in days with superior simulation accuracy in the case of air temperature prediction.  69 

In this paper, an online parameter estimator is developed for real-time adaptation of a greenhouse microclimate 70 

model aiming for a successful long term microclimate variables prediction. In recent years, the popularity of nature-71 

inspired optimisation algorithms is expanding, and these algorithms are being developed at an increasing rate (Yang., 72 

2014). One of these well-known algorithms is the bat algorithm (BA), which has been enhanced in different ways 73 

(Yang et al., 2013). In this paper, an enhanced variant of BA, proposed in previous work (Guesbaya et al., 2019), 74 

called the random scaling-based bat algorithm (RSBA) is used and it constitutes the core of the proposed online 75 
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parameter estimator. The RSBA algorithm is chosen to deal with parameters coupling of the greenhouse microclimate 76 

model by increasing the possibility of finding a global solution while avoiding local optima. The proposal of this work 77 

is summarized in Fig. 1. It aims to accurately predict the internal air temperature directly affecting the crop growth 78 

and to simulate the internal solar radiation reaching the crop which in turn affects the internal air temperature. The 79 

estimator adapts the nonlinear model by estimating some of the time-varying parameters of its differential equations 80 

in a sample-by-sample estimation frequency. The developed online parameter estimation method includes the 81 

following considerations: 82 

1. The RSBA-based online parameter estimation is done with a “virtual climate model” of the greenhouse, which 83 

is used to simulate the previous time instants (previous scenario) considering the real measured microclimate 84 

variables. With an iterative process, the “virtual model” is re-simulated until finding better values for its 85 

parameters by minimizing a cost function for the error between the real measurements and the model simulated 86 

variables. The new estimated values for the parameters are updated in the original microclimate model as a 87 

real-time adaptation. 88 

2. The selection of the number of the previous last time instants for measured inputs, disturbances and outputs to 89 

be evoked by the “virtual model” is controlled with a rule-based data selection method.  90 

3. The search ranges of the parameters are designed to be adaptive. They depend on the best corresponding 91 

parameters values and a predefined parameter variation ratio. 92 

4. The estimated parameters are constrained to respect their physical sense.  93 

5. Each parameter is estimated only when its corresponding physical phenomenon is active and affecting the 94 

 

Fig. 1. Principle of the greenhouse microclimate prediction based on real-time parameter estimation 
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microclimate model output. 95 

Consequently, the proposed set of estimation mechanisms and constraints has shown their efficiency by leading 96 

to significant advantages compared to the few proposed works in literature. The advantages and features of the 97 

proposed method are summarized as follows: 98 

• The chosen sampling time in this work is one minute which is very sufficient for the greenhouse climate 99 

prediction and also for additional control adaptation.  100 

• This work pays more attention to the physical aspects of the system nature and also to the computational and 101 

algorithmic aspects. The evolution of the estimated parameters is illustrated in all cases. It is an important 102 

dynamic to be analysed to understand the real effect of the proposed time-varying parameters on the behaviour 103 

of the model, and how to enhance the estimation mechanisms for the sake of optimality. Moreover, the search is 104 

restricted to fit the physical nature of each parameter, in turn, the calculated corresponding heat flux.  105 

• The real-time estimation of parameters was based on a “virtual climate model” by minimizing the error between 106 

the measured and predicted set of samples of an 𝑛 last time instants which led to a better adaptation, not only the 107 

last time instant. 108 

• The parameters are estimated every time step (sample-by-sample estimation) leading to a very quick and 109 

successful microclimate model adaptation even under active natural ventilation actuators and high wind 110 

velocities. 111 

• This work is assessed in a commercial-sized greenhouse (floor area of 877 m2) with a grown tomato crop (high 112 

LAI values). Moreover, it is successfully validated in real-time over 15 days in the winter season, under a harsh 113 

climate with some cloudy, rainy and windy days. 114 

This paper is organized as follows. In Section 2, the greenhouse facilities, the microclimate model, and the 115 

RSBA algorithm are presented. Section 3 describes the methodology of the developed RSBA-based online parameter 116 

estimator. In Section 4, the simulation and experimental results are presented and discussed. Finally, Section 5 contains 117 

the conclusions and future works.  118 
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2. Materials and methods 119 

2.1. Greenhouse facilities 120 

2.1.1. Structure and actuators 121 

The greenhouse utilised in this work is presented in Fig. 2. It is a traditional Mediterranean greenhouse, 122 

commonly named “Almería-type” greenhouse. It is located at “Las Palmerillas” Experimental Station which is a 123 

property of the Cajamar Foundation (36.79316 latitude, -2.72014 longitude), in Almería, Spain at an altitude of 151 124 

m. The total surface of the greenhouse is 877 m2 (37.80 m × 23.20 m) and it is protected by a polyethene cover. Under 125 

the cover, an approximate area of 600 m2 is reserved for the crop. The plants are cultivated in coconut coir bags 126 

aligned in rows orientated from north to south with a slope of 1%. 127 

The greenhouse is equipped with several actuators to control the microclimate under the cover, providing 128 

 

Fig. 2. Greenhouse facilities used for the experimental tests. (a) exterior view; (b) interior view without 2nd cover; (c) interior view with the 
second cover installed; (d) Example of a commercial data acquisition device, and the inside temperature and humidity sensors; (e) interior 

view of roof vent; (f) exterior view of roof vent; (g) exterior view of sidewall vent. 
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adequate conditions required by the plants for optimal crop growth. Thus, the greenhouse facilities are complemented 129 

with a humidification and dehumidification system, a carbon dioxide enrichment system, a pipe heating system based 130 

on a biomass boiler, and a natural ventilation system, among others. For the natural ventilation system, five zenithal 131 

windows (8.36 m × 0.73 m) are installed on the roof of the structure and two lateral windows (32.75 m × 1.90 m) are 132 

situated along the north and south sidewalls of the cover. 133 

2.1.2. Data acquisition system 134 

A wide set of sensors is deployed inside and outside the greenhouse to measure all the climatic variables 135 

affecting the crop. An external weather station measures air temperature and humidity, solar radiation, CO2 136 

concentration in the air, and wind velocity. Inside the greenhouse, a protected probe is employed to measure the inside 137 

air temperature and relative humidity (see Fig. 2d). Several sensors are installed in different rows of the crop to 138 

measure the CO2 concentration in the air, the solar radiation under the cover and the temperature of the soil surface. 139 

