
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023 6601
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Spectral Indices Based on Sentinel-2 for Large-Scale

Mapping of Plastic-Covered Greenhouses
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Abstract—Plastic-covered greenhouses (PCG) have been exten-
sively used in agricultural practices around the world. Remote
sensing based on spectral indices is a key asset to monitor the spatial
distribution of these structures on a large scale. The primary objec-
tive of this research was to conduct a comprehensive benchmarking
of the available spectral indices based on Sentinel-2 data for large-
scale PCG mapping. For that, eight PCG indices were thoroughly
analyzed by systematically investigating their optimal thresholds
in five study sites located in Almería (Spain), Antalya (Turkey),
Agadir (Morocco), Weifang (China), and Nantong (China), in-
cluding also different growing seasons. The experimental results
demonstrated that the Plastic GreenHouse Index (PGHI) achieved
the best PCG mapping accuracy in almost all study sites and grow-
ing seasons tested. From the visual analysis carried out on the PGHI
mapping results, it was made out that the main misclassification
between PCG and background classes took place in water bodies
and industrial building land covers, particularly in the Weifang
and Nantong study areas. Based on this fact, the original version
of PGHI was modified by adding two processes aimed at masking
water bodies and industrial buildings. This new composite index,
called Improved PGHI (IPGHI), attained better accuracy results
in all study sites, especially in Chinese PCG areas. The average F1
score calculated for all the study cases improved from 86.05% using
PGHI to 90.51% applying IPGHI. The new approach provided a
significant and robust improvement in PCG large-scale mapping
for several types of PCG sites, even considering different growing
seasons.

Index Terms—Greenhouse mapping, large-scale mapping,
plastic-covered greenhouses (PCG), Sentinel-2 (S2), spectral
indices.

I. INTRODUCTION

THE first use of a plastic film in agriculture dated in 1948 [1]
marked a new era in the practice of intensive agriculture.
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Over the last 70 years, the use of plastic-covered greenhouses
(PCG) has reached a crucial impact, increasing the yield of
horticultural crops and bringing forward the first harvest [2].
In that way, although the area dedicated to PCG has been
increasing steadily around the world, published data on it are
highly variable. Briassoulis et al. [3] reported that the total area
in the major greenhouse production countries worldwide was
30 190 km2, whereas two recent studies coincided in indicating
a global PCG area of around 5000 km2 [4], [5]. These large
differences could be due to how the low tunnels and row covers
or mulching were considered in the official data of each country.
Moreover, in many countries, there is no separation between
greenhouse and field production data.

While plastic can be beneficial to agriculture, its widespread
use also raises concerns about its impact on public health by
means of the accumulation of microplastics in the environment
[6], mainly in soils [7]. A recent report by the Food and Agri-
culture Organization [7] makes a loud call to coordinate good
management practices and curb the disastrous use of plastics
throughout the agricultural sector. A recent work published by
Liu and Xin [8] reported that the agricultural area of plastic
greenhouses in China grew by 42.4% during 2000–2020, mainly
in the North China Plain. This fact increased inputs (e.g., nitro-
gen fertilizer) and area expansion (e.g., building materials), lead-
ing to an increase in greenhouse gas emissions. In addition, the
presence of PCG affects the esthetic appearance of landscapes.
In this vein, remote sensing can provide accurate and regular
information to monitor and map spatiotemporal PCG changes
around the world.

Remote sensing has been widely applied for mapping PCG
and plastic-mulched areas. According to Jiménez-Lao et al.
[9], 107 papers were published on this topic throughout the
period 2000–2019 based on the Scopus database. Most of these
publications used freely accessible medium-resolution optical
data from both Landsat 5/7/8 [10], [11], [12], [13], [14], [15],
[16], [17] and Sentinel-2 (S2) [18], [19], [20], [21], [22], [23].
In addition, very high resolution (VHR) commercial satellites
such as IKONOS, QuickBird, GeoEye-1, or WorldView-2 have
been successfully used for mapping PCG [24], [25], [26], [27],
[28]. These works applied a wide range of approaches (mainly
pixel-based and object-based) and classifiers (maximum likeli-
hood, threshold model, support vector machine, decision tree,
and random forest).
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In recent years, other high-resolution (HR) and VHR opti-
cal imaging spaceborne sensors, such as GaoFen-1, GaoFen-2,
Pléiades, WorldView-3, PlanetScope, RapidEye, and SPOT-7,
have been used to map PCG by applying the methodologies
mentioned above [29], [30], [31], [32], [33], [34]. Moreover,
deep learning techniques based on convolutional neural net-
works have been applied to classify PCG and mulching films
using VHR imagery, usually downloaded from open-access sites
[35], [36], [37], [38], [39].

The main problem of working on high-spatial-resolution im-
ages, usually hard to come by and expensive, lies in the fact that
the study areas are usually small, so the proposed methodology
cannot be extended to a large scale. Furthermore, object-based
approaches (OBIA) using classical machine learning methods
are also difficult to be applied to large-scale mapping due to
the demand for a large number of samples and computationally
intensive models [40].

Two interesting papers focused on testing spectral indices for
PCG mapping using S2 images were published in 2022. One
of them applied a pixel-based approach on single images [41],
whereas the other used S2 time series and OBIA [42]. Both
methodologies were tested in a large number of study sites. In
this sense, Anamur (Turkey), Almería (Spain), and Nantong and
Weifang (China) were considered by Zhang et al. [41], whereas
Aguilar et al. [42] worked on Antalya (Turkey), Almería (Spain),
Agadir (Morocco), and Bari (Italy). Both works tested several
already published PCG spectral indices. These indices included
the following.

