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Abstract: Groundwater is essential in the management of water resources globally. The water quality
of aquifers is affected by climate change and population growth, aspects that can be addressed with
stable isotope analysis. This study aims to carry out an analysis of the scientific information related
to groundwater and stable isotopes (GSI) using scientific databases (Scopus and Web of Science) to
evaluate the intellectual structure of the subject and the emerging research lines. The methodology
includes: (i) topic search selection, (ii) tools in databases processing, (iii) bibliometric analysis, and
(iv) review by clustering technique. The results showed that the scientific production of GSI can be
addressed through three evolution periods: I (1969–1990), II (1991–2005), and III (2006–2021). Periods
I and II did not significantly contribute to publications because, in the past, most of the student’s
thesis (M.Sc. and Ph.D) consisted of writing a report that summarizes their works. Therefore, the
researcher was not obliged to publish their results in a professional journal. Finally, the third period
showed exponential growth, representing 82.34% of the total publications in this theme because,
in the last years, institutions require at least one scientific article depending on the country and
university, in order to graduate with an M.Sc. and PhD. Finally, the contribution of this study is
reflected in the recognition of new research lines and their applicability by the knowledge of recharge
sources, environmental aspects, infiltration, knowledge of the aquifer-meteoric water system, and
groundwater-superficial water interaction. These aspects offer the possibility of analyzing integrated
water resources management at the watershed or river-aquifer systems level.

Keywords: coastal aquifer; environmental isotopes; intellectual structure; co-citation analysis

1. Introduction

Groundwater is one of the most important resources in the freshwater supply to meet
the needs of a region [1,2]. Globally, 2.5 billion people depend on groundwater supplies
for their basic needs [3–5]. Groundwater and surface water constitute a complex cycle
in the atmosphere, the earth’s surface and the soil [6,7]. A challenge in the sustainable
management of groundwater resources is the lack of comprehensive studies that involve
the quantification of groundwater depletion and aquifer deterioration [8]. Identifying
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aquifer quality and vulnerability characteristics helps decision-makers manage groundwa-
ter resources and mitigate potential contamination pathways [9,10] where these ecological
techniques of green filters exist [11–13].

The most crucial water problem facing the world is water scarcity, intensifying dur-
ing the 21st century due to population and economic growth and the need to protect
environmental assets [14–16]. The characterization of groundwater flow systems requires
the identification of the dominant spatial and temporal patterns of their movement and
flow scales [17–19].

The main processes that influence groundwater chemistry are salinization, precipi-
tation, mineral dissolution, cation exchange and human activity [20]. Therefore, stable
isotope data in water (δ18O and δ2H) serve as markers to identify the different flow paths
and origins of water [21]. Interactions between groundwater and surface water are complex
because they are related to climate, landform, geology, and biotic factors [22,23]. Therefore,
hydrogeochemical data and stable environmental isotopes are used to identify recharge
sources and water-rock interactions in the direction of groundwater flow [24,25].

The relevance of the stable isotope technique resides in that the most commonly stud-
ied elements (H, C, O, and S) constitute the major components of Earth’s reservoirs (water,
air, lithosphere, and organic matter) [26,27]. For example, hydrogen and oxygen isotopic
studies of natural waters have a distinct advantage over studies using other chemical indica-
tors due to hydrogen and oxygen being the principal constituents of aqueous solutions [28].

As a consequence, applying stable isotopes in groundwater has multiple benefits. For
example, a study in Japan used stable water isotopes (δ18O and δ2H) and hydrochemical
information to estimate groundwater recharge in a mountain-plain transition area [29].
In the Maheshwaram watershed in India, these isotopes were used to understand the
dynamics of groundwater sources and flow paths in the watershed [30]. Complementarily,
in the case of the Qaidam basin in China, the implementation of representative cations and
anions (K+, Na+, Ca2+, Mg2+, Cl−, SO4

2−, HCO3
−) and isotopes (2H, 18O, 3H, 13C and 14C)

improved the understanding of the origin, flow pattern, hydrochemical evolution, and
control mechanisms of regional groundwater systems [31]. Finally, relationships between
δ2H and δ18O values in precipitation and elevation represent helpful tools for evaluating
groundwater recharge areas and flow paths [32].

Given that the importance of isotopic analyses in groundwater would complement a
bibliometric study on this subject, groundwater and stable isotopes (GSI). Bibliometrics
provides a clear and precise answer to a global analysis of a given country, journal or
field of study [33–35]. In addition, these bibliometric studies allow for the exploring of
the structure of scientific publications, collaboration patterns and outstanding areas of
knowledge [36,37]. Various research fields have applied bibliometrics in the evaluation and
prediction of scientific productivity, development and future trends [38–42].

This theme is of global interest for watershed management authorities and its inhab-
itants, whose main economic activities often depend on groundwater reserves. For this
reason, some research questions have arisen about the relationship between stable isotopes
and groundwater: what is the contribution of the theme (GSI) in scientific research, emerg-
ing methods and trends?; and, complementary to this, what are the most representative
components of the intellectual structure and relationships of GSI (authors, documents,
topics, countries and journals) and the topics associated with this structure?

Answering these research questions was purposed as an objective to carry out an
analysis of the scientific information related to GSI using scientific databases (Scopus and
WoS) to evaluate the intellectual structure of the subject and the emerging lines of research.

This work consists of five sections. The first contains an introduction to the appli-
cability of stable isotope techniques in groundwater evaluation. Section 2 presents the
methodology for the treatment and use of the data described in four phases (search and
document selection, database treatment, bibliometric maps, and research trend analysis).
Section 3 presents the intellectual structure of stable isotopes, groundwater and the analysis
of publications related to the subject, according to their quantity and quality. Section 4
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presents the discussion of the exposed analyses. Finally, Section 5 presents the main
conclusions, findings and limitations of this study.