The distributed sensors are connected to a series of data acquisition devices (Compact FieldPoints, National 140 

Instruments, Austin, TX, USA), which transmit the measurements through an Industrial Ethernet network to a 141 

supervisory and control data acquisition (SCADA) system based on LabVIEW (National Instruments).  142 

The computational unit used for the real-time application is a computer located in the same experimental station 143 

near the greenhouse. The computer specifications are Intel Core i7-7700, quad-core and 8 threads with 3.60 GHz (up 144 

to 4.20 GHz), 16 GB RAM DDR4 2133 MHz, and equipped with WindowsTM 10 64-bit, MATLAB R2017b and 145 

LabVIEWTM 2015.  146 

2.1.3. Maintenance and cultural tasks 147 

During a crop season, different maintenance and cultural tasks are usually practised to the plants to ensure a 148 

healthy evolution toward the desired growth yield. For this work, two types of maintenance tasks were registered since 149 

they affect the state of the crop and/or they have an impact on the greenhouse microclimate. An example of the type 150 

of maintenance tasks is the periodical pruning of the plant's leaves to reduce the crop leaf area index (LAI). The type 151 

of cultural tasks is related for example to the whitening of the cover and the necessity of regulating the solar radiation 152 

transmission through the cover of the greenhouse. The whitening of the cover is usually performed in the months with 153 
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the highest values of solar radiation (spring and summer) to reduce the net radiation that reaches the crop. For the 154 

autumn and winter period, the whitening is removed. Also, during the coldest periods, a floating plastic cover can be 155 

installed inside close to the plants to increase the isolation of the crop from the outside weather. All these tasks are 156 

considered in the present work to explain the evolution of the microclimate recorded at the greenhouse, as described 157 

in Section 3. 158 

2.2. Greenhouse microclimate model 159 

The greenhouse physical interactions taken into consideration in the present work are described in Fig. 3. The 160 

greenhouse microclimate dynamics can be generally expressed with the following equation (Rodríguez et al., 2015): 161 

𝑑𝑋

𝑑𝑡
= 𝑓(𝑋, 𝑈, 𝐷, 𝐶, 𝑡) (1) 

where 𝑋(𝑡) is the vector of the state variables which represents the microclimate variables as air temperature, air 162 

humidity and air CO2 concentration among others (soil, cover and plant temperatures), 𝑈(𝑡) is the vector of input 163 

variables, 𝐷(𝑡) is the vector of the disturbances, 𝐶(𝑡) is the vector of the time-varying parameters that have to be 164 

estimated, and 𝑡 is the time. In the following subsections, the general equations of the model are briefly explained. In 165 

this work, only the inside air temperature and the inside solar radiation are considered, but the proposed methodology 166 

and the results can be applied to other state variables.  167 

 

Fig. 3. Greenhouse model components and heat transfer interactions. 
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2.2.1. Temperature model 168 

 The greenhouse air temperature model used in this work is considered a simplified nonlinear pseudo-physical 169 

model. It includes a series of terms representing energy balances inside the greenhouse. The model is described with 170 

the following differential equation (Rodríguez et al., 2015): 171 

 172 

 173 

 174 

where 𝑋𝑇𝑖𝑛 represents the inside air temperature of the greenhouse and 𝑄 refers to the heat fluxes occurring inside the 175 

greenhouse. 𝑄𝑠𝑜𝑙,𝑎 is the solar radiation flux absorbed by the air (although it is inert to radiation, most of the simplified 176 

models consider this assumption), 𝑄𝑐𝑛𝑣,𝑠𝑠−𝑎 is the convective flux between the soil surface and inside air, 𝑄𝑐𝑛𝑑−𝑐𝑛𝑣,𝑎−𝑒 177 

represents the convective and conduction fluxes between the inside and outside air (at the cover level), 𝑄𝑡𝑟𝑝,𝑐𝑟 178 

describes the latent heat effect of crop transpiration, and 𝑄𝑣𝑒𝑛𝑡,𝑎  is the heat lost by natural ventilation. 𝐶𝑣𝑜𝑙 is the 179 

greenhouse volume, 𝐶𝑎𝑟𝑒𝑎 is the greenhouse surface, 𝐶𝑠𝑝ℎ is the specific heat of the air, and 𝐶𝑑𝑒𝑛 is the air density. All 180 

the equations of the heat fluxes and the descriptions of their parameters that are not presented in this paper can be 181 

found in (Rodríguez et al., 2015). 182 

2.2.2. Solar radiation model 183 

This static model simulates the solar radiation passing through the cover and reaching the crop (Rodríguez et 184 

al., 2015). It is combined with the air temperature model as one of its sub-equations based on an empirical term 185 

described as follows: 186 

𝑉𝑠𝑟,𝑐𝑟 = 𝐶𝑡𝑠𝑤,𝑐𝑣 𝐷𝑠𝑟,𝑒 (4) 

where 𝐶𝑡𝑠𝑤,𝑐𝑣 is the cover solar transmission coefficient which is usually considered constant. In this work, it is 187 

considered as a time-varying parameter due to the changing properties of the plastic material with time and because 188 

of the external factors affecting the plastic features. Thus, this time-varying parameter has to be estimated in real-time 189 

for adaptation to any changes in the greenhouse materials (e.g., cover material, whitening, shading, dirt, etc.). The 190 

parameter estimation technique aims to minimize the error representing the difference between the measured and 191 

𝐶𝑡𝑒𝑟

𝑑𝑋𝑇𝑖𝑛

𝑑𝑡
= 𝑄𝑠𝑜𝑙,𝑎 + 𝑄𝑐𝑛𝑣,𝑠𝑠−𝑎 − 𝑄𝑐𝑛𝑑−𝑐𝑛𝑣,𝑎−𝑒 − 𝑄𝑡𝑟𝑝,𝑐𝑟 − 𝑄𝑣𝑒𝑛𝑡,𝑎  (2) 

𝐶𝑡𝑒𝑟 =  𝐶𝑠𝑝ℎ 𝐶𝑑𝑒𝑛 

𝐶𝑣𝑜𝑙

𝐶𝑎𝑟𝑒𝑎

 (3) 
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simulated internal solar radiation variables. The estimation of the solar transmission coefficient and the air temperature 192 

model parameters at the same time instant is considered as a challenge due to the connection between the models and 193 

the need of performing more than one estimation process every time instant. A brief description of the parameters in 194 