1) The Greenhouse Vegetable Land Extraction (Vi), pro-
posed by Zhao et al. [43].

2) The Plastic-Mulched Land Cover Index (PMLI), devel-
oped by Lu et al. [10].

3) The Moment Distance Index (MDI), originally proposed
by Salas and Henebry [44] and later used by Aguilar et al.
[13] for mapping PCG.

4) The Plastic Greenhouse Index (PGI), proposed by Yang et
al. [16].

5) The Retrogressive Plastic Greenhouse Index (RPGI), also
developed by Yang et al. [16].

6) The Greenhouse Detection Index (GDI), introduced in
González-Yebra et al. [17].

In addition to the aforementioned indices, it is important to
highlight that Zhang et al. [41] developed a new index called
the Advanced Plastic Greenhouse Index (APGI). According
to the results reported in this work, APGI presented the best
experimental results regarding the improvement of PCG infor-
mation and the suppression of non-PCG background compared
with the existing indices. Furthermore, Aguilar et al. [42] also
included in their comparison study the Plastic GreenHouse Index
(PGHI), proposed by Ji et al. [45] to map PCG from Landsat 8
images using an OBIA approach in the city of Xuzhou (Jiangsu
Province, China). It is worth noting that PGHI was the best
ranked among all the indices tested by Aguilar et al. [42].

These indices can be used to transfer reliable label information
from S2 images to HR images in a pixel–scene–pixel–object
transferring process. After that, the transferred HR samples can
be used to train the deep semantic segmentation model and

Fig. 1. (a) Global location of the study sites. Detailed view of each of the
study areas located in (b) Almería, (c) Antalya, (d) Agadir, (e) Weifang, and
(f) Nantong. Red squares depict the study areas covering 3 km by 3 km.

produce PCG mapping results as has already been done by Zhang
et al. [46] using APGI.

Taking these last two recently published papers as a starting
point, the aim of this article is to highlight the most robust
spectral index extracted from S2 for large-scale PCG mapping
at present. For that, a fair benchmarking between published
spectral indices is mandatory. Consequently, a high number of
representative PCG study sites located in different countries, and
even considering different growing seasons, should be taken.

II. STUDY AREAS AND DATASETS

A. Study Areas

Five study areas covering 3 km by 3 km and with a large
presence of PCG, such as Almería (Spain), Antalya (Turkey),
Agadir (Morocco), Weifang (China), and Nantong (China), were
selected as study sites in this research (see Fig. 1).

The study site in Almería, located in southeastern Spain, has
a very dense PCG concentration [see Fig. 1(b)]. It is centered on
the geographic coordinates (WGS84) 36.7764°N and 2.6628°W,
being tomato, pepper, cucumber, aubergine, melon, and water-
melon the most representative intensive crops [33]. It is essential
to keep in mind that the spectral signature of PCG varies over
time as a result of the phenological evolution of the crops grown
inside them [18], as well as the frequent whitewashing of the
roofs to reduce excessive radiation and lower the greenhouse
temperature [11].
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The study site selected in Antalya is located in the Mediter-
ranean region of Turkey (36.9676°N and 38.8055°E) [see
Fig. 1(c)], where mostly vegetables, cut flowers, ornamental
plants, and saplings are cultivated. Although there are a few
glass greenhouses, plastic is the most typical covering material
for the greenhouse structures. Small-size PCG appear mostly
in the area, although there are a few large-size ones as well.
The density of greenhouses in this area is much lower than in
Almeria.

The study site in Souss-Massa plain, Agadir (Morocco), is
located at the geographic coordinates 30.1411°N and 9.4323°W
[see Fig. 1(d)]. In this case, the agricultural greenhouses PCG
are dedicated mainly to tomato cultivation. In addition to large-
size PCG, the region includes bare earth, agricultural fields with
orchards and outdoor crops [42].

The study area in Weifang (China) [see Fig. 1(e)] is centered
on the geographic coordinates 36.8009°N and 118.9265°E. This
area is characterized by a continental monsoon climate, which
makes the region favorable for crop production. Transparent and
translucent plastics are frequently used as covering material for
greenhouses [47]. The PCG are densely distributed in Weifang,
whereas the size of the individual greenhouse is small and
elongated (around 12 m by 60 m), being mostly separated from
each other by narrow corridors. The region covers settlement
areas, industrial buildings (including blue and concrete roof
buildings), and highways surrounded by vegetation.

The last study site in Nantong (China) is located in the
northern bank of the Yangtze River [see Fig. 1(f)]. This study
area is centered on the geographic coordinates 31.9457°N and
121.2463°E, being the PCG sparsely distributed and appearing
in small patches. Moreover, the dense river networks, frag-
mented farmlands, and widely distributed human settlements
create a very complicated landscape that poses a great challenge
for PCG mapping [41].

B. Datasets and Preprocessing

Seven cloud-free S2 satellite images corresponding to
Almería, Antalya, Agadir, Weifang, and Nantong study sites
were used in this work. Additionally, HR images were exclu-
sively used to extract the corresponding ground truth data. The
detailed information of the satellite images used in the research
is depicted in Table I.

The S2 mission is constituted of two identical satellites,
namely Sentinel-2A (S2A) and Sentinel-2B (S2B), both with
the multispectral instrument (MSI) sensor. MSI sensors acquire
images with 13 spectral bands from visible to shortwave infrared
region of the electromagnetic spectrum, with ground sample
distance (GSD) ranging from 10 to 60 m. The reader may refer
to the S2 User Handbook for more detailed information on the
technical specifications of the S2 [48].