2. Materials and Methods

The methodology includes four research phases: (i) topic search selection, (ii) tools in
databases processing, (iii) bibliometric analysis, and (iv) review by clustering technique
(see Figure 1).
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2.1. Topic Search Selection

Bibliometric studies require the selection of a reliable database with quality informa-
tion [35,43]. The databases of the Web of Science (WoS, launched by Clarivate Analytics,
London, UK) and Scopus (developed by Elsevier, Amsterdam, The Netherlands) are the
most widely used in bibliometrics [44]. The results (articles) and impacts (citations) of the
countries obtained from these two databases are strongly correlated [45,46]. Therefore, both
databases (WoS and Scopus) were used due to institutional access and significant journal
coverage (20,346 journals in Scopus and 13,605 in WoS) [47].

Data collection was carried out in January 2022 using a series of descriptors related to
the term groundwater, contained in the title, abstract and keywords, together with Boolean
logic functions (AND, OR), which allowed the search to be carried out (see Table 1). A total
of 9613 documents were obtained as a result of the initial search. The search terms selected
were the following: groundwater and stable* isotope*.

Table 1. Topic Search of GSI.

Database Initial Number of
Documents Topic Search

Scopus 4759
(TITLE-ABS-KEY (“groundwater”) AND

TITLE-ABS-KEY (“stable* isotope*”)) AND
(EXCLUDE (PUBYEAR, 2022))

WoS 4804

Topic: (“groundwater”) AND Topic: (“stable*
isotope*”). Period Time: 1900–2021. Indexes:

SCI-EXPANDED, SSCI, A&HCI, CPCI-S,
CPCI-SSH, BKCI-S, BKCI-SSH, ESCI,

CCR-EXPANDED, IC.

Prior to downloading the database, some inclusion and exclusion criteria were des-
ignated in selecting the documents obtained [48]. Considering all types of documents,
languages, and subject areas was added as an inclusion criterion because it is a topic of
great importance at the international level, pretending to know its trends and advances
over time [49], excluding 2022 for the current year.
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2.2. Tools in Database Treatment

The results obtained from the Scopus search were downloaded in BibTeX format and
those of WoS in plaintext format for later treatment in RStudio. Both formats include biblio-
graphic information, citations, abstracts, keywords, and references. However, Scopus and
WoS differ in their download formats, scope terms, data volume, and coverage policies [50].
Therefore, the Bibliometrix library was used to unify these databases [51]. This library
belongs to the statistical software RStudio, which is freely available [52,53]. The unification
of Scopus and WoS allows for the deleting of duplicate documents and incomplete and
erroneous items of the resulting 6633 documents. Five types of software were used in the
analysis of the extracted data:

• Microsoft Excel: this software allows the analysis of scientific production through
documents, languages, subject areas and journals [54–56].

• RStudio: this is an integrated development environment, launched in 2011 by Joseph J.
Allaire, that belongs to R (free software) [52,53]. R version 4.0.5 was used for the big
data processing and merging databases (Scopus and WoS). R was developed by Ross
Ihaka y Robert Gentleman in Auckland, New Zealand. RStudio enabled automatic
post-cleanup, preserving WoS files and removing duplicate Scopus documents [57].

• Bibliometrix: This is an RStudio package developed by Massimo Aria and Corrado
Cuccurullo in University of Naples Federico I (Naples, Italy) [51]. This software
processes the information by encoding it in RStudio [58] by using two functions:
readfile and conver2df, to (i) load and convert data to UTF-8, and (ii) extract and create
a data frame, respectively.

• VOSviewer: This is free software developed by the University of Leiden (Leiden,
Netherlands), which allows the analysis of the intellectual structure of a knowledge
field through the bibliometric maps construction [59,60]. This program has been
widely used in different areas of knowledge [61–65].

• ArcGIS Pro: This is a Geographic Information Systems (GIS) software developed by
Environmental Systems Research Institute (ESRI), in Redlands, California [66]. This
software represents countries’ contributions according to the number of publications
worldwide and has been used in several bibliometric studies [35,42].

2.3. Bibliometric Analysis

Two main techniques are used in bibliometric analyses: performance analysis and
science mapping [67,68]. Performance analysis encompasses the study of the structure of
scientific publications, such as publication year, number of documents, citations, journals,
countries, authors, and affiliations [69]. Otherwise, science mapping allows the graphical
representation of research fields and subfields, observing their links [70]. In addition, these
maps expose the relationships between some variables, such as co-occurrence with the
author’s keywords.

Bibliometrix software was used to generate some complementary bibliometric anal-
yses, relating two or three variables of the intellectual and conceptual structure of the
field of study. These analyses included Sankey Plot maps (Three-Fields Plot) which relate
three variables: countries, authors, and keywords [71]. They also included the Thematic
Evolution graph, which analyzes the evolution in periods of the subject of study [38].

2.4. Review by Clustering Technique

A literature review permits one to know the intellectual state of a topic [72,73]. It also
collects data based on eligibility criteria, reduces biases and errors, and identifies possible
gaps in research efforts [74,75]. The systematic analysis structure is based on keywords,
literature, and the analysis of the results [76]. A literature review uses an algorithm that
allows for the evaluating of the literature selection in a determinated field of study [77].

For the literature review in this work, we selected a sample of 20 documents per cluster,
considering the most significant clusters of the 11 clusters obtained (clusters one to six) of
the author keywords bibliometric map, according with the occurrence in the databases [78].
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As a result, were reviewed a total of 120 publications. Furthermore, it was considered the
most cited and relevant publications in the selected clusters, generating a table with the
main topics related to the clusters selected and a description of the research trend lines in
each cluster analyzed.

3. Results
3.1. Evolution of Scientific Production

The scientific production in the GSI line of research shows a growth in the interest
in the topic of the academy (see Figure 2), presenting 5455 documents between the years
2006–2021, which represents 82.24% of the publications. The analysis of the results was
divided into three periods: (i) constant (1969–1990), (ii) linear (1991–2005), and (iii) expo-
nential (2006–2021). According to the mathematical form of growth, the periods of scientific
production were selected.
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Figure 2. Scientific production of GSI.

