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Abstract. This paper presents a black-box dynamic model for microal-
gae production in raceway reactors. The black-box model, developed
using Deep Learning techniques, allows the estimation of the pH in a
100 m? raceway reactor. The model has been created using only and ex-
clusively data, what gives a high ease of use. The results obtained verify
the effectiveness of this type of techniques for the modelling of complex
dynamic processes. The model was validated for different weather con-
ditions obtaining satisfactory results. Thus, the obtained model is fairly
useful for simulation purposes or for the implementation of model-based
control techniques.

Keywords: deep learning, neural network, microalgae production, race-
way reactor

1 Introduction

Microalgae production is a process with an increasing interest due to the high
variety of its applications. Examples can be found in derived products for cos-
metics, animal food or human nutrition. Moreover, the production process is
useful for wastewater treatment, eliminating pollutants such as phosphorus or
nitrogen, or to mitigate CO4 emissions from other industrial facilities. Typically,
microalgae cultivation can be accomplished in two different ways: in tubular
photobioreactors and in open reactors or “raceways”. The first ones take place
in an environment where microalgae conditions are strongly controlled [4], while
the second ones are carried out in large open ponds. This last type of photo-
bioreactor, despite being susceptible to external contaminants and incapable of
controlling their temperature, has the advantage of being less expensive and more
easily scalable, making them the most commonly used at commercial scale. How-
ever, conventional raceway reactors are unable to maximize biomass production
capacity mainly because of inadequate fluid-dynamic and mass transfer capac-
ity. Thus, an optimization of the process is required to reduce costs as much as
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possible and to increase the production, what is closely related to reach optimal
values for pH, dissolved oxygen, temperature, light integration, and CO; injec-
tions [3]. For this purpose, the development of models and the implementation
of advanced control strategies is essential.

In literature, a lot of effort has been made to develop nonlinear models to
describe the dynamics of the microalgae system variables [3, 5, 6]. These models
are extremely relevant, as they are a key element to optimize the system design
and its operation mode. Most of the available nonlinear models are based on first
principles balances, which are very useful tools for the process understanding.
However, these models have a high complexity and are subject to parameter
uncertainties, since many of the biological parameters are very complicated to
be perfectly calibrated all the time.

In the last decades, because of the increasing computer capacity, Machine
Learning, and more specifically, Deep Learning or Neural Networks, are becom-
ing more relevant in the development of models for different fields [1]. These
algorithms are capable of developing a model based solely on the data, without
any physical meaning and without being explicitly programmed for it [9]. So, this
paper deals with the development of a “black box” model for the pH of a race-
way reactor making use of this type of techniques [17]. The core idea consists in
obtaining a robust dynamic model that is easily updatable, based only on data,
and well adapted to any circumstance that may take place in the system. As
described above, the microalgae production process depends on solar irradiance
and many other variables, such pH, dissolved oxygen, or medium temperature.
Since the light requirements and temperature cannot be manipulated during
normal operation, the pH and DO are the typical variables to be controlled and
kept close to given optimal values. Among all the variables, the pH is the most
important one in the process [13,15,16]. For that reason, the model presented
in this paper is focused on the pH estimation based on the rest of the variables,
which are assumed to be measured in the system.

2 Materials and Methods

2.1 Microorganism and culture medium

The microalgae strain modelled in this work was Scenedemus almeriensis (CCAP
276/24). This strain is resistant to temperatures up to 45°C and pH values up
to 10, although the optimal values for its growth are 35°C and a pH of 8. The
medium used in the experiments was Arnon, prepared by fertilizers instead of
pure chemicals.

2.2 Raceway reactor

All the data used were taken from the raceway reactor located at the Research
Centre “Las Palmerillas” (36° 48’ N-2° 43’ W), property of the Cajamar Foun-
dation (Almerfa, Spain), in the year 2016 [5]. The reactor, as shown in Fig. 1,
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is composed of two 50m long channels connected at their ends by 180° bends.
It also has a 0.59m? pit 1lm away from the curve of one of the two channels,
where air or COj; is injected through a diffuser in order to control the variables
of interest (dissolved oxygen and pH). The liquid is propelled by a wheel with 8
blades of 1.2 m in diameter, driven by a speed-controllable electric motor. The
reactor can be divided into 3 main parts depending on these elements: the pad-
dle wheel, the pit and the channels. Each of these points has a different pH and
dissolved oxygen value, which are measured separately.

Fig. 1. Real view of the raceway photobioreactor.

2.3 Variables of interest

In the performed tests, the following variables were measured with a sampling
period of one minute:

— Dissolved oxygen, pH, and medium temperature.
Medium level.

— Air, CO5 and medium flow rates being injected.
Solar radiation and ambient temperature.

Thus, all the previous variables have been used to develop the proposed
black-box model in order to estimate the pH variable.