Level-2A (L2A) orthorectified products, providing bottom-
of-atmosphere reflectance values, were used in this work. Since
the spatial resolution of S2 images varies from 10 to 60 m,
the spatial resolution of those spectral bands with GSD greater
than 10 m was down-sampled to 10 m by applying spatial
resampling without interpolation. It should be noted that the

TABLE I
SPECIFICATIONS OF THE SATELLITE IMAGES USED

spectral signature of PCG changes considerably between the
winter and summer seasons because of the whitewashing of
greenhouse roofs and black net coverings, which is very frequent
in summer at the study sites of Almería and Antalya. Thus,
the S2 images of Almería and Antalya were chosen based on
trying to cover these two different seasons. The S2 images of
Weifang and Nantong were acquired in December following
the recommendations reported by Zhang et al. [41] regarding
the favorable climatic conditions and the suitable phenological
stages of the crops under the PCG in these regions. It is worth
mentioning that the selection of the S2 images was mainly based
on the criteria of dates as close as possible to the HR images
corresponding to each study area and the absence of clouds (see
Table I).

HR orthoimages from WorldView-3, SPOT-7, Deimos-2, and
Pléiades were used to attain an accurate ground truth, i.e.,
individual greenhouses in this case. It should be noted that
atmospherically corrected and pan-sharpened HR images for
all the study sites were used to ensure an accurate ground
truth. The spatial resolution of atmospherically corrected and
pan-sharpened HR orthoimages is given in Table I.

All S2 images covering the five study areas were coregis-
tered with their corresponding HR orthoimages by utilizing the
AROSICS library, available through the Python programming
language [49]. Then, they were clipped according to the planned
study areas of 3 km by 3 km.

III. METHODS

A. Spectral Indices

Eight spectral indices specially devised to deal with mapping
PCG or plastic-mulched land covers were tested in this work
(see Table II). Six of them (APGI, MDI, GDI, PGI, RPGI, and
PMLI) have been recently tested by Zhang et al. [41] and Aguilar
et al. [42] on several PCG study areas. These eight indices were
computed for all S2 images covering the study areas.

Only the required S2 bands for the calculation of the indices
were employed in this research [i.e., coastal blue (B1: 60 m
spatial resolution), blue (B2: 10 m), green (B3:10 m), red (B4:
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TABLE II
SPECTRAL INDICES TESTED FOR MAPPING PCG

10 m), near-infrared (B8: NIR, 10 m), shortwave infrared-1
(B11: SWIR1, 20 m), and SWIR2 (B12: 20 m)], all of them
resampled to 10 m. It should be underlined that MDI was
calculated using the blue, green, red, NIR, SWIR1, and SWIR2
bands of S2. Moreover, ρi in Table II refers to the reflectance of
the band i, whereas λ is the wavelength in micrometer.

B. Extraction of Ground Truth and Obtaining Pure Pixels for
PCG and Non-PCG

All PCG included in each 3 km by 3 km study site were
manually digitized as vector files using the corresponding pan-
sharpened HR satellite orthoimages as an on-screen reference.
It is important to note that the agricultural greenhouses located
in Antalya were divided in PCG (900 in our study area) and
glass greenhouses (128 in the study area) based on a field visit.
Finally, the 128 glass greenhouses were considered as non-PCG.
Furthermore, two different ground truths were carried out in
Almería and Antalya for summer and winter, respectively. For

Fig. 2. Methodology to extract pure samples for PCG and non-PCG classes.

all the study sites, the following step consisted of obtaining pure
samples (10 m by 10 m pixels in our case), fully representing
PCG and non-PCG classes.

For that, a fishnet formed by squared polygons with a side
length of 10 m was created. All fishnet polygons that were com-
pletely within the digitized PCG were selected via spatial query
as pure PCG samples. In the same way, the fishnet polygons
that were completely outside of the digitized PCG were selected
as pure non-PCG samples. In this way, S2 mixed pixels, which
could distort the results of the PCG classification using the eight
indices tested in this work, were removed. An illustration of this
procedure can be seen in Fig. 2.

C. Thresholds and Classification Accuracy Assessment

The PCG mapping ability of the investigated indices was
assessed employing a systematic selection of optimal thresholds
similar to that reported by Zhang et al. [41], although using all
the pure pixels extracted in the previous section. It is important
to note that all those pixels are not a statistical sample, but the
total population.

For each PCG index (eight indices) and S2 image (seven cases
according to Table I), 50 index thresholds were tested to classify
the corresponding image. These thresholds were established by
dividing the range of variation of every index over each image
(maximum value–minimum value) into 50 intervals. If the pixel
value was lower than the specified threshold for GDI, MDI,
PMLI, and Vi, or higher for the APGI, PGHI, PGI, and RPGI,
then that pixel was identified as PCG. Otherwise, the pixel was
labeled as non-PCG. In this way, for each PCG index and case
study, 50 binary images labeled as PCG or non-PCG classes
were created (i.e., one binary image for each threshold tested).

To evaluate the PCG mapping performance for each index and
threshold, a confusion matrix was constructed to compute some
accuracy assessment metrics such as user’s accuracy or precision
(UA), producer’s accuracy or recall (PA), overall accuracy (OA),
and F1 score (F1). These metrics are calculated by the following
equations:

UA =
TP

(TP + FP)
(1)
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PA =
TP

(TP + FN)
(2)

OA =
(TP + TN)

(TP + TN+ FP + FN)
(3)

F1 = 2× (UA × PA)

(UA + PA)
. (4)

Here, TP, FP, TN, and FN represent true positive, false posi-
tive, true negative, and false negative, respectively. TP denotes
the total number of correctly classified PCG pixels, whereas
FP represents the total number of pixels misclassified as PCG
when they are actually non-PCG pixels. Furthermore, FN repre-
sents the PCG pixels incorrectly identified as non-PCG pixels,
whereas TN corresponds to the total number of correctly classi-
fied non-PCG pixels.

