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bDept. Statistics and Applied Mathematics, University of Almeŕıa, La Cañada de San
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Abstract

Bayesian networks (BNs), also known as Bayesian belief networks or Bayes
nets, are a kind of probabilistic graphical model that has become very popular
to practitioners mainly due to the powerful probability theory involved, which
makes them able to deal with a wide range of problems.The goal of this review
is to show how BNs are being used in environmental modelling. We are
interested in the application of BNs, from January 1990 to December 2010,
in the areas of the ISI Web of Knowledge related to Environmental Sciences.
It is noted that only the 4.2% of the papers have been published under
this item. The different steps that configure modelling via BNs have been
revised: aim of the model, data preprocessing, model learning, validation and
software. Our literature review indicates that BNs have barely been used for
Environmental Science and their potential is, as yet, largely unexploited.

Keywords: Bayesian networks, Environment, Model implementation,
Software, Review

1. Introduction

1.1. Methodological development of Bayesian networks

The term Bayesian network was first stated by Judea Pearl in 1986 (Pearl,
1986a), who formally characterized their expressive power and designed an
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algorithm for efficiently computing probabilities from a BN, but only for
some particular network structures. But it was early in the 90s when BNs
became really popular tools for dealing with uncertain domains, mainly due
to the formulation of efficient algorithms for computing probabilities from
BNs without structural restrictions (Jensen et al., 1990a; Shenoy and Shafer,
1990) and the release of the first software for modelling using BNs (Andersen
et al., 1990).

The next step forward was the development of machine learning tech-
niques for BNs, which dramatically expanded the potential applications of
these models, giving the possibility of automatically inducing BNs from
databases (Cooper and Herskovitz, 1992; Spirtes et al., 1993).

Later on, Friedman et al. (1997) promoted the use of BNs as tools for
pattern recognition or classification, showing that these models were able
to compete with well known classifiers, such as classification trees (Quinlan,
1986).

Another important advancement came along with the introduction of
hybrid models, in which continuous and discrete variables were allowed to
coexist. The first attempt was the so-called Conditional Gaussian model
(Lauritzen, 1992), but it had the limitation of imposing structural restrictions
to the possible networks. A more general framework is the one based on
Mixtures of Truncated Exponentials (MTEs) (Moral et al., 2001) in which
no structural restrictions are imposed.

Taking advantage of the possibility to handle continuous domains, BNs
have recently been applied with remarkable success to regression problems
(Fernández et al., 2007; Morales et al., 2007; Fernández and Salmerón, 2008;
Fernández et al., 2010), in which the goal is to predict the values of a con-
tinuous response variable given the values of some explanatory variables.

1.2. Bayesian network definition

A Bayesian network (Jensen and Nielsen, 2007) is a statistical multivari-
ate model for a set of variables X = {X1, . . . , Xn}, which is defined in terms
of two components:

- Qualitative component: A directed acyclic graph (DAG) where each
vertex represents one of the variables in the model, and so that the
presence of an edge linking two variables indicates the existence of
statistical dependence between them.
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Figure 1: A Bayesian network with five variables.

- Quantitative component: A conditional distribution p(xi|pa(xi)) for
each variable Xi, i = 1, . . . , n given its parents in the graph, denoted
as pa(xi).

For example, the graph depicted in Figure 1 could be the qualitative
component of a Bayesian network for variables X1, . . . , X5. According to
the structure of the graph, it would be necessary to specify a conditional
distribution for each variable given its parents. In this case, the distributions
are p(x1), p(x2|x1), p(x3|x1), p(x4|x2, x3) and p(x5|x3).

1.2.1. Qualitative component of a Bayesian network

One of the most important advantages of Bayesian networks is that the
structure of the associated DAG determines the dependence and indepen-
dence relationships among the variables, so that it is possible to find out,
with no need of carrying out any numerical calculations, which variables are
relevant or irrelevant for some other variable of interest.

We will use a toy example from Jensen (2001) to explain the transmission
of information in a Bayesian network.

Example 1.1 (Burglary or earthquake). Mr. Holmes is working in his

office when he receives a phone call from his neighbor Dr. Watson, who tells

him that Holmes’ burglar alarm has gone off. Convinced that a burglar has

broken into his house, Holmes rushes to his car and heads for home. On his

way, he listens to the radio, and in the news it is reported that there has been

a small earthquake in the