Scientific production was evaluated using Price’s law [79], which measures the increase
in research in the field of study, showing exponential growth [80,81]. The entire production
of the study field was estimated, and a growth model was generated (see Figure 2). The
equation obtained (y = 20−105 e0.1225x) has a value of R2 = 0.9857, which verifies that the GSI
is growing exponentially, demonstrating its interest in the academic world to be recognised
as a field of study.

In determining the topics related to GSI in different subperiods, it was necessary to
apply a matrix of co-words and grouping methods, thus exploring the evolution over time
of this field of study [38]. For this analysis, a strategic diagram to show the themes with
different Callon’s centrality (x-axis) and density (y-axis) [38] was applied, as is shown in
Figure 3a–c. Callon’s centrality is an indicator of theme’s importance across a full set of
publications, while Callon’s density is an indicator of the theme’s development [82,83].
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Figure 3. Thematic evolution of GSI in three periods. (a–c) Thematic maps (strategic diagrams). The
circle size is proportional to the total frequency of terms in each theme. Each theme is labeled with
the corresponding three most frequent keywords, and (d) Evolution map (Sankey graph), where the
thickness of the edges is proportional to the inclusion index.

These graphs (Figure 3a–c) consist of four quadrants, whose location determines how
developed or new the topic is, as described below:

Quadrant I (upper right): topics with high density and centrality are called motor
themes, with strong links to other topics in other quadrants.

Quadrant II (upper left): themes of high density and low centrality, called developed
and isolated themes.

Quadrant III (lower left): themes with low density and centrality, called emerging or
declining themes.

Quadrant IV (lower right): themes of low density and high centrality, called basic and
transversal themes, focusing on general questions that were transversal to the different
research areas of a domain.

Period I (1969–1990): The growth in publications on GSI was reduced during these
21 years of scientific production, with only 167 publications, which represented 2.52% of
the total publications on this subject. Deuterium has been identified as a motor theme as its
discovery dates back to 1934 [84]. Stable isotopes became an emerging topic because these
techniques are considered essential in groundwater systems’ qualitative and quantitative
evaluation [85–88]. The first publication related to the GSI was published in 1969, which
produced 68 citations, where the isotopic composition of mineral water sources in the
Jordan Rift Valley was analyzed [89]. The most cited publication (581) is that of Allan J.R.
and Matthews R.K. [90], where variations in the carbon and oxygen isotopic composition
of limestones generated during early freshwater diagenesis was analyzed. The second
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most cited publication is that of the authors Maoszewski P. and Zuber A [91]. Three new
lumped parameter models were developed to interpret environmental radioisotope data
in groundwater systems, resulting in 546 citations. Until 1990, the publications in the
field of study focused on topics such as: (i) the isotopic composition of waters [92,93],
(ii) carbonate diagenesis [94,95], and (iii) the use of stable isotope methods for ground-
water studies [86–89]. These studies are considered the basis for applying stable isotope
techniques for future research.

Period II (1991–2005): In this period there was notable growth in the number of pub-
lications on GSI. With this, their interest in the subject, with 1011 documents, represents
15.25% of the scientific production. After 21 years, stable isotopes went from being a driving
theme to a transversal theme. Isotopes and hydrology appear as emerging topics. On the
other hand, deuterium went from being an emerging theme to a theme in transition to
becoming an engine theme. Similarly, the topics under development, aligned with the
emerging topics, are hydrochemistry and salinity. Finally, recharge and groundwater have
been established as motor themes, with a strong relationship with the themes of the other
quadrants. The publication by the author Dawson [96] stands out, where the use of soil
water and groundwater by trees and forests was investigated through measurements of
transpiration rates using porometry, sap flow methods and the Bowen ratio method. In
this period, publications on the following topics stand out: (i) arid region recharge [97–99],
(ii) groundwater age through isotopes [100–102], (iii) denitrification [103–105], (iv) ground-
water flow with stable water isotopes (δ18O and δ2H) [106–108], and (v) water movements
through isotope analysis [109–112].

In the past (the first and second periods), most of the M.Sc. and Ph.D theses consisted
of writing a report summarizing the work and its results. Therefore, the researcher was not
obliged to publish the results of his career in a professional journal, decreasing the number
of publications.

Period III (2006–2021): There is evidence of exponential growth in publications
on GSI, with 5455 documents representing 82.24% of scientific production. In the last
15 years, the use of environmental tracers has become an emerging topic in studies related
mainly to: (i) the solution of hydrological problems with environmental isotopes [113–116],
(ii) groundwater salinization [117–119], (iii) the hydrochemical-isotopic characterisation
of groundwater [120–122], and (iv) coastal aquifers recharge [123–125]. The topics under
development are studies related to nitrates and oxygen isotopes. Also, the representative
driving theme of this period is precipitation, which has evolved from previous themes
such as recharge and groundwater. Finally, isotopes appear as cross-cutting themes that
are not closely related to the rest of the emerging themes. However, the stable isotopes are
specifically found in the transition zone from quadrant IV to I, which indicates that it could
become the driving theme with the longest evolution time in the coming years (1969–2021).

This exponential increase in the number of articles is related to changes in university
requirements for receiving M.Sc. and Ph.D degrees. In many universities, the research
and its results are published in several professional articles, increasing the number of
publications in this period. Another reason for this increase is the improvement in the
sampling methods and measuring equipment that made it more accurate and easier to
operate. Currently, the amounts of water required to perform chemical and isotopic
analyses are very small. In parallel, software and data processing made it possible to
increase the resolution of the statistical trend, with more variety of trends and more
professional material that can be published. The most cited publication in this period was
Mulholland et al.’s study [126], with 863 citations. These authors used stable nitrogen
isotope tracers in 72 streams and eight regions, representing various biomes. It showed that
total nitrate uptake is related to the ecosystem’s photosynthesis. Finally, denitrification is
linked with ecosystem respiration. The second most cited publication (699) was by Burgin
and Hamilton [127], where the importance of alternative nitrate removal pathways was
analyzed in aquatic ecosystems, including the application of stable isotopes and other
tracer techniques.
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3.2. Countries Contribution