D. Visual Evaluation

Visual evaluation gives an intuitive idea of the capability of
the tested indices to highlight PCG pixels and suppress back-
ground ones. Note that although mapping accuracies at optimal
thresholds were fully investigated at the selected study sites
covering a restricted area of 3 km by 3 km, a visual evaluation
was conducted for the entirety of each of the S2 images. In
this way, we can better assess the performance of each index
on land use/land cover types that are more difficult to classify,
such as industrial buildings, water canals, water bodies, or open
agricultural fields. Industrial buildings and water bodies are
often particularly challenging for large-scale PCG mapping [29],
[45].

IV. RESULTS

A. PCG Mapping Based on Indices and Optimal Thresholds

To compare the mapping results attained using each PCG
index for each study site and season (i.e., for each of the seven S2
images or datasets shown in Table I), the first step was to find out
the optimal threshold. This optimal threshold was the threshold,
among the 50 tested for each dataset, which produced the best
accuracy results in PCG classification based on the F1 score
computed using all pure samples. F1 score was used to determine
the optimal threshold because this measure takes both UA and PA
into account. The total number of pure samples extracted from
PCG and non-PCG classes, as well as their percentages for each
study case, is presented in Table III. Note that the ground truths
in Almería and Antalya for winter and summer were digitalized
on HR orthoimages taken at different dates, so it is possible that
a few PCG appear or disappear, mainly due to the change of
plastic sheet.

Table IV presents the classification accuracy, measured in
terms of F1, OA, UA, and PA, for each index and case study
from applying the corresponding optimal thresholds. As can be
seen in this table, and according to F1 score, PGHI achieved
the highest accuracy for all the investigated cases except for
Nantong, thus being the best global index tested with a mean
value for the F1 score of 86.04%. The ranking of the remaining
indices, in terms of the mean values of the F1 score, was MDI (F1

TABLE III
NUMBER OF PURE SAMPLES EXTRACTED FROM PCG AND NON-PCG CLASSES

= 85.67%), GDI (F1 = 85.60%), RPGI (F1 = 82.96%), APGI
(F1 = 78.35%), PMLI (F1 = 75.19%), PGI (F1 = 64.82%), and
Vi (F1 = 58.13%). It is important to highlight that the ranking
was almost the same for the OA metric: PGHI = 95.44%, GDI
= 94.90%, MDI = 93.80%, RPGI = 91.74%, APGI = 90.38%,
PMLI = 89.14%, PGI = 81.47%, and Vi = 67.35%. The PGHI,
MDI, and GDI indices all returned very similar accuracies, with
MDI being the best index in Nantong. Fourth place overall went
to RPGI, which presented its worse results in Almería Winter,
Agadir, and, especially, in Weifang. In the fifth position was
APGI, which showed its best performance in Nantong (second
place) and Almería Winter (third position). However, APGI
presented very modest accuracies in Antalya (both winter and
summer), Agadir, and Weifang. Overall, PMLI, PGI, and Vi
achieved lower F1 scores, as already reported by Zhang et al.
[41] and Aguilar et al. [42].

In order to have a more detailed view of the differences
between the performance of PGHI and APGI (the best indices
pointed out by Aguilar et al. [42] and Zhang et al. [41], re-
spectively), we will focus on two of the cases studied: Antalya
Summer, where PGHI presented a much better mapping accu-
racy than APGI, and Nantong, where the exact opposite was true
(see Table IV).

Fig. 3 depicts the mapping results of APGI and PGHI using
the optimal thresholds corresponding to Antalya Summer study
site. It can be made out that the classification mistakes, due
to PCG mistakenly classified as non-PCG (FN in orange) and
non-PCG erroneously classified as PCG (FP in green), were
quite balanced for both indices, being much higher for APGI
than for PGHI. Furthermore, most of the glass greenhouses in
Antalya Summer were incorrectly classified as PCG when using
PGHI. However, the PGHI index allowed us to correctly classify
glass greenhouses as non-PCG in Antalya Winter. This finding
seems to indicate that the whitewash applied to the greenhouse
roofs in summer probably masked any spectral signature patterns
typical of glass greenhouses.

Fig. 4 shows the mapping results obtained from applying
the APGI and PGHI indices in Nantong. In this study site,
the accuracy of PGHI was quite worse than that of APGI.
It is clear that the main problem of PGHI is related to the
mistakes in green (FP) that affects directly to UA (36.21%).
PGHI incorrectly classified as PCG some industrial buildings,
a couple of water canals, ponds, and some urban areas. On the
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TABLE IV
ACCURACY METRICS FOR THE OPTIMAL THRESHOLDS CORRESPONDING TO

THE INDICES INVESTIGATED

Fig. 3. Mapping results using the optimal thresholds of APGI and PGHI in
Antalya Summer: (a) RGB VHR orthoimage, (b) ground truth in vector format
(PCG are represented by green polygons), (c) APGI classification, and (d) PGHI
classification.

Fig. 4. Mapping results using the optimal thresholds of APGI and PGHI in
Nantong: (a) RGB VHR orthoimage, (b) ground truth in vector format (PCG
are represented by green polygons), (c) APGI classification, and (d) PGHI
classification.

contrary, this index presented a better performance in terms of
FN (actual PCG classified as non-PCG; depicted in orange),
reaching a PA of 74.36%. On the other hand, in the case of
APGI, the mistakes were mainly orange pixels (PA = 68.91%)
instead of green pixels (UA = 82.99%). APGI demonstrated its
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Fig. 5. Visual representation of the indices in the study site Almería Winter:
(a) whole orthoimage; (b) APGI; (c) PGHI; (d) MDI; (e) GDI; (f) RPGI; (g)
detailed orthoimage; (h) APGI; (i) PGHI; (j) MDI; (k) GDI; (l) RPGI.

ability to correctly classify troublesome classes, such as water or
industrial buildings, although it committed many errors mapping
PCG, thus presenting a low PCG recall metric.