Eqs (2-4) can be found in the glossary at the end of this paper. 195 

2.3. Greenhouse experimental datasets 196 

 In this work, three datasets containing the greenhouse climate variables are used. Two datasets were already 197 

acquired in different periods of the year and one has been acquired during the real-time testing of the developed online 198 

estimator. The first dataset was acquired during the transitional period between the winter and spring seasons, starting 199 

from 27 March 2020 to 11 April 2020 (15 days, 21500 samples) as presented in Fig. 4. The second dataset was acquired 200 

during the transitional period between the summer and autumn seasons, starting from 01 September 2020 to 15 201 

September 2020 (15 days, 21500 samples) as presented in Fig. 5. The third dataset has been acquired during the winter 202 

season starting from 07 January 2021 to 22 January 2021 (15 days, 22000 samples) as presented in Fig. 6.   203 

 

Fig. 4. Dataset of the transitional period between winter and spring seasons starting from 27 March 2020 to 11 April 2020 
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  204 

 

Fig. 6. Dataset acquired during the real-time application of the online estimator in winter season starting from 07 January 2021 to 22 January 2021 

 

 

 

 

 

Fig. 5. Dataset of the transitional period between summer and autumn seasons starting from 01 September 2020 to 15 September 2020 
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2.4. Random scaling-based bat algorithm 205 

The RSBA used in this work is a variant of BA proposed in previous work (Guesbaya et al., 2019). It constitutes 206 

the optimisation tool in the proposed online estimator to adapt the values of the parameters of the greenhouse 207 

microclimate model. Similar to the BA, each ith virtual bat manipulated by the RSBA is characterized by the position 208 

representing the solution xi and the velocity vi, in addition to the frequency fi and the loudness Ai of the emitted pulse 209 

and the pulse emission rate ri. BA is a nature-inspired optimisation algorithm. It has been inspired and developed 210 

based on bats’ behaviour, imitating their searching on preys using echolocation competence (Yang, 2014). The set of 211 

n virtual bats (population) is simulated under a set of rules defined as follows:  212 

- All bats sense distance and differentiate between prey and objects based on echolocation capability. 213 

- Bats fly based on random walk technique with a velocity vi at position xi and transmit pulses with a 214 

frequency fi tuned automatically within a given interval [𝑓𝑚𝑖𝑛 ,  𝑓𝑚𝑎𝑥]. 215 

- The rate of pulse emission ri is also tuned automatically according to the closeness of the target. 216 

- The loudness Ai is considered variant, starting from a large positive value A0 to a minimum value Amin. 217 

The frequency, velocity and position are updated based on the following terms: 218 

𝑓𝑖
𝑡  =  𝑓𝑚𝑖𝑛 + ( 𝑓𝑚𝑎𝑥 −  𝑓𝑚𝑖𝑛)𝛽𝑡 (5) 

𝑣 𝑖
𝑡+1  =  𝑣𝑖

𝑡  +  (𝑥𝑖
𝑡 − x∗

𝑡)𝑓𝑖
𝑡 (6) 

𝑥𝑖
𝑡+1  =  𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 (7) 

 where 𝛽𝑡 ∈ [0, 1] is a random vector drawn from a uniform distribution, and x∗
𝑡 is the current global best solution. 219 

According to each bat’s pulse emission rate, another new solution is generated locally around x∗
𝑡 during the 220 

exploitation stage using random walk based on the following term: 221 

 222 

where 𝜎𝑡 is the scaling factor that controls the step size of the local random walk, ϵt ∈  [−1, 1] is a random number, 223 

and 𝐴𝑡̅̅ ̅ is the average of bats loudness at 𝑡. 224 

The enhanced feature included in RSBA is related to the scaling factor 𝜎𝑡 which is not considered constant as 225 

in the standard BA. In this sense, the scaling factor in RSBA is considered dynamical based on a random selection 226 

𝑥𝑖
𝑡+1 =  𝑥∗

𝑡 +  𝜎𝑡𝜖𝑡𝐴𝑡̅̅ ̅ (8) 
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mechanism as follows: 227 

 228 

where 𝜎𝑚𝑖𝑛 and 𝜎𝑚𝑎𝑥  are respectively the maximum and minimum values of the scaling factor 𝜎𝑡.  The essence of 229 

this enhancement is to give more flexibility to the exploitation search steps around the best global solution to increase 230 

the chance to reach the optimality. More details of the RSBA can be found in (Guesbaya et al., 2019). 231 

3. Methodology of developing the online parameter estimator 232 

This section presents the methodology to develop the proposed online parameter estimator based on RSBA for 233 

greenhouse microclimate adaptive modelling purposes. Implementation efforts have been aimed at demonstrating the 234 

potential of the developed estimator to achieve a real-time adaptation of the used microclimate model according to 235 

Fig. 1. The online model parameter estimation enhances the accuracy of the internal air temperature prediction and 236 

the internal solar radiation simulation at the same time step. The main stages of the methodology and their purposes 237 

are illustrated in Fig. 7. They are explained as follows: 238 

1. Offline model calibration: This stage consists of the application of the RSBA to calibrate the greenhouse 239 

microclimate model with an offline parameter identification process using real data from the greenhouse. For 240 

this offline calibration, all the parameters of the model are considered constant. The identified parameter values 241 

are calculated so that they can be used in the next stages for the model sensitivity analysis and as initial parameter 242 

values for the next online estimation processes using different datasets of different seasons. The cost function 243 

used in this stage to evaluate the calibration of the model is the Mean Square Error (MSE). 244 

2. Model sensitivity analysis: In this stage, the sensitivity of the model is studied to understand the influence of its 245 

parameters. Two different sensitivity analysis are performed to compare results when assuming constant versus 246 

𝜎𝑡 =  𝜎𝑚𝑖𝑛 + (𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛)𝛽𝑡 (9) 

 

Fig. 7. Proposed methodology to develop the online parameter estimator 
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time-varying parameters. On the one hand, it aims to investigate how much each parameter affects the model 247 

outputs. On the other hand, using different sets of parameter values with the same greenhouse climate dataset of 248 

one day helps to examine the change in the model sensitivity affected by the time-varying parameter values. 249 