Considering the authors’ affiliation with the articles, the countries’ contribution to
this topic was included [128]. Furthermore, a bibliographic coupling analysis of countries
was carried out to measure the references of publications in the database, particularly the
countries involved [129]. VOSviewer was used for this analysis, and a threshold of at least
five documents per country was set, with 78 countries reaching this threshold (see Figure 4).
The colours distinguish them according to the number of publications on GSI, whereas the
countries in white are those without publications on GSI. Finally, it was demonstrated that
most of the publications were made in developed countries due to the rise and international
importance of this topic.
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Additionally, an analysis of the scientific production by country was carried out, which
presents a rule of association between three variables that determine the relationship of an
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This study revealed the most relevant countries that contribute to scientific production
(e.g., the USA, China and Germany), which coincides with the most cited authors and
affiliations. For example, Zhang Y. (USA), Li J. (China), and Richnow H. (Germany) are
authors who have published studies on topics related to the composition of stable isotopes
in surface-groundwater and evidence of stable isotopes in groundwater salinization and
its impact. Another reason for the large number of articles coming from these countries is
that there are still many areas that have not yet been studied in detail, and thanks to the
combination between many universities and students for the M.Sc. and PhD degrees, it can
be documented as a new scientific production in GSI.

The following countries stand out among the 78 countries that have conducted sci-
entific research on the GSI: China, the United States, Japan, Australia, and Germany, as
shown in Table 2.

Table 2. Main Countries Collaboration about GSI.

R Country Publications Cites CCL Main Topics References

1 China 1180 15,784 73
Groundwater recharge [130,131]

Surface-groundwater interaction [132,133]
Hydrochemical evaluation [134–136]

2 United
States

1553 45,656 74
Isotope hydrology [137–139]

Stable isotopes in groundwater [114,140,141]
Groundwater recharge and flow

characterization [142,143]

3 Japan 312 4590 70
Groundwater nitrate contamination [144–147]

Groundwater characterization [108,148–150]
Residence times and flow paths [151–153]

4 Australia 424 10,804 68
Stable isotopes in groundwater [154–156]

Groundwater quality [156–159]
Environmental isotopes in

groundwater systems [160]

5 Germany 788 17,521 74
Hydrogeochemical characterization [161,162]

Stable isotope in water resources [163,164]
Hydrological processes [165,166]

Note: R: Ranking; CCL: Collaboration Countries Links.

3.3. Most Relevant Sources

This analysis generates a global vision of the disciplines that make up the intellectual
structure of the subject under study [35]. A total of 1085 sources formed this field of study.
Table 3 shows the top 10 journals with the highest number of publications, where the Journal
of Hydrology has the highest number of contributions (494). In this journal, the most cited
article (565) is by McGuire and McDonnell. The authors conducted a review study on
lumped parameter transit time modelling for the watershed of water drainage to promote
new advances in watershed hydrology [167]. The second and third positions correspond to
the Hydrogeology Journal and Applied Geochemistry journals.

3.4. Review by Clustering Analysis

The keyword co-occurrence network analysis provides a network in which the terms that
appear most frequently in the field of study are presented [35], related to GSI. The network helps
explore themes (keywords), thematic groups (clusters), and existing research gaps [168,169].

Graphical and multidimensional representation of the author’s keywords co-occurrence
map was performed with VOSviewer [83,170]. A total of 9580 keywords were obtained, of
which 340 have a co-occurrence of at least five incidents. For example, in Figure 6, 11 clusters,
340 nodes (keywords), 5356 links and a total link strength of 15,807 are shown. The mid-
term is a stable isotope (cluster 4 in yellow) with 2056 occurrences and a relationship with
310 terms (topics).
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Table 3. Main Information of the top 10 of the most relevant sources in GSI.

R Journal Country SJR ND Main Publication Topics

1 Journal of
Hydrology Netherlands 1.68 494 Hydrological sciences, including water-based management and policy

issues that affect economics and society.

2 Hydrogeology
Journal Germany 0.94 390 Integration of subsurface hydrology and geology, geochemistry,

geophysics, geomorphology, and surface-water hydrology.

3 Applied
Geochemistry United Kingdom 1.02 278 Geochemistry, urban geochemistry, environment preservation, health,

waste disposal, isotope geochemistry and geochemical processes.

4 Hydrological
Processes United Kingdom 1.22 266 Movement and storage of water, and water interaction with geological,

biogeochemical, atmospheric and ecological systems.

5 Environmental
Earth Sciences Germany 0.64 253

Groundwater, soil contamination, waste management, environmental
problems associated with transportation by land or water-geological

processes.

6 Science of the Total
Environment Netherlands 1.8 226 Environmental topics including the atmosphere, hydrosphere, biosphere,

lithosphere, and anthroposphere.

7 Water Switzerland 0.72 127 Water resources management, water governance, hydrology and
hydraulics, water scarcity, and flood risk.

8 Chemical Geology Netherlands 1.54 126 Isotopic and elemental geochemistry, geochronology and
cosmochemistry.

9 Water Resources
Research United States 1.86 126 Natural and water social sciences, water in the Earth’s system, water

resources research, water management, and water policy.

10
Isotopes in

Environmental and
Health Studies

United Kingdom 0.45 118 Natural isotope abundance, stable isotope tracer techniques, and isotope
measurement methods.

Note: R: Ranking; SJR = SCImago Journal Rank; ND: Number of Documents.
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Table 4 summarizes the literature review conducted on the most relevant clusters
(clusters from one to six with occurrence greater than 240) shown in Figure 6. This table
includes the main topics emerging from each cluster.

Table 4. Keywords clusters about GSI.