B. Visual Evaluation of the Spectral Indices

Figs. 5 –7 show the visual evaluation results of APGI, PGHI,
MDI, GDI, and RPGI indices computed in some study sites,
referring both only to the 3 km by 3 km study areas and to the
area more extensive around them. All indices were visualized
by equalizing the histogram, using brighter colors (yellow) to
represent PCG and darker colors (blue) to refer to non-PCG.

In Fig. 5(b)–(f), it can be seen that APGI, MDI, and RPGI were
able to suppress the water class, whereas PGHI and GDI were
not. In addition, RPGI presented similar values regarding the
PCG class in the coastal and residential areas. It was also noted
that APGI and, to a lesser extent, PGHI were able to suppress the
industrial building within the purple square, whereas MDI, GDI,
and RPGI were unable [see Fig. 5(g)–(l)]. Focusing on the two
rectangular-shaped irrigation pools on the west side, they were
correctly labeled as non-PCG by all indices [see Fig. 5(g)–(l)].

None of the indices tested were able to completely suppress
the Yangtze River in Nantong [see Fig. 6(b)–(f)], probably due
to the presence of suspended solids in the water. Regarding the
industrial buildings in Nantong, MDI and APGI were capable
to classify them as non-PCG better than the other indices [see
the purple square in Fig. 6(g)–(l)]. In any case, the classifica-
tion of the many existing industrial buildings and factories in
Nantong and Weifang was generally very weak. For instance,

Fig. 6. Visual representation of the indices in the study site Nantong: (a) whole
orthoimage; (b) APGI; (c) PGHI; (d) MDI; (e) GDI; (f) RPGI; (g) detailed
orthoimage; (h) APGI; (i) PGHI; (j) MDI; (k) GDI; (l) RPGI.

the industrial building in Weifang circled in Fig. 7(g)–(l) was
misclassified as PCG by all indices. However, it is worth noting
how industrial buildings with red roofs were well classified as
non-PCG. In addition, although the highway seen in Fig. 7(g)
was correctly suppressed with APGI and RPGI, it was mistak-
enly classified as PCG by PGHI, MDI, and GDI [see Fig. 7(h)–
(l)]. Paying attention to the lake located in the southeast of the
area given in Fig. 7(a), it was labeled as PCG when using the
GDI and PGHI indices, whereas APGI correctly assigned it to
the background (non-PCG) [see Fig. 7(b)–(f)].

C. PGHI Improved

Table IV revealed that PGHI and GDI consistently reached the
highest accuracies in all study sites except Nantong. Besides, as
shown in Figs. 5–7, the PGHI and GDI presented deficiencies to
correctly assign some background land cover types, including
industrial buildings and water bodies or canals, particularly in
the study area of Nantong. In fact, both indices showed a very
similar pattern to map PCG for all the cases studied. Aguilar
et al. [42] pointed out PGHI as the best PCG index in 44 S2 single
images taken in Almería, Antalya, and Agadir. In addition, PGHI
is an extremely simple index, which makes it computationally
fast, particularly when compared to GDI.

With the idea in mind of PGI, where a composite index was
proposed by Yang et al. [16] including two restrictions based
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Fig. 7. Visual representation of the indices in the study site Weifang: (a) whole
orthoimage; (b) APGI; (c) PGHI; (d) MDI; (e) GDI; (f) RPGI; (g) detailed
orthoimage; (h) APGI; (i) PGHI; (j) MDI; (k) GDI; (l) RPGI.

on NDVI and NDBI, this section proposes an improvement of
PGHI to overcome the misclassification of water surfaces and
industrial buildings previously highlighted. The new index is
called Improved Plastic Greenhouse Index (IPGHI). Starting
with the classification corresponding to the best threshold value
obtained for PGHI (see Table IV), two more steps were added.

The first step was focused on avoiding the misclassification
between PCG and industrial buildings. For that, the color steel
buildings index (CSBI) proposed by Ji et al. [45] was applied,
mainly created to differentiate buildings with blue roofs and
PCG in study sites located in China using Landsat-8 satellite
imagery. This index takes advantage of the reflectance difference
between the SWIR1 and SWIR2 bands in buildings and PCG
land covers

CSBI =
ρSWIR1

ρSWIR2
. (5)

In our study, CSBI values of 0.800, 0.825, 0.850, 0.875,
0.900, and 0.925 were tested and, for each case studied, the
CSBI threshold that achieved the highest F1 score to map PCG
and non-PCG was chosen. These values were 0.800 for Almería
Winter, Antalya Winter, Antalya Summer, and Weifang, 0.900
for Almería Summer, 0.925 for Agadir, and, finally, 0.850 for
Nantong.

The second step included in the calculation of the IPGHI
index consisted of masking out water bodies (to be later labeled

Fig. 8. Flowchart of the PGHI improved method (IPGHI).