These tests are also performed to facilitate the selection of the variation ratios for the parameters, depending on 250 

how sensitive the model is toward each parameter. 251 

3. Online parameter estimation: In this stage, the final structure of the developed online parameter estimator is 252 

accomplished as illustrated in Fig. 8. It involves a combination of mechanisms that are designed based on the 253 

results of the previous stages and some trial-and-error procedures. For the estimation process, ten parameters of 254 

the greenhouse microclimate model are considered time-variant. The microclimate model is effectively adapted 255 

by online estimating the values of the time-varying parameters to minimize the cost function for this stage which 256 

is the Root Mean Square Error (RMSE) representing the error between the real measured data and the model 257 

simulated variables. The RMSE penalizes errors greater than 1, which helps in avoiding undesirable large error 258 

 

Fig. 8. Online estimator mechanism and its real-time application scheme  
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oscillations. The online estimation is performed with real datasets of different seasons to assess the adaptation 259 

capability of the estimator against different climate conditions. The proposed estimation mechanisms, settings 260 

and constraints are described as follows:  261 

a. Air temperature and solar radiation models are adapted together as two targets but with different execution 262 

times for their respective online parameter estimation processes. 263 

b. The online estimation processes for both models are performed based on two other “virtual models” 264 

identical to the original ones. The “virtual models” are used to simulate the previous scenario consisting of 265 

the 𝑛 last time instants at [𝑡 − 𝑛, 𝑡] based on the last previous inputs, outputs and disturbances at [𝑡 − 𝑛,266 

𝑡]. This means that the selected 𝑛 data samples are used for the estimation process in a sub-algorithm with 267 

an identical greenhouse microclimate model. This sub-algorithm is used as a testbed where all the potential 268 

solutions (sets of parameter values) generated by the RSBA are evaluated to find optimal values for the 269 

model parameters by minimizing a cost function for the error between the real n data samples and the model 270 

simulated variables. This aims to optimise the performance of the “virtual models” in simulating the 271 

previous scenarios at [𝑡 − 𝑛, 𝑡] according to a specific number of iterations; then adapting the original 272 

models by applying the best-estimated parameters in real-time at 𝑡 before predicting the next predicted 273 

sample at (𝑡 + 1).  274 

c. The number 𝑛 of previous time instants representing the last scenario at [𝑡 − 𝑛, 𝑡] can be adjusted to suit 275 

the characteristics of each phenomenon to be simulated thanks to a rule-based data selection algorithm. The 276 

rule-based data selection algorithm is programmed in a nested way with the “virtual model” sub-algorithm 277 

to provide it with the needed previously measured data (inputs and disturbances) that represents the selected 278 

past time instants. 279 

d. The RSBA is used as it is described in Section 2.3 except for the search ranges which are originally constant 280 

but, in this work, most of them are programmed to be dynamic and adaptive based on the physical nature 281 

of each parameter which determines how it varies in time. As described in Fig. 9, the adaptive search range 282 

of each parameter j varies between the boundaries of a larger range that represents the constraints for the 283 

adaptive range. The variation of each adaptive range is determined based on the current best parameter 284 
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value at 𝑡 according to a specific variation ratio ±𝑅𝑗% of the best parameter value itself (neighbourhood of 285 

variation) as presented in the following terms:  286 

where 𝐿𝐵 𝑗
𝑡 and 𝑈𝐵 𝑗

𝑡 are respectively the lower and upper boundaries of the search range of the parameter 287 

to be estimated and 𝐶𝑗
𝑡 is the current value of the specific parameter 𝑗 at 𝑡. 288 

e. A set of constraints are defined to restrict each adaptive search range (see Fig. 9). They are defined based 289 

on the common ranges mentioned in the literature for greenhouse microclimate modelling (Rodríguez et 290 

al., 2015; Choab et al., 2019), the physical nature of each parameter and some trial-and-error procedures 291 

performed with the microclimate model during the development of this work. It is important to highlight 292 

that, at each time instant, the parameters being estimated are only the ones related to an active physical 293 

process of the greenhouse microclimate at that moment t. For instance, the parameters related to radiation 294 

are online estimated only when radiation is greater than 5 Wm−2, the parameters related to ventilation are 295 

online estimated only when the vents of the greenhouse are open according to a control signal greater than 296 

0%, and the parameters related to transpiration are online estimated only when the crop exists in the 297 

greenhouse with a LAI greater than 0.1 mleaf
2 mground

−2 . Otherwise, the values of those parameters are 298 

constant, equal to the last estimated value when the corresponding physical process was active.  299 

𝐿𝐵 𝑗
𝑡 = 𝐶𝑗

𝑡 − 𝑅𝑗% (10) 

𝑈𝐵 𝑗
𝑡 = 𝐶𝑗

𝑡 + 𝑅𝑗% (11) 

 

 
Fig. 9. The adaptive reduced search ranges and their restriction 
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4. Real-time application of the proposed online parameter estimator: The last stage is dedicated to the application 300 

of the developed parameter estimator at the real greenhouse. It is considered a crucial stage to validate the real-301 

time adaptation of the greenhouse microclimate model under a real crop growth situation. 302 

4. Results and discussion 303 

This section presents the quantitative and qualitative results obtained for each development stage of the 304 

explained online parameter estimator. The statistical criteria used to evaluate all the results in the following sub-305 

sections are: Mean Absolute Error (MAE), Max Absolute Error (MaxAE), Coefficient of Determination (R2), Residual 306 

Error (RE), MSE and RMSE. For the simulation processes (except the real-time implementation), the used 307 

computational unit is a computer consisting of an Intel Core i7-4810MQ with an octa-core processor, 2.8 GHz, 16 GB 308 

RAM DDR3 1600 MHz, running a WindowsTM
 10 64-bit with MATLAB R2017b. The online parameter estimator 309 

has been coded in MATLAB and the following estimator developing processes were also carried out in MATLAB.  310 

4.1. Offline model calibration 311 

The offline model calibration procedure to identify the values of all the parameters of the greenhouse 312 

microclimate model can be found in (Rodríguez et al., 2015). An offline model calibration process intends to obtain 313 

the best possible simulation results of the internal air temperature and solar radiation, assuming constant parameter 314 

values. Additionally, the analyses performed in this stage can help in determining adequate search ranges for the 315 

parameters. The results of the simulation with offline calibrated parameters will be compared to the simulation results 316 

using the online estimated parameters to demonstrate the superiority of the developed online estimator.  317 

To offline calibrate the greenhouse model, two different datasets were used in this stage, one from the winter-318 

spring period (see Fig. 4) and another one from the summer-autumn period (see Fig. 5). Three days of the winter-319 

spring dataset (3rd, 4th and 5th days) were selected for the calibration process as a climate-diversified target (calm and 320 

turbulent days) and both full datasets were used for validation. The simulation step time was fixed as 1 minute, which 321 

is suitable to investigate the greenhouse microclimate dynamics. The settings of the RSBA were chosen based on the 322 

personal experience with the algorithm and some trial-and-error processes, resulting as follows: the number of bats is 323 