Cluster Cluster Name Main Keywords Ocurrence Topics References

1
(72 nodes)

‘Nitrate
Pollution’

(red)

Nitrate pollution (187)
Denitrification (86)

Pollution (71)

Groundwater and nitrate
pollution interaction [171,172]

Flow dynamics [173,174]
Principal Component Analysis

(PCA) application [175,176]

2
(44 nodes)

‘Groundwater
and isotopes’

(green)

Groundwater (941)
Isotopes (341)

Surface-water relations (88)

Groundwater flow in arid zones [177–179]
Surface-groundwater interaction [177,180]
Remote sensing in groundwater

management [181–183]

3
(37 nodes)

‘Hydrochemistry’
(blue)

Hydrochemistry (437)
Hydrogeochemistry (164)

Geochemistry (141)

Hydrochemical studies in
surface-groundwater systems [184–187]

Groundwater modelling [188–190]

4
(36 nodes)

‘Stable and
Environmental

Isotopes’
(yellow)

Stable isotope (2056)
Environmental isotopes (135)

Water sources (64)

Stable and environmental
isotopes for understanding

hydrological systems
[191–194]

Recharge and contamination
sources [195–197]

5
(29 nodes)

‘δ18O and δ2H
stable isotopes’

(violet)

δ18O (376)
δ2H (276)
δ3H (127)

Stable Isotopes [198–200]
Environmental tracers in water

quality [201–203]

6
(28 nodes)

‘Groundwater
Recharge’

(light blue)

Groundwater recharge (241)
Groundwater age (102)
Groundwater flow (89)

Groundwater recharge [204,205]
Groundwater flow [206–208]

Groundwater-surface water
interaction [209–211]

7
(27 nodes)

‘Recharge’
(orange)

Recharge (204)
Soil water (89)

Salinity (65)

Groundwater age [212–214]
Recharge sources [206,215]

Numerical modelling [216,217]
Aquifer recharge [218,219]

Environmental tracers [203,220]

8
(25 nodes)

‘Water Stable
Isotopes’
(brown)

Water stable isotopes (90)
Hydrology (68)

Water balance (66)

Groundwater-surface relation [221–223]
Groundwater quality [215,224,225]

Water age [226,227]

9
(21 nodes)

‘Arid zone’
(violet)

Arid zone (78)
Sr isotopes (61)

Groundwater salinity [228,229]
Arid zone hydrology [230,231]

Environmental tracers [232,233]
Groundwater processes [234,235]

10
(15 nodes)

‘Seawater
Intrusion and coastal

aquifers’
(pink)

Seawater intrusion (63)
Coastal aquifers (62)

Coastal aquifer salinization [236–238]
Groundwater modelling [191,239,240]

Groundwater exploitation [241,242]
Urban groundwater [243–245]

Hydrochemical processes [246,247]

11
(6 nodes)

‘Precipitation’
(light green)

Precipitation (155)
Karst aquifer (134)

Climate variability [248,249]
Water chemistry [250–252]

Groundwater infiltration [253–255]

Cluster 1, called ‘Nitrate Pollution’, is the most extensive research area, and according
to the co-occurrence of terms, it is considered the eighth most crucial research group (see
Figure 6). In this cluster, research trends are mainly linked to: (i) groundwater nitrate
pollution sources in the agricultural area, (ii) the application of nitrogen and oxygen
isotopes to identify nitrate pollution in surface water, and (iii) agricultural and urban
nitrate pollution.

Cluster 2 is called ‘Groundwater and isotopes’. In this cluster, future lines of research
will focus on: (i) water intrusion evidence from groundwater isotopes, (ii) groundwater
isotopes and their implications for recharge sources, and (iii) the use of precipitation and
groundwater isotopes to interpret regional hydrology.

Cluster 3 is called ‘hydrochemistry’ in this cluster, and trending publications are
related to the following topics: (i) modelling of hydrochemistry evolution in aquifer sys-
tems, (ii) hydrological interaction between fresh-submarine groundwater discharge and



Water 2022, 14, 3173 12 of 26

coastal groundwater, (iii) identification of sources and groundwater recharge zones from
hydrochemistry and stable isotopes, and (iv) tracing nitrate sources in urban waters using
hydrochemistry and stable isotopes.

Cluster 4 is called ‘stable and environmental isotopes’. Future lines of research as-
sociated with this topic include: (i) determining the origin of nitrate in watersheds using
environmental isotopes, (ii) hydrochemical and environmental isotope analysis for charac-
terizing a karst aquifer system, (iii) age and origin of groundwater, and (iv) hydrochemical
tracers and environmental isotopes applied to conceptual modelling.

Cluster 5 is called ’δ18O and δ2H stable isotopes´. In this cluster, research trends are ori-
ented towards: (i) improving the groundwater structural characterization, (ii) understanding
evaporation moisture stress in arid areas, (iii) identifying groundwater recharge sources, (iv)
tracing surface and groundwater flow systems, and (v) surface water-groundwater interaction.

Clusters 6 to 11 are smaller since they contain between 6 and 28 nodes (keywords),
which represents a weaker relationship with the most representative clusters (1–5). These
clusters comprise the following themes: ‘Groundwater recharge’ (cluster 6-light blue),
‘Recharge’ (cluster 7-orange), ‘Water Stable Isotopes’ (cluster 8-brown), ‘Arid zone’ (cluster
9-violet), ‘Seawater Intrusion and coastal aquifers’ (cluster 10-pink), and ‘Precipitation’
(cluster 11-light green).

3.5. Future Trend Analysis

This analysis presents the frequency of the main themes that allowed for the analysis
of the selected field of study’s evolution (see Figure 7). This section included keywords in
at least three studies, placing the node with the highest frequency in the year.
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The most extended periods correspond to the phreatophyte (1969–2012), oxygen-
18 (2003–2019), and groundwater (2002–2019) areas. In contrast, the shortest period is
the critical zone (2019–2021). Additionally, the most frequent keywords are stable iso-
tope (2012), groundwater (884), hydrochemistry (422), isotope (257), and groundwater
recharge (218). Current trends are karst aquifer (21), groundwater residence time (14),
and critical zone (14), which may serve as a basis for future research trends. For example,
some publications identify karst recharge areas by applying isotopic and hydrogeological
techniques [256,257]. They also identify the geochemical and isotopic variability in karst
aquifers [258]. In addition, hydrochemical methods and stable/environmental isotopes
characterize the interaction between karst water and surface water [259,260]. Finally, to
develop a multicomponent reactive transport framework, the evolution of lithium isotope
signatures in actively weathered drainage [261].
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4. Discussion

The intellectual structure of GSI has had an evolution over 52 years thanks to the
contribution of 78 countries through 13,867 authors, whose research has appeared in
6633 publications. These publications come from the Scopus and WoS databases, as they
are considered relevant in the academic world [46,262]. These data reflect the relevance of
the isotope issue in groundwater studies.