Fig. 9. F1 scores of IPGHI for each of the three steps.

as background) that usually were misclassified as PCG. In this
work, the sum of the reflectance values of SWIR1 and SWIR2
was used to distinguish water surfaces as it performed satisfacto-
rily in our study sites. This method is based on the fact that water
presents low values of SWIR1 and SWIR2. It is also true that
pixels belonging to other classes, such as very dark buildings
and even vegetation, might present low values in relation to the
sum of the SWIR bands. Nevertheless, it should be noted that
the last is not a problem in the particular case of mapping PCG.
Finally, threshold values for this index of 0.11 were used in
Almería and Antalya (for both Winter and Summer). A value of
0.18 was applied in Weifang, whereas 0.22 was the ideal value
in Nantong and Agadir.

Fig. 8 depicts the flowchart to classify PCG by applying the
IPGHI index based method considering the two aforementioned
steps. For instance, in the case of Nantong study site, the three
corresponding thresholds would be 0.72, 0.85, and 0.22 for
PGHI, CSBI, and the sum of SWIR bands, respectively.

Since there are no water bodies in the 3 km by 3 km study
areas located in Almería, Antalya, and Agadir, the application
of the threshold to mask out water did not improve accuracy in
these cases (see Fig. 9). On the other hand, the most striking
study areas are undoubtedly Weifang and Nantong. In Weifang,
an accuracy increment of about 7.1% was achieved when step
1 (CSBI threshold) was added to PGHI. Since there was no
presence of water bodies in this study area, no significant in-
crease was observed in terms of F1 score after adding step 2
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Fig. 10. Detailed area in Weifang: (a) RGB S2 image, (b) PGHI index,
(c) IPGHI index, (d) PGHI-based classification map, and (e) IPGHI-based
classification map.

Fig. 11. Detailed area in Nantong: (a) RGB S2 image, (b) PGHI index,
(c) IPGHI index, (d) PGHI-based classification map, and (e) IPGHI-based
classification map.

(sum of SWIR bands). In the study area of Nantong (3 km by
3 km), an increase of 3.8% was observed when step 1 was added
to PGHI, whereas a very significant improvement of 16.9% in
accuracy was achieved after applying step 2. The improvement
in accuracy after the application of step 1 was mainly because
CSBI was able to remove the misclassification between PCG
and white or blue roof industrial buildings [42], [45].

Fig. 10 shows a detailed area in Weifang where it can be
seen that industrial buildings, which were wrongly classified as
PCG using PGHI [green pixels in Fig. 10(d)], were classified as
non-PCG when applying IPGHI [see Fig. 10(e)]. Moreover, the
detailed area of Nantong represented in Fig. 11 depicts that the
misclassification of the water canals given in green color was
also avoided when using IPGHI.

The F1 score values for APGI, PGHI, and IPGHI computed
from only using pure pixels belonging to the seven datasets
of 3 km by 3 km are shown in Table V. Looking at the last
row, the average values of F1 score for PGHI had an overall
increase of 7.7 percentage points over APGI. IPGHI achieved

TABLE V
PCG MAPPING ACCURACIES OF AGPI-, PGHI-, AND IPGHI-BASED METHODS

FOR BOTH PURE PIXELS AND ALL PIXELS

the best average accuracies in this study, improving by almost
4.47 percentage points the original F1 score of PGHI. Actually,
IPGHI improved the results of PGHI mainly in Weifang (correct-
ing the misclassification of industrial buildings through CSBI)
and Nantong (correcting the misclassification of both industrial
buildings and water bodies).

Finally, a more realistic classification accuracy assessment
was carried out following the pixel-based strategy employed
by Nemmaoui et al. [19] and Aguilar et al. [42]. In this as-
sessment, each ground truth was converted into raster format
with 2 m GSD. Furthermore, classification methods based on
APGI, PGHI, and IPGHI were applied on the seven 3 km-sided
S2 images used in this work, but now they were resampled
to 2 m GSD (without interpolation) including all pixels (i.e.,
mixed pixels were not removed). The corresponding reference
data (ground truth) and classification maps derived from using
APGI, PGHI, and IPGHI, both with 2 m GSD, were compared
for each study case to attain the confusion matrices.

Table V shows the accuracy results yielded by APGI, PGHI,
and IPGH classifications working on 2 m GSD images and all
pixels strategy.

V. DISCUSSION

A. PCG Mapping Based on Indices and Optimal Thresholds

Although the main sample areas cover 3 km by 3 km, which
contains 300 × 300 pixels working on S2 10 m GSD images,
we have to be in mind that seven studied cases located in five
study sites were considered in this work. Moreover, all pixels
(not only a sample) in these seven cases were included in the
accuracy assessment. Thus, the accuracy assessment for pure
pixels was based on 459 723 pixels, whereas almost 16 million
pixels were studied when the strategy of all pixels and 2 m GSD
was carried out (see Table V). The work published by Yang
et al. [16] to develop PGI were supported by three accuracy
assessment based on 28 224, 1135, and 784 Landsat 30 m GSD
pixels, respectively. This work was mainly based on one sample
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area of 5 km by 5 km. Furthermore, Zhang et al. [41] used 40 000
pixels from S2 included in five study sites to propose APGI.

The sample areas used in this investigation included different
land covers such as PCG (a great variety of sizes and type
of plastic), glass greenhouses, residential building, industrial
building (red roof, blue roof, and concrete roof), water (canals
and agricultural ponds), bare solid, and vegetation. In addition,
we carried out a thorough visual evaluation of the PCG indices
in S2 images larger than 100 km by 100 km [see, for example,
Figs. 5(a), 6(a), and 7(a)] for all the seven cases studied. The last
give us important information to evaluate the effectiveness and
robustness of each index.