20, the maximum number of iterations is 500, the minimum and maximum frequency respectively are 𝑓𝑚𝑖𝑛 = 0 and 324 
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𝑓𝑚𝑎𝑥 = 2, the loudness of the initial bats is 𝐴i
0= 1, the rate of pulse emission of the initial bats is 𝑟𝑖 =  0 and 𝑟𝑖

0 = 0.2 325 

and the constants α and γ are equal to 0.8. The scaling parameter randomly variates in a range of 𝜎 ∈ [1, 10−3].  326 

  The search ranges and the calibrated parameter values after the offline calibration are presented in Table 1. 327 

Fig. 10 and 11 present the air temperature and the solar radiation simulation results, respectively. It can be observed 328 

that the model calibration process was successful according to the acceptable fit between the measured and the 329 

simulated variables. Table 2 contains the statistical results based on the evaluation criteria, with a 𝑀𝐴𝐸 = 0.75 °C, 330 

𝑀𝑆𝐸 = 1.12 °C2 and 𝑅2 = 0.96 showing a good error value.  331 

Fig. 12 presents the graphical results of validating the offline calibrated air temperature model with the 332 

 

Fig. 10. Inside air temperature prediction after the offline calibration  

Table 1. Search ranges and calibrated parameter values in the offline calibration procedure 

Parameters Casw Ccnv,ss−a Ccnd−cnv,a−e CA CBd
 CBn

 Cven,d Cven,w Closs Ctsw,cv 

Range  [ 0.1, 0.9] [ 1, 35]  [ 1, 30] [ 0.2, 0.7] [ 4, 26] [ 4, 26] [ 15, 35].10-3 [ 0.1, 1] [ 0.1, 1] [ 0.1, 1] 

Calibrated 

value 
0.42 13.43 10.32 0.26 8.27 10.28 0.0016 0.11 0.2 0.56 

 

 

Fig. 11. Inside solar radiation simulation after the offline calibration 

 

 

Fig. 12. Internal air temperature simulation: validation of the calibrated model with a large dataset in winter-spring period 
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complete winter-spring dataset. According to the graphical results, it can be noticed that the simulation accuracy for 333 

the air temperature model in other days of the same dataset has decreased, showing larger errors between the model 334 

outputs and real measured variables. As shown in Tables 2 and 3, the accuracy decreases even more in the validation 335 

process against the summer-autumn dataset (the graphical results are not presented), evidencing an unsuccessful long-336 

term prediction performance for the offline calibrated model. Similar conclusions can be obtained for the radiation 337 

model, according to Fig. 13 and Table 3. The mispredicted radiation values in most of the days can negatively affect 338 

the prediction of air temperature in turn. Therefore, the long-term simulation results should be improved, which 339 

highlights the necessity of applying an online estimator for model adaptation purpose.  340 

4.2.  Sensitivity Analysis  341 

In this section, a sensitivity analysis is performed for the air temperature model. Firstly, the sensitivity of the 342 

model using constant parameters is investigated during the diurnal and nocturnal periods as shown in Fig. 14. It can 343 

Table 2. Statistical evaluation of internal air temperature simulation: calibration and validation results in short-term and long-term periods 

 MAE (°C) MSE (°C2) RMSE (°C) MaxAE (°C) Interval (°C) 

Calibration in winter-spring  0.75 1.12 1.06 3.88 [10.9, 29.5] 

Validation in winter-spring 0.98 1.78 1.33 6.39 [10.8, 30] 

Validation in summer-autumn  1.65 6.22 2.49 8.05 [19.7, 39.3] 
 

 

 
 Table 3. Statistical evaluation of internal radiation simulation: calibration and validation results in short-term and long-term periods 

 MAE (W m−2) MSE (W2 m−4) RMSE (W m−2) MaxAE (W m−2) Interval (W m−2) 

Calibration in winter-spring 19.72 1736.24 41.6 271.56 [0, 890] 

Validation in winter-spring 29.37 3592.86 59.94 496.81 [0, 910] 

Validation in summer-autumn 54.68 7826.46 88.4 299.73 [0, 530] 
 

 

 

Fig. 13. Internal solar radiation simulation: validation of the identified model against a large database in winter-spring period 
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be noticed in the diurnal period analysis that Casw is the most influential parameter on the system, which is logical 344 

since it is related to solar radiation. The transpiration parameters CA and CBd
 have also noticeable relevance, which is 345 

also logical according to the fundamental effect of the crop transpiration process. Apart from the parameter Ccnv,ss−a 346 

related to the important effect of the soil surface temperature, and the rest of the parameters mostly have a non-relevant 347 

influence. In the nocturnal period, it can be observed that only two parameters mainly affect the system: Ccnv,ss−a, 348 

which explains the role played by the soil, as a heat accumulator during the day and as a heat releaser during the night, 349 

and CBn
, which represents the effect of crop transpiration at night.    350 

Furthermore, the sensitivity of the model using time-varying parameters has been investigated. This has been 351 

achieved by performing three sensitivity analysis processes with a real dataset of 1440 samples (1 day). The results 352 

are shown in Fig. 15 for three different sets of the main parameters presented in Table 4. It can be concluded that 353 

different sensitivity responses can be obtained when using time-varying parameters. Besides, it is noticed that 354 

increasing the parameters Ccnv,ss−a and Ccnd−cnv,a−e radically affects the model sensitivity, and they also alter the 355 

order of the most influential parameters. This also can be seen as a logical influence since the convection and 356 

 

Fig. 14. Sensitivity analysis of the inside air temperature model. (a) the diurnal period; (b) the nocturnal period 

 

Table 4. Different sets of parameters used for the sensitivity analysis for time-varying parameters. 