2.4 Deep Learning for dynamic modelling

Computational learning algorithms are able to “learn” from data to obtain mod-
els with different purposes without being explicitly programmed for it [1]. The
use of one or another type of algorithms will depend on the problem and the
available data.
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Neural networks are within this set of algorithms [7]. These are intended
to emulate the functioning of biological neurons through a structure formed by
layers of nodes and connections between them, predominantly in parallel. Each
node or neuron has a series of inputs and a dependent output whose relationship
is expressed in the following equation[10]:

y=¢<ZWk$k+b> (1)

k

where y symbolizes the output of the node, xj the value of each input & of the
node, Wy, is the weight of each input k, b is the bias of the node, and ¢ is its
activation function. Thus, if the values of W}, and b are known for all the nodes,
as well as their activation function, it is possible to obtain the network output
for any combination of inputs.

The objective of the learning algorithm is therefore to determine the Wy and
b values for each neuron that minimize the difference between the predicted and
actual process output. The process to solve this problem can be divided into two
main stages: data processing and network training.

Data processing. In any computational learning algorithm, the quality of the
resulting model is directly proportional to the quality of the data. The more
data we have and the higher the quality, the better predictions we can expect.
Likewise, if the data are erratic or insufficient, it will be impossible to obtain
reasonable results no matter how much the network is trained. Thus, this stage is
critically important, besides taking up most of the time of network development.

Usually, the raw data records available for any problem are not suitable to
be directly assumed by the network, either due to sensor noise, wrong samples,
or data gaps. Therefore, it is necessary to standardize the data and mitigate any
irregularities in them. Some techniques used for this purpose are data interpola-
tion, filtering or directly removing too poor sets. How this work has been done
in this paper will be described later on.

Once the data have been treated, it will be separated into two sets: one set
destined to train the network, which will cover around 70% of the total data,
and a second set whose purpose is to test the network trained by the first set,
in order to ensure that the model is not exclusively focused on memorizing the
training data, but also has the ability to generalize to other different situations.

Network training. The training of the network will be carried out once the
processed data are available. For this purpose, it is necessary to define a series of
elements and parameters that will shape it. Firstly, it is essential to determine a
proper network architecture, that is, the layers that will constitute the network.
This is frequently a not deterministic process, as several iterations are necessary
to compare between them and to select the appropriate layers. A higher number
of layers will give us a more complex network that can better adapt to differ-
ent behaviours, but it is also possible to produce overfitting, which is the over
memorization of training data.
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Besides the number of layers, it is necessary to determine their type, as
well as their number of nodes. This depends on the kind of problem that is
being faced: regression or classification, involvement of temporary component,
the need to avoid overfitting etc. The architecture developed for this paper and
its justification will be explained later on.

Furthermore, there are certain parameters that will affect the learning pro-
cess, regardless of the network architecture. These are the number of epochs and
the batch size. One epoch equals one network pass through the entire data set,
while the batch size defines the number of samples the network passes through
before its parameters are adjusted. Therefore, if there is a set of 100 samples
and it is trained during 500 epochs with a batch size of 20, the network will
recalculate its parameters 5 times per epoch and 2500 times overall. These pa-
rameters are fundamental not only for the time it takes to train the net, but
also to improve learning and prevent overfitting. After the architecture and pa-
rameters of the network have been selected, the next step is the training stage.
It is important to subsequently validate the network obtained using the test set
in order to achieve the most accurate and robust prediction possible.

3 Results

3.1 Model Development

The proposed model is a black-box model, which is not intended to demonstrate
or represent the physical interactions between the variables, but rather to obtain
the correlation between each of the system variables and the pH at the desired
point (at the end of the channel). Since it is a dynamic system, time plays a
crucial role and the model must reflect this issue. For this purpose, a LSTM (Long
Short Term Memory) layer was selected [14], which stores the ‘network state” at
each instant. So, the model output at a given time does not only depend on the
inputs at that time, but also on the network state. The data processing, model
development and model validation have been done in the MATLAB environment
and using of the Deep Learning Toolbox [8, 10].

Due to the use of this type of layer, it is necessary to guarantee the continuity
of the data. Therefore, the data processing stage begins by discarding the data
sets of days in which a large amount of data is missing. If the data gaps last
only a few moments, it is not necessary to discard the day, but if the gap is
long enough to make interpolation illogical, the dataset must be deleted. In the
case of small data gaps, the interpolation of each sample instant shall be made
between the nearest previous and next instants whose measurement is correct.

To improve the network training and performance, the mean and standard
deviation of each of the variables shall be calculated to normalize them according
to the following expression:

X, = (2)
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Fig. 2. Diagram of the selected network architecture.

where X,, symbolizes the already normalized variable, p is the arithmetic mean,
o the standard deviation, and X the raw variable.