Stable isotope analytical methods were developed soon after the discovery of the iso-
topes. For example, deuterium (δ2H) was discovered by Harold Urey in 1934 [84,263]. Early
techniques were based on determining isotopic ratios by the densimetric, gravity, electric
resistivity, and pycnometer methods. The development of a usable mass spectrometer in the
late 1940s and early 1950s gave a vital impulse to use stable isotope techniques in scientific
studies. Furthermore, in the 1970s and previous years, hydrochemical studies played a
leading role in aquifer contamination analyses [264,265], and isotopic techniques have be-
come essential tools in the qualitative and quantitative evaluation of surface-groundwater
systems [85–88]. However, the early methods of stable isotope analysis up to the 1990s
were generally complicated, time-consuming procedures with relatively low precision and
accuracy [266,267]. Therefore, there is minimal amount of publications on GSI in scientific
databases in the period I (1969–1990), as shown Figure 2.

In the second period of scientific production in GSI, stable isotopes have increasingly
been used as environmental tracers [268]. One common application uses isotope mixing
models to quantify source contributions to a mixture [269]. Isotopes are also implemented
in models of groundwater origin, age and evaporation [100–102,270], recharge identifi-
cation in arid regions [97,99], denitrification [103–105], groundwater flow [106–112], and
nitrogen-stable isotopes in estuarine food webs as a record of increasing urbanization in
coastal watersheds [271,272].

Interactions between groundwater and surface water play a fundamental role in the
functioning of riparian ecosystems, and this has gained more attention in the last years
(period III of Figure 2). In the context of sustainable watershed management, it is crucial
to understand and quantify exchange processes between groundwater and surface wa-
ter [273]. Numerous methods exist for parameter estimation and process identification in
aquifers and surface waters, divided into two main methods: (i) based on Darcy´s law (e.g.,
piezometers, and pumping tests), and (ii) mass balance approaches (e.g., environmental
tracers, monitoring wells) [274]. However, the transition zone has become a subject of sig-
nificant research interest; thus, the need for appropriate methods applicable in this zone has
evolved [275]. For regional research, large-scale techniques can be more suitable, whereas
process studies may require measurements which enable high resolution. All methods have
their limitations and uncertainties. However, a multi-scale approach combining multiple
techniques can considerably reduce uncertainties and constrain estimates of fluxes between
groundwater and surface water [274]. The isotopic techniques allow for the identifying of
groundwater origin [276,277], age and direction of groundwater flow [278,279], and the
surface water-groundwater interaction [280–282].

Hydrochemistry and stable isotopes are methodologies that complement each other and
focus mainly on the analysis of recharge sources in surface-groundwater systems [176,183].
Environmental studies have been carried out mainly in China, the United States, Japan and
Australia due to the high risk of erosion in delta areas, population growth and anthropogenic
activity evidenced in changes in land use. Furthermore, several areas have not yet been
studied in detail, combining many universities and students for the M.Sc. and Ph.D degrees
and “virgin” research areas. For example, in the Badain Jaran desert in China, groundwater
recharge sources have been determined using geochemical and isotopic techniques of envi-
ronmental tracers (δ18O and δ2H) from the surface and groundwater [283]. In addition, there
are applications of environmental tracers to hydrology in the arid zones of Australia, finding
groundwater and using large floods for aquifer recharge [232]. In addition, the application
of environmental tracers to investigate young groundwater systems provides the age of the
groundwater and residence times [284].
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The implementation of environmental isotopes of water has made it possible to identify
the interaction of river-aquifer systems and recharge sources. Such is the case of the
Sava river-Zagreb aquifer system in Croatia. In this study, the δ2H and δ18O values
indicated a spatial variability of the influence of individual groundwater sources within
the local rainfall-aquifer and river [285]. Furthermore, the impact of coal extraction in
Raigarh District, India and its interaction with the Kelo River water and groundwater has
been studied. They analyzed the interaction through water level monitoring, river flow
measurements, stable isotopes, and groundwater flow modelling [286]. Finally, community
participation is essential in water studies. It allowed for the achieving of sustainable
development in some sectors [287–291].

5. Conclusions

This study allowed us to analyse the scientific information on Groundwater and
Stable Isotopes (GSI). It was necessary to unify the two most used scientific databases in
bibliometric studies (Scopus and WoS). Finally, an analysis of the evolution of the theme in
these three periods and a trend topics map generated in Bibliometrix was carried out. These
analyses determined the emerging lines of research about GSI in recent years (2017–2021),
which are mainly related to karst aquifers, groundwater residence time and critical zones.
The analysis of the intellectual structure of GSI included the review of 6633 publications,
78 countries, 1085 sources (journals, and books, among others) and 13,867 authors.

This study evaluated the evolution of scientific production for 52 years through the
analysis of three periods: I (1969–1990), II (1991–2005), and III (2006–2021). Periods I and
II did not significantly contribute to publications because, in the past, most of a student’s
thesis (M.Sc. and PhD) consisted of writing a report related to their results. Thus, the
researcher was not obliged to publish their work in a professional journal. Additionally, in
Latin America, universities did not require their research professors to publish publications
indexed in Scopus or WoS; they were mostly published in local bibliographical information
systems (e.g., Latindex), whose production is not reflected in the database of this study.
However, the third period reached exponential growth, representing 82.34% of the total
publications because, in recent years, institutions (depending on the country and university)
require at least one scientific article to graduate as an M.Sc. or Ph.D.