Parameters Casw Ccnv,ss−a Ccnd−cnv,a−e CA CBd
 Cven,d Cven,w 

Set 1 0.59 3.88 1 0.42 14 0.0021 0.23 

Set 2 0.2 20 17 0.65 9 0.0024 0.6 

Set 3 0.35 35 22 0.35 11 0.0027 0.4 
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conduction processes depend on temperature differences which are indirectly affected by all of the climate variables. 357 

In contrast, increasing or decreasing the rest of the parameters affects the model sensitivity but not as much as Ccnv,ss−a 358 

and Ccnd−cnv,a−e which are considered as the most influencing time-varying parameters according to this test.  359 

4.3. Online parameter estimation 360 

 In this sub-section, the problem of model adaptation is solved in simulation by using the developed online 361 

parameter estimator described in the methodology section. The settings for the estimator are chosen in this section as 362 

follows. The execution time of the parameter estimation process for each model is chosen to be:  363 

- 1 minute for the estimation of the parameters affecting the air temperature model. This time is equal to the 364 

simulation step time of the model (sample-by-sample estimation). 365 

- 20 minutes for the estimation of the parameter affecting the radiation model (requiring 20 past samples). 366 

The number 𝑛 of the previous time instants representing the last scenario at [𝑡 − 𝑛, 𝑡] for each model is selected as: 367 

- 𝑛 = 3 for the air temperature model adaptation. If it is greater than 3, it could generate undesirable fluctuations 368 

in the predicted variable. If it is less than 3, the information would not be sufficient for an efficient model 369 

adaptation process, leading to an inaccurate prediction. 370 

- 𝑛 = 60 for the solar radiation model adaptation because the radiation parameter varies very slow in time. 371 

Changing it at a faster rate could generate an undesirable divergence in the radiation simulation, in turn, 372 

negatively affecting the air temperature prediction. 373 

 

Fig. 15. Sensitivity analysis of the inside air temperature model according to different sets of parameters. (a) set 1; (b) set 2; (c) set 3 
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The dynamic search ranges [𝐿𝐵𝑗, 𝑈𝐵𝑗] used in the RSBA are adaptively updated based on the defined variation ratio 374 

for each parameter as presented in Table 5. The search range of the time-varying parameter Ctsw,cv in the solar 375 

radiation model is considered constant [0, 1] but not adaptive. This allows the estimator to directly reach the lowest 376 

or the greatest values in the search range in case the shade screen or the cover whitening process are applied to or 377 

removed from the greenhouse. Moreover, when the greenhouse cover is deteriorated or becomes stained, the radiation 378 

inside the greenhouse can be correctly simulated thanks to the online estimation of Ctsw,cv in real-time. The defined 379 

constraints to restrict each adaptive search range are presented in Table 6.  380 

Fig. 16 and 17 present the graphical results after simulating the online parameter estimator with the internal air 381 

temperature and internal solar radiation models using the dataset of winter-spring period. The corresponding heat 382 

fluxes evolution and the variation of the estimated parameters are presented in Fig. 18 and 19, respectively. The same 383 

test was performed with the dataset of summer-autumn and its results are presented only numerically in Table 7. In 384 

general, the graphical simulation results show a very promising performance based on the remarkable accurate fit 385 

between the measured and the simulated variables in comparison to the results of the offline calibrated model.   386 

Table 5. Variation ratios for each parameter representing the adaptivity rates of the search ranges 

Time-varying parameters Variation ratios  Physical characteristics and effect on the air temperature model 

Casw ±2% 

- Medium variation ratio affected by external climate and covering material. 

- Model sensitivity is high due to the direct effect of solar radiation on the inside air, 

soil surface and crop.  

Ccnv,ss−a and Ccnd−cnv,a−e ±10% 

- Very fast variation ratio affected directly by soil surface, inside and outside air 

temperature differences and indirectly by radiation, ventilation and transpiration. 

- Model sensitivity is very high because they are the most influential parameters.  

CA and CBd/n
 ±0.2% 

- Very slow variation ratio affected by crop transpiration process which follows the 

very slow crop growth evolution (LAI). 

- Model sensitivity is medium, essentially affecting the inside air but with less 

influence than solar radiation. 

Cven,d, Cven,w and  Closs ±7% 
- Fast variation ratio affected by the opening of vents and wind velocity which varies 

quickly.    

- Model sensitivity is low but it has a fast effect, highly dependent on wind velocity.  

 

Table 6. Restrictions of the adaptive search ranges of each parameter 

Parameters Casw Ccnv,ss−a 𝐶𝑐𝑛𝑑−𝑐𝑛𝑣,𝑎−𝑒 CA CBd
 CBn

 Cven,d Cven,w Closs Ctsw,cv 

Range 

restriction 
[0.1, 0.9] [1, 100]  [1, 300] [0.2, 0.7] [4, 26] [4, 26] [15, 35].10-3 [0.1, 1] [0.1, 1] [0.1, 1] 
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Statistical indices to evaluate the performance of both estimations are presented in Table 7 and 8, and the 387 

evolution of the residual error with both datasets is shown in Fig. 20. Regarding the comparison of these results with 388 

the ones obtained with the offline calibrated model, it can be observed that the performance with the adaptive model 389 

has highly improved thanks to the online estimation of the parameters. For the air temperature model, the prediction 390 

using the online estimated parameters with the winter-spring dataset presents a MAE = 0.22 °C, meaning that the 391 

average error is decreased by 77.5%, which proves the high efficiency of the estimator, an MSE = 0.21 °C2,  and a 392 

 

Fig. 17. Internal radiation simulation using the online parameter estimator in winter-spring period 

 

 

 

 

 

 

 
Fig. 16. Internal air temperature prediction using the online parameter estimator in winter-spring period 

 

 

 

 

 

 

 
Fig. 18. Heat flux evolution for the online parameter estimator with the dataset of winter-spring period 
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MaxAE = 4.68 °C as a sporadic value, since it surpassed 4 °C only once in 15 days. In the second online parameter 393 

estimation simulation with the summer-autumn dataset, the online estimator succeeded very quickly in adapting the 394 

model to suit the different climate conditions in less than 40 prediction steps (40 minutes) at the nocturnal period (see 395 

Fig. 16).  The corresponding statistical evaluation presents a MAE = 0.27 °C, meaning that the average error is 396 

 

Fig. 19. Variation of the online estimated parameters with the dataset of winter-spring period 

 

 

 

 

 

 

Fig. 20. Evolution of the residual error of the air temperature prediction using the online parameter estimator. (a) with winter-spring dataset; (b) 

with summer-autumn dataset.  