A data set of 105 days was originally used to develop the proposed model.
After the data processing stage and analysis, 27 days were discarded because of
errors and gaps in the measurements. Thus, a data set of 78 days was finally
considered, where 60 of them were randomly selected to constitute the training
set, and the remaining 18 for validation purposes. As previously mentioned, the
core of the proposed network is the LSTM layer. Thus, the first layer set will
be a sequential input layer, having as many nodes as input variables are used
to make the predictions. The purpose of this layer is to serve as the data entry.
The second layer will be the LSTM. A sequential output mode will be configured
for it, as well as a number of nodes between 200 and 300, This parameter was
selected after several tests with different values, picking the one that had the best
performance. After that, a fully connected layer of 50 nodes will be established,
which will work as an intermediate layer to provide more depth to the network.
Following this, the use of a dropout layer is optional. The utility of this layer is
to ignore a percentage of the data in each iteration. In normal circumstances,
this is not positive for the network, but in case of overfitting, it is very helpful.
Finally, another fully connected layer will be introduced with a single node for
the output, and a last regression layer. In figure 2 a diagram of the selected
architecture for this work is shown, where all the stages described above are
summarized. The number of nodes in each layer has been selected after several
iterations, in order to make it as low as possible to accelerate the training of the
network, but large enough so that it doesn’t deteriorate the prediction.

Regarding the learning parameters, different numbers of epochs have been
tested. It has been demonstrated that a higher number of epochs leads to better
results, and that overfitting does not take place with less than 3000 epochs.
Since above a certain number of epochs the difference is not significant, the final
value given to this parameter has been 2000 epochs. Besides, as there are 60
days available for training, the selected batch size has been 20, so that three
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iterations are carried out in each period and no data is left out. The optimizer
‘Adam’ was used, with an initial learning ratio of 0.01.

3.2 Model Results

In this section, validation results of the proposed model are presented. The
performance of the network has been evaluated for two different purposes: one-
step prediction and multi-step prediction. In the first case, the network is used as
a regression model, where the network state is updated with the real value of the
pH variable at each instant time. Thus, only predictions for one step ahead are
performed. On the other hand, in the multi-step prediction case, the network is
used as an independent model, where the network state is updated by using the
own model predictions. For both cases, the Root Median Square Error (RMSE)
metric was used to analyze the goodness of fit of the model:

RMSE = \/i(Yreat — Yprea)?) (3)
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Fig. 3. Radiation and CO2 flow rate profiles for four representative days.

In this paper, four different days have been randomly selected to show the
model results. Figure 3 shows some of the variables for these days, which are used
as inputs for the proposed model. Notice that days with many different input
profiles are considered for the validation process. First of all, the performance
of the network will be checked by performing the one-step prediction. The test
data of all the variables are available for each instant and the aim is to predict
the pH value in the following instant. In this test, the results are really promising
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with RMSE value of 0.1082. Figure 4 shows the obtained results for the data
set presented in figure 3, where it is observed that the model behaves really well
for all the data sets. This solution for one-step prediction can be very useful for
fault detection techniques or real time estimation. However, for simulation or
control purposes the prediction horizon of a single sample instant is insufficient.
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Fig. 4. Experimental and predicted data of pH for four representative days with a
single-step prediction.

For this reason, the multi-step prediction was subsequently implemented.
The basis of this test is the same as the previous one, with the difference that
for the prediction of an instant k + 1 the pH value at the instant k£ will not
be the real one, but the one predicted at the previous instant. This makes it
possible to predict the pH value indefinitely. However, there are some limitations
to be considered. Notice that the resulting network has a certain error in the
predictions such as observed in the one-step prediction case. This means that,
since future predictions depend on values with a slight error, that error is fed
back, and therefore increases proportionally to the number of sample instants
that are intended to be known.

Therefore, the prediction was made for a whole day, which corresponds to
1440 samples. Despite the aforementioned, the results obtained are highly sat-
isfactory, as can be seen in the figure 5. As expected, the prediction error is
increased, reaching a value of 0.3720, but even so the network is able to pre-
dict a complete day with considerable accuracy, especially in the instants when
the control was taking place during the real experiments. This performance is
mainly related to the use of dissolved oxygen as an input to the network, since
this variable is highly correlated to the pH. Facing future works, the aim is to
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Fig. 5. Experimental and predicted data of pH for four representative days with a
multi-step prediction.

develop a network with a similar structure capable of predicting both variables,
in order to achieve a complete simulation of the system. Notice that even in
time lapses when a small offset appear, the dynamics of the system are well
represented during all the daily operation.

4 Conclusions

In this paper, a dynamic model based on neural networks has been developed
and validated for a raceway photobioreactor. The model allows the prediction
of the pH value in the channels with a time horizon up to one day based only
on measurable data inputs. The methodology followed in the article grants the
possibility of obtaining similar models for the prediction of other variables of
interest, such as dissolved oxygen or biomass concentration. This type of models
opens a wide variety of possibilities for future works in the field of photobioreac-
tor modelling and control, providing highly reliable non-linear models that are
easily updateable and whose calibration is fully automated, depending only on
measurable data.
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