The main limitation of this study was that some database documents published before
1990 did not include keywords. Therefore, some terms would be lost in the thematic evolution
analysis from 1969 to 1995. This work represents a contribution to the academy by:

• Exposing the study techniques and methodologies that enrich scientific knowledge
about GSI. For example, the combination of hydrochemical techniques and stable
isotopes of water for the recharge source identification and contamination in surface
water-groundwater systems, in addition to the environmental isotopes application for
the hydrological systems understanding and water quality. Finally, in the generation
of conceptual models of the river-aquifer interaction, we would include the modeling
of hydrological processes at the level of watersheds, aquifers, infiltration, and urban
groundwater systems.

• The analysis of the publications on GSI in the period 1969–2021 allowed us to know the
main applications of stable isotopes in groundwater which contribute to the approach
of the conditions and characteristics of conceptual models of river-aquifer systems
at the watershed level. Stable isotopes also provide insight into groundwater flow
dynamics, recharge sources’ identification, meteoric waters and research related to
karst aquifers. In addition, they help to identify possible sources of contamination.
Finally, with the intervention of radioactive isotopes such as tritium (δ3H), aquifer
waters are dated, and residence times in groundwater are determined.

• Most research on GSI is conducted in China, the United States, Japan and Australia
(see Table 2). It is because these countries presented a contribution from at least
65 countries, obtaining the most cited publications in the database, mainly on the
following topics: residence times and flow paths of water, groundwater recharge
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estimation, the occurrence of denitrification in shallow aquifers in agricultural areas,
spatio-temporal evolution in stable isotopes in precipitation, and groundwater salin-
ization. Moreover, in China, there are publications related to groundwater pollution,
hydrogeochemistry characterization in arid, semi-arid zones, and human impacts on
karst groundwater contamination. In the United States, there are publications about
isotopic variation in groundwater; in Japan, there is research on aquifer interaction
through hydrochemistry; in Australia, there is research about palaeohydrology and
the investigation of groundwater/surface-water interactions. It highlighted the value
of scientific databases that show relevant information contributing to integrated water
resources management.
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223. Kalvāns, A.; Dēlin, a, A.; Babre, A.; Popovs, K. An insight into water stable isotope signatures in temperate catchment. J. Hydrol.
2020, 582, 124442. [CrossRef]

224. Chandrajith, R.; Diyabalanage, S.; Premathilake, K.M.; Hanke, C.; van Geldern, R.; Barth, J.A.C. Controls of evaporative irrigation
return flows in comparison to seawater intrusion in coastal karstic aquifers in northern Sri Lanka: Evidence from solutes and
stable isotopes. Sci. Total Environ. 2016, 548–549, 421–428. [CrossRef]

225. Qiu, H.; Gui, H.; Cui, L.; Pan, Z. Hydrogeochemical Processes and Quality Assessment of Groundwater in Sulin Mining Area,
Northern Anhui Province, China. Water Resour. 2021, 48, 991–1000. [CrossRef]

226. Manciati, C.; Taupin, J.D.; Patris, N.; Leduc, C.; Casiot, C. Diverging Water Ages Inferred From Hydrodynamics, Hydrochemical
and Isotopic Tracers in a Tropical Andean Volcano-Sedimentary Confined Aquifer System. Front. Water 2021, 3, 597641. [CrossRef]

227. Thaw, M.; Visser, A.; Bibby, R.; Deinhart, A.; Oerter, E.; Conklin, M. Vegetation water sources in California’s Sierra Nevada (USA)
are young and change over time, a multi-isotope (δ18O, δ2H, 3H) tracer approach. Hydrol. Process. 2021, 35, e14249. [CrossRef]

228. Tweed, S.; Leblanc, M.; Cartwright, I.; Favreau, G.; Leduc, C. Arid zone groundwater recharge and salinisation processes; an
example from the Lake Eyre Basin, Australia. J. Hydrol. 2011, 408, 257–275. [CrossRef]

229. Kamel, S.; Dassi, L.; Zouari, K. Hydrogeological and hydrochemical approach of hydrodynamic exchanges between deep and
shallow aquifers in the Djerid basin (Tunisia). [Approche hydrogéologique et hydrochimique des échanges hydrodynamiques
entre aquifères profond et superficiel du bassin d]. Hydrol. Sci. J. 2006, 51, 713–730. [CrossRef]

230. Jolly, I.D.; Walker, G.R. Is the field water use of Eucalyptus largiflorens F. Muell. affected by short-term flooding? Austral Ecol.
1996, 21, 173–183. [CrossRef]

231. Huang, T.M.; Pang, Z.H.; Chen, Y.N.; Kong, Y.L. Groundwater circulation relative to water quality and vegetation in an arid
transitional zone linking oasis, desert and river. Chin. Sci. Bull. 2013, 58, 3088–3097. [CrossRef]

232. Herczeg, A.L.; Leaney, F.W. Review: Environmental tracers in arid-zone hydrology. Hydrogeol. J. 2011, 19, 17–29. [CrossRef]
233. Herrera, C.; Gamboa, C.; Custodio, E.; Jordan, T.; Godfrey, L.; Jódar, J.; Luque, J.A.; Vargas, J.; Sáez, A. Groundwater origin and

recharge in the hyperarid Cordillera de la Costa, Atacama Desert, northern Chile. Sci. Total Environ. 2018, 624, 114–132. [CrossRef]
234. Abotalib, A.Z.; Sultan, M.; Elkadiri, R. Groundwater processes in Saharan Africa: Implications for landscape evolution in arid

environments. Earth-Sci. Rev. 2016, 156, 108–136. [CrossRef]
235. Bahir, M.; Ouazar, D.; Ouhamdouch, S. Dam effect on groundwater characteristics from area under semi-arid climate: Case of the

Zerrar dam within Essaouira basin (Morocco). Carbonates Evaporites 2019, 34, 709–720. [CrossRef]
236. Bahir, M.; Ouhamdouch, S.; Carreira, P.M. Geochemical and isotopic approach to decrypt the groundwater salinization origin of

coastal aquifers from semi-arid areas (Essaouira basin, Western Morocco). Environ. Earth Sci. 2018, 77, 485. [CrossRef]
237. Behera, A.K.; Chakrapani, G.J.; Kumar, S.; Rai, N. Identification of seawater intrusion signatures through geochemical evolution of

groundwater: A case study based on coastal region of the Mahanadi delta, Bay of Bengal, India. Nat. Hazards 2019, 97, 1209–1230.
[CrossRef]