Zhang et al. [41] pointed out APGI as the best global PCG
index working on five study sites with an average F1 score of
91.62%. The rest of the indices achieved by Zhang et al. [41]
were MDI (F1 = 85.16%), PMLI (F1 = 72.40%), GDI (F1 =
71.73%), PGI (F1 = 71.32%), and Vi (F1 = 46.52%). They
also stated that MDI performed quite well in the Mediterranean
region, performing poorly in Weifang and Nantong. However,
it was quite intriguing that the results achieved for GDI were
so poor compared to APGI or MDI (it is important to note that
Zhang et al. [41] did not test PGHI). These notable differences
are attributed to the presence of the water bodies land cover,
which is, most of the time, correctly classified as non-PCG by
APGI and MDI, but not using GDI. Note that the study areas
used by Zhang et al. [41] were very large, including even large
sea masses, whereas in the study sites used in our work (3 km by
3 km) there was hardly any water (only in Nantong there were
a couple of water canals).

Very high F1 score values were achieved in Almería (see
Table IV), varying from 86.86% (PGI in Almería Summer) to
98.53% (PGHI in Almería Winter). It was mainly due to the
extremely high PCG density in this study area. Overall, the at-
tained accuracies were worse in study sites with low percentages
of the area covered by PCG (e.g., Weifang and Nantong; see
Table III). Indeed, PCG scattered patches are often difficult to
discriminate because their spectral signature is confused with
the signature of other land covers. Consequently, the accuracy
achieved by Zhang et al. [41] for APGI and MDI in Anamur
(Turkey), a study area with an impressive concentration of PCG,
was almost identical to those reached in Almería. Similarly,
classification was challenging in Weifang due to the small size
of the greenhouses and the close separation between them of
about 9.5 m (less than the 10 m pixel size of S2).

The standard deviation considering the seven optimal thresh-
old values (corresponding to the seven datasets tested) and the
best indices were 0.10 for MDI and GDI, 0.22 for PGHI, and
0.27 in the case of AGPI. Note that the lower standard deviation
value, the better performance of the index studied. Zhang et al.
[41] reported a standard deviation across five datasets of 0.06
for GDI, 0.07 for MDI, and 0.09 for APGI.

The optimal threshold values for PGHI were consistent for
Almería and Antalya Winter (1.11 and 1.20, respectively) and
Almería and Antalya Summer (0.87 and 0.91, respectively), also
being similar in the China study sites (0.77 for Weifang and 0.72
for Nantong). Ji et al. [45] reported threshold values for PGHI
ranging from 0.43 to 0.68 in study sites located in China, in this
case using Landsat-8 images. On the other hand, Aguilar et al.

[42] used an OBIA approach on 14 S2 images taken in 2020,
reporting mean cutting values of PGHI of 1.12, 0.52, and 0.71
for Almería, Agadir, and Antalya study sites, respectively.

Overall, GDI and MDI presented thresholds more consistent
considering all the study sites. The optimal threshold values
published by Zhang et al. [41] ranged between 2.95 and 3.13
for MDI and 1.18 and 1.35 for GDI, whereas in this work they
ranged from 2.97 to 3.24 for MDI and from 1.08 to 1.35 for GDI,
which turn out to be pretty close values. In the case of APGI,
Zhang et al. [41] provided values from 0.25 to 0.43, whereas
in the current study the optimal threshold values were ranging
from 0.29 (Agadir) to 1.05 (Antalya Summer). Moreover, Zhang
et al. [46] recommended APGI thresholds from 0.41 to 0.43 in
Mediterranean regions (Spain and Turkey) and 0.25 in China ar-
eas (Nantong and Weifang). In our study, quite different optimal
thresholds for APGI were set in 0.63, 0.66, 0.50, and 1.05 for
the Mediterranean regions (i.e., Almería and Antalya in Winter
and Summer) and 0.30 and 0.35 in China study sites (Weifang
and Nantong).

The spectral reflectance of PCG depends on several factors.
Among others, the whitewashing applied to reduce the tem-
perature inside, the kind of greenhouse (geometry of roof and
disposition of roof windows), the crop type under the plastic
sheets, and even the relationship between the light incidence
angle and the remote sensor point of view [28]. However, and
despite this fact, it can be concluded that the obtained optimal
thresholds for most of the indices studied in this research are in
line with those reported in other investigations, although it was
highly dependent on the characteristics of the study area.

B. Visual Evaluation of the Spectral Indices

From the detailed and extended views shown in Figs. 5–7,
and focusing on PGHI and APGI indices, we can highlight two
facts.

First, PGHI presented serious misclassification problems
dealing with water class (sea, canals, ponds, lakes, rivers, etc.).
By contrast, Zhang et al. [41] argued that APGI has the ability
to label as background (i.e., non-PCG) several land cover types,
including water and artificial surfaces. However, it should be
noted that APGI was not able to suppress the water in part of the
Yangtze River in the case of Nantong study site [see the southern
part in Fig. 6(b)]. This was because the spectral reflectance of
the water varies along the river, probably due to the presence of
suspended solids such as clay or silt.

Second, the classification of existing industrial buildings and
factories, particularly in Nantong and Weifang, resulted to be
quite poor, mainly using PGHI.

C. PGHI Improved

The inclusion of a step to mask out the water land cover
was already carried out by Lu et al. [10] and Ji et al. [45] for
mapping plastic-mulched land cover and PCG, respectively. Due
to the large differences in spectral signatures that this land cover
can present (e.g., dark water bodies, bright water bodies, water
bodies with different suspended solids), it is not trivial to find
a robust index to work well in all cases. However, the methods
based on handcrafted features have already demonstrated fine
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performance in optical images [50], [51], [52], being the nor-
malized difference water index the best-known feature. Actually,
the way to mask out water bodies could vary depending on the
study site. Moreover, we can use the S2 Scene Classification
Layer included in L2A products for removing for the class PCG
the pixels classified as water.