 

 

 

 

 

Table 7. Statistical evaluation of internal air temperature simulation using online parameter estimation  

 MAE (°C) MSE (°C2) RMSE (°C) MaxAE (°C) Interval (°C) 

Winter-spring 0.22 0.21 0.46 4.68 [10.8, 30] 

Summer-autumn 0.27 0.23 0.48 5.57 [19.7, 39.3] 
 

 

 
Table 8. Statistical evaluation of internal solar radiation simulation using online parameter estimation  

 MAE (W m−2) MSE (W2 m−4) RMSE (W m−2) MaxAE (W m−2) Interval (W m−2) 

Winter-spring 19.81 2065.70 45.45 467.02 [0, 910] 

Summer-autumn 8.15 318.7 17.85 201.05 [0, 530] 
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decreased by 83.6%, a 𝑀𝑆𝐸 = 0.23 °C2  and a MaxAE = 5.57 °C as an acceptable sporadic value that does not surpass 397 

3 °C in most of the 15 days. The residual error evolution for the summer-autumn dataset (see Fig. 20b) shows in some 398 

days a decrease in prediction accuracy compared to the residual error obtained with the winter-spring dataset. 399 

Nonetheless, it is still considered much better than the result obtained with the offline calibrated model. In this sense, 400 

this is a very promising response of the estimator, highlighting a powerful capability which  is that the user might be 401 

able to avoid the offline model calibration process by directly applying the online estimator for such similar 402 

greenhouse facilities under similar climate conditions. A resembling results enhancement is observed for the 403 

simulation of the internal radiation with the online parameter estimator. The statistical results present a decrease in 404 

the average error by 32.56% with the winter-spring dataset which is considered as the harshest one (especially in terms 405 

of solar radiation) and by 85.1% with the summer-autumn dataset.  406 

Concerning the evolution of the heat fluxes with the online estimated parameters, Fig. 18 shows logical 407 

amplitudes and variations according to the modelled physical behaviour and the physical nature of each heat flux. 408 

Regarding the variation of the estimated parameters, it shows a good tendency in terms of respecting the pre-defined 409 

search range constraints (search limits) and search range adaptations (Table 6). It is highly interesting and very 410 

important to investigate the dynamic of the online estimated parameters to understand the model responses. Analysing 411 

the graphs of the evolution of the estimated parameters helps to enhance the proposed model, the developed online 412 

estimator, the selected settings, and the applied constraints. Furthermore, it helped in determining the best settings 413 

based on the continuous observation of parameters variation through trial-and-error processes. 414 

Regarding the computational burden of the developed online estimator, it was found that the average time 415 

consumed by one step of the online parameter estimation process with the air temperature model is 2.0396 seconds, 416 

and the average time consumed by one step of the online parameter estimation process with the radiation model is 417 

0.0038 seconds. Thus, both estimation processes are performed at the same time instant, in which the average total 418 

time consumption is 2.0434 seconds, which only represents 3.4% of the total time step (60 seconds). The time 419 

consumption of the developed parameter estimator scheme is suitable for real-time application. Moreover, it leaves a 420 

sufficient time gap for the online parameter estimation of more microclimate models and the online optimisation of 421 

controllers for greenhouse control applications. 422 
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4.4.  Real-time implementation of the online parameter estimator 423 

The real-time validation of the developed online estimator at the commercial-sized greenhouse is performed in 424 

the winter season, in a period starting from 07 January 2021 to 22 January 2021 (15 days, 22000 samples). The real 425 

evolution of the climate variables registered in this period is shown in Fig. 6. The application period presented some 426 

cloudy, rainy and windy days, which are different from the usual weather in the region, and thus, they are considered 427 

as a challenging microclimate scenario to be predicted due to the strong variation of the external weather variables. 428 

Another detail to be considered as a challenge for the developed estimator is that a second polyethene cover was 429 

installed inside the greenhouse on top of the tomato crop (see Fig. 2c) to offer the plants more favourable climate 430 

conditions. The impact of the installation of this second cover was not highly relevant since it did not cover all the 431 

greenhouse surface, only the crop area but not the corridor, so, it did not create a second isolated environment inside 432 

the greenhouse. Thus, its effect from a physical point of view was assumed to cause an additional attenuation in the 433 

solar radiation reaching the crop and a slight reduction in the internal ventilation flux. 434 

The estimator was executed in real-time to online estimate the model time-varying parameters sample-by-435 

sample to adapt it to the real changing conditions. The aim of the test performed at the real greenhouse is to investigate 436 

if the estimator is sufficiently capable to adapt the model in real-time, moreover, considering the effect of the second 437 

cover on the internal air temperature and solar radiation. 438 

Fig. 21 presents the graphical result of the inside air temperature prediction using the online parameter 439 

estimator in real-time. It can be observed that the fit between the predicted and measured variables is impressive. The 440 

results are very satisfactory for all days, calm ones and even for the rainy, cloudy and windy days as highlighted in 441 

Fig. 22 and 23. Table 9 presents the statistical evaluation results of the inside air temperature prediction using the 442 

online parameter estimator in real-time. It presents a MAE = 0.22 °C , a MSE = 0.18 °C2, and a MaxAE = 3.49 °C, 443 

which does not surpass 3 °C in most of the days. The residual error evolution for the real-time estimation in Fig. 27a 444 

shows a better evolution than the evolution obtained with the simulation using the online parameter estimation in the 445 

winter season, as presented in Section 4.3. It can be noticed that there are some peaks in the residual error during the 446 

transition from night to day (or vice versa). It happens when the inside air temperature starts to increase (or decrease) 447 

rapidly due to the solar radiation effect. It is also related to the change in Ccnd−cnv,a−e, and Casw,a values as a response 448 
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of the parameter estimator while adapting the model. 449 

 Fig. 24 shows the graphical result of the adaptation, in this case, of the inside solar radiation model thanks to 450 

the real-time parameter estimation. The fit between the measured and predicted variables is good and all the radiation 451 

variations are well fitted. It also proves the efficiency of the real-time estimator in adapting more than one model as a 452 

multi-objective task. The corresponding statistical results are presented in Table 10, showing very good values for 453 

 

Fig. 21. Internal air temperature prediction using the online parameter estimator in real-time from 07 January 2021 to 22 January 2021 

 

 

 

 

 

Fig. 22. Air temperature prediction using the online parameter 

estimator in real-time in two days with rainy climate conditions 

 

 

 

 

 

Fig. 23. Air temperature prediction using the online parameter 

estimator in real-time in two days with calm climate conditions 

(sunny) 

 

 

 

 

Table 10. Statistical evaluation of internal solar radiation simulation using the online parameter estimator in real-time 

 MAE (W m−2) MSE (W2 m−4) RMSE (W m−2) MaxAE (W m−2) Interval (W m−2) 