238. Ouhamdouch, S.; Bahir, M.; Ouazar, D.; Carreira, P.M.; Zouari, K. Evaluation of climate change impact on groundwater from
semi-arid environment (Essaouira Basin, Morocco) using integrated approaches. Environ. Earth Sci. 2019, 78, 449. [CrossRef]

239. Eissa, M.A.; Thomas, J.M.; Pohll, G.; Hershey, R.L.; Dahab, K.A.; Dawoud, M.I.; ElShiekh, A.; Gomaa, M.A. Groundwater resource
sustainability in the Wadi Watir delta, Gulf of Aqaba, Sinai, Egypt. Hydrogeol. J. 2013, 21, 1833–1851. [CrossRef]

240. Nair, I.S.; Brindha, K.; Elango, L. Assessing the origin and processes controlling groundwater salinization in coastal aquifers
through integrated hydrochemical, isotopic and hydrogeochemical modelling techniques. Hydrol. Sci. J. 2021, 66, 152–164.
[CrossRef]

241. Reddy, D.V.; Nagabhushanam, P.; Madhav, T.; Anita, M.; Sudheer Kumar, M. Hydrogeologically controlled freshwater dynamics
in the coastal sand dune aquifer of Ongole coast (AP), India. [Contrôle hydrogéologique de la dynamique de l’eau douce dans
l’aquifère de dunes de sable de la côte d’Ongole (Andhra Pradesh, Inde)]. Hydrol. Sci. J. 2014, 59, 2186–2202. [CrossRef]

242. Kanagaraj, G.; Elango, L.; Sridhar, S.G.D.; Gowrisankar, G. Hydrogeochemical processes and influence of seawater intrusion in
coastal aquifers south of Chennai, Tamil Nadu, India. Environ. Sci. Pollut. Res. 2018, 25, 8989–9011. [CrossRef]

243. Hepburn, E.; Cendón, D.I.; Bekele, D.; Currell, M. Environmental isotopes as indicators of groundwater recharge, residence
times and salinity in a coastal urban redevelopment precinct in Australia. [Utilisation des isotopes environnementaux comme
indicateurs de la rech]. Hydrogeol. J. 2020, 28, 503–520. [CrossRef]

244. Cantafio, L.J.; Ryan, M.C. Quantifying baseflow and water-quality impacts from a gravel-dominated alluvial aquifer in an urban
reach of a large Canadian river. [Quantification du débit de base et des impacts sur la qualité de l’eau imputables à l’aquifère
alluvial à prédominance gra]. Hydrogeol. J. 2014, 22, 957–970. [CrossRef]

245. Rueedi, J.; Cronin, A.A.; Taylor, R.G.; Morris, B.L. Tracing sources of carbon in urban groundwater using δ 13CTDIC ratios.
Environ. Geol. 2007, 52, 541–557. [CrossRef]

http://doi.org/10.1002/hyp.11206
http://doi.org/10.1016/j.dib.2020.105607
http://doi.org/10.1016/j.jhydrol.2019.124442
http://doi.org/10.1016/j.scitotenv.2016.01.050
http://doi.org/10.1134/S0097807821060154
http://doi.org/10.3389/frwa.2021.597641
http://doi.org/10.1002/hyp.14249
http://doi.org/10.1016/j.jhydrol.2011.08.008
http://doi.org/10.1623/hysj.51.4.713
http://doi.org/10.1111/j.1442-9993.1996.tb00598.x
http://doi.org/10.1007/s11434-013-5948-2
http://doi.org/10.1007/s10040-010-0652-7
http://doi.org/10.1016/j.scitotenv.2017.12.134
http://doi.org/10.1016/j.earscirev.2016.03.004
http://doi.org/10.1007/s13146-019-00497-0
http://doi.org/10.1007/s12665-018-7663-4
http://doi.org/10.1007/s11069-019-03700-6
http://doi.org/10.1007/s12665-019-8470-2
http://doi.org/10.1007/s10040-013-1031-y
http://doi.org/10.1080/02626667.2020.1826490
http://doi.org/10.1080/02626667.2013.871013
http://doi.org/10.1007/s11356-017-0910-5
http://doi.org/10.1007/s10040-019-02077-x
http://doi.org/10.1007/s10040-013-1088-7
http://doi.org/10.1007/s00254-006-0486-8


Water 2022, 14, 3173 25 of 26

246. Gilabert-Alarcón, C.; Daesslé, L.W.; Salgado-Méndez, S.O.; Pérez-Flores, M.A.; Knöller, K.; Kretzschmar, T.G.; Stumpp, C. Effects
of reclaimed water discharge in the Maneadero coastal aquifer, Baja California, Mexico. Appl. Geochem. 2018, 92, 121–139.
[CrossRef]

247. Re, V.; Cissé Faye, S.; Faye, A.; Faye, S.; Gaye, C.B.; Sacchi, E.; Zuppi, G.M. Water quality decline in coastal aquifers under
anthropic pressure: The case of a suburban area of Dakar (Senegal). Environ. Monit. Assess. 2011, 172, 605–622. [CrossRef]
[PubMed]

248. Abdelmohsen, K.; Sultan, M.; Ahmed, M.; Save, H.; Elkaliouby, B.; Emil, M.; Yan, E.; Abotalib, A.Z.; Krishnamurthy, R.V.;
Abdelmalik, K. Response of deep aquifers to climate variability. Sci. Total Environ. 2019, 677, 530–544. [CrossRef]

249. Bedaso, Z.K.; Wu, S.-Y.; Johnson, A.N.; McTighe, C. Assessing groundwater sustainability under changing climate using isotopic
tracers and climate modelling, southwest Ohio, USA. Hydrol. Sci. J. 2019, 64, 798–807. [CrossRef]
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