Concerning the thresholds applied for steps 1 (CBSI) and
2 (sum of the SWIR bands), Ji et al. [45] reported threshold
values for CSBI ranging between 0.83 and 0.87 using Landsat
8 imagery in two study sites located in China. However, it is
important to note that each PCG study area is different and
lighting and atmospheric conditions can vary significantly. Thus,
it is very difficult, almost impossible, to find a fixed threshold
value that works well for all the cases studied. However, a fairly
narrow range of values is given within which the optimal value
of CBSI (0.800 to 0.925) and sum of SWIR (0.11 to 0.22) should
lie. In fact, it is quite fast to decide which threshold values to
choose for a given zone.

Compared to the results shown in Table V for 10 m GSD pure
pixels, Zhang et al. [41] achieved an average F1 score for APGI
working on five S2 images of 91.62%, also reporting F1 score
values of 95.21%, 95.24%, and 96.20% for Almería Summer,
Almería Winter, and Anamur, respectively. These values are
similar to those attained in this work by applying APGI to the two
seasons in the study site of Almería. However, Zhang et al. [41]
achieved an impressive F1 score for APGI-based classification
in Weifang (80.56%) and Nantong (90.91%), much higher than
the values obtained in this work at the same study sites.

Regarding the accuracy results depicted in Table V with all
pixels and 2 m GSD, following the same methodology for the ac-
curacy assessment, Aguilar et al. [42] reported F1 score values of
94.28%, 90.88%, and 91.08% in Almería, Agadir, and Antalya,
respectively. They used an OBIA approach with S2 time series
and statistical features mainly based on PGHI. These figures
could be considered close to the best possible values achievable
for the considered study site. In this way, the accuracies in
Table V were yielded by IPGH-based classification, reaching
values very close to those reported by Aguilar et al. [42] in
Almería and Agadir, being a little worse in Antalya (see Table V).
It is important to note here that the PCG area studied by Aguilar
et al. [42] was located in Kumluca (Antalya), presenting a higher
concentration of PCG than the study area of Antalya used in the
current work.

Comparing the F1 score values attained for the accuracy
assessment strategies of 10 m GSD pure pixels and 2 m GSD
all pixels in Table V, it is important to underline that the most
significant decreases were computed in Weifang for all indices.
This was due to the particular shape of most of the PCG in this
study area, being very long and narrow (around 12 m), with a
separation between them of about 9.5 m [see Fig. 10(a)]. In this
sense, medium-resolution S2 images with 10 m GSD were insuf-
ficient to deal with this type of PCG, so many misclassifications
were found in the mixed pixels containing spectral signatures
coming from both PCG and non-PCG. This fact was already
noted by Zhang et al. [46] using S2 and especially working on
Landsat 8 [16], [41].

Finally, it is important to highlight that 3 km by 3 km
study sites perhaps can seem too small to assess the large-scale

mapping abilities of the tested indices. To deal with this, the
full S2 scenes (100 km × 100 km) were also used in the
visual evaluation. Exhaustive further investigations, similar to
the published by Liu et al. [53] for urban areas, should be carried
out to confirm the results presented in this work about PCG
indices.

VI. CONCLUSION

In this article, the PCG mapping ability of eight well-known
spectral indices has been comprehensively addressed by consid-
ering S2 images of five representative agricultural areas located
in Spain, Morocco, China, and Turkey, taking into account
even different growing seasons. In order to undertake a fair
comparison of the different indices, their optimal thresholds
were calculated taking into account all the existing pure pixels
(i.e., both PCG and non-PCG pure pixels) in each of the seven
cases considered. After that, the accuracy assessment of PCG
classification was carried out by means of classical accuracy
metrics derived from the corresponding confusion matrices.
Finally, the performance of the tested indices was discussed
quantitatively and visually.

According to the quantitative evaluation using the 3 km by
3 km sample areas, PGHI stood out among all the tested indices
showing the best performance in all the investigated study sites
except in Nantong (China). The best F1 score values yielded
by PGHI were 98.53%, 97.61%, 92.50%, 90.51%, 95.21%,
79.24%, and 48.70% for Almeria Winter, Almeria Summer,
Antalya Winter, Antalya Summer, Agadir, Weifang, and Nan-
tong, respectively. The global ranking of the eight tested indices
based on their F1 score mean values for the seven case studies
was PGHI (F1 = 86.04%), MDI (F1 = 85.67%), GDI (F1 =
85.60%), RPGI (F1=82.99%), APGI (F1=78.35%), PMLI (F1
= 75.19%), PGI (F1 = 64.82%), and Vi (F1 = 58.13%). PGHI
also showed a robust and stable threshold in all investigated
cases, presenting an acceptable standard deviation of 0.27 with
a mean value of 0.88. In addition, it should be noted that PGHI is
computed extremely easily using only two bands [Blue (B2) and
SWIR2 (B12)], giving it a distinct advantage over other indices,
especially in large-scale PCG mapping.

Although PGHI achieved the best accuracies (in terms of OA
and F1 score) in most of the study areas 3 km-sided, the visual
evaluation of more extended areas highlighted misclassification
problems in relation with the presence of water bodies and
industrial buildings, particularly in Weifang and Nantong study
sites. On this basis, a new composite index, called IPGHI, was
proposed in this work for masking out water bodies and build-
ings. As a result, IPGHI based classification method significantly
increased PCG’s mapping accuracy, specifically in Weifang (F1
score of 86.32%) and Nantong (F1 score of 69.34%). This new
pixel-based approach provided a significant and robust improve-
ment in the accuracy of mapping PCG located in different areas
of intensive agriculture around the world.
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