Winter season 

(real-time validation) 
4.62 89.56 9.46 62.47 [0, 309] 

 

Table 9. Statistical evaluation of internal air temperature simulation using the online parameter estimator in real-time 

 MAE (°C) MSE (°C2) RMSE (°C) MaxAE (°C) Interval (°C) 

Winter season 

(real-time validation) 
0.22 0.18 0.43 3.49 [6.4, 24.5] 

 

 

 



  28 

 

radiation simulation in real-time. The evolution of the residual error using the online parameter estimator in real-time 454 

is presented in Fig. 27b showing a very promising result.  455 

The real-time evolution of the heat fluxes is shown in Fig. 25. The first important aspect to be mentioned is 456 

that it was assumed previously that the physical effect of the second cover could mean more attenuation mainly on 457 

the radiation reaching the crop, and partly on the heat loss due to natural ventilation. Thus, as a confirmation of the 458 

assumption, in comparison to the evolution of the heat fluxes corresponding to the online estimation tests in Section 459 

4.3, it can be noticed that: (i) The amplitude of the solar radiation heat flux Qsol,a  is decreased averagely by 39.3% as 460 

a main effect of the second cover. (ii) It can be graphically noticed that the amplitude of the heat loss flux due to 461 

natural ventilation Qvent,a   is also decreased, however, this is also dependent on wind velocity. 462 

The evolution of the parameters estimated in real-time is presented in Fig. 26, where, it can be observed that: 463 

(i) The parameters vary while respecting the restrictions defined for each parameter range. (ii) The values of the 464 

parameters respect the defined variation neighbourhood ±𝑅𝑗% according to their physical nature. (iii) The values of 465 

the parameters change only when the corresponding physical process is active, as explained in Section 3.    466 

 
Fig. 24. Internal solar radiation adaptation using the online parameter estimator in real-time from 07 January 2021 to 22 January 2021 

 

 

 

 

 

Fig. 25. Heat flux evolution for the real-time parameter estimation from 07 January 2021 to 22 January 2021 
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In this last stage, the real-time model adaptation was successfully achieved without changing any settings of 467 

the online estimator, neither re-programming its algorithm nor applying new mechanisms or restrictions. This proves 468 

the efficiency and robustness of the implemented online estimator against the uncertainties and its efficiency for long-469 

term applications.  470 

5. Conclusions  471 

In this work, an online parameter estimator applied to a greenhouse microclimate model has been developed 472 

based on the RSBA as an enhanced variant of the nature-inspired bat algorithm. The online estimator development 473 

was accomplished in four phases. Firstly, an offline model calibration using real experimental data was achieved. 474 

Secondly, a sensitivity analysis to investigate the influence of each parameter on the model outputs is performed. 475 

Thirdly, an online estimation using real datasets of different seasons was simulated. The performance of the developed 476 

 

Fig. 26. Variation of the estimated parameters in real-time from 07 January 2021 to 22 January 2021 

 

 

 

 

 

Fig. 27.  Evolution of the residual error based on the real-time estimation. (a) air temperature prediction; (b) solar radiation simulation  
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online parameter estimator and the greenhouse microclimate model have been evaluated from both physical sense and 477 

statistical points of view. Graphical results and evaluation indices results show the very satisfactory performance of 478 

the online estimator in terms of: 479 

- The accuracy in predicting and simulating the internal air temperature and solar radiation due to the successful 480 

microclimate model adaptation. 481 

- The efficiency of the online parameter estimation mechanism respecting the defined constraints, thus, respecting 482 

the physical sense of the time-varying parameters. 483 

- The robustness of the online estimator against the challenging weather conditions (clouds, rain and wind) and 484 

the uncertainty after installing the second plastic cover. 485 

- The limited total time consumption of every parameter estimation processes, allowing for a future adaptation of 486 

more microclimate models and controllers in real-time.  487 

Finally, the real-time implementation of the proposed online estimator was tested in an experimental greenhouse under 488 

Mediterranean climate conditions. The results exhibited an outstanding performance of the estimator in adapting the 489 

models to accurately predict and simulate the internal air temperature and solar radiation. This proves that the 490 

developed estimator is an efficient tool for greenhouse microclimate model adaptation.  491 

As a future perspective, the developed online estimator can be applied to predict other climate variables 492 

considering the greenhouse as a multiple-input multiple-output system (MIMO). It could also be applied to different 493 

greenhouse facilities thanks to its adaptation capability. To improve the estimation mechanism, some of the mentioned 494 

trial-and-error procedures will be substituted, if possible, by relating the estimator settings to the corresponding 495 

modelled dynamics to facilitate the automatic selection of those settings or even their adjustment in real-time. 496 

Furthermore, the developed online estimator could be applied and evaluated with different control methods for 497 

greenhouse microclimate control purpose. 498 
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Glossary  562 

𝑄 Heat flux (W m−2) 

𝐶𝑣𝑜𝑙 Greenhouse volume (m3) 

𝐶𝑎𝑟𝑒𝑎 Greenhouse surface (m2) 

𝐶𝑠𝑝ℎ Specific heat of the air (J kg−1 K−1) 

𝐶𝑑𝑒𝑛  Air density (kg m−3) 

𝐷𝑠𝑟,𝑒 External solar radiation (W m−2) 

𝐶𝑎𝑠𝑤,𝑎  Greenhouse air absorption coefficient of the short-wave radiation (Unitless) 

𝐶𝑐𝑛𝑣,𝑠𝑠−𝑎  Coefficient of convection between the soil surface and internal air (W m−2 K−1) 

𝐶𝑐𝑛𝑑−𝑐𝑛𝑣,𝑎−𝑒 Coefficient of convection and conduction between internal and external air (W m−2 K−1) 

𝐶𝐴 Transpiration coefficient dependent on the crop state and internal radiation (Unitless) 

𝐶𝐵𝑑/𝑛
 Transpiration coefficient dependent on the crop state and vapour pressure deficit for diurnal and 

nocturnal periods (kg m−2 h−1 kPa−1) 

𝐶𝑣𝑒𝑛,𝑑 Discharge coefficient (Unitless) 

𝐶𝑣𝑒𝑛,𝑤 Wind effect coefficient (Unitless) 

𝐶𝑙𝑜𝑠𝑠  Ventilation loss through greenhouse air leakage (m3 s−1) 

𝐶𝑡𝑠𝑤,𝑐𝑣 Cover solar transmission coefficient (Unitless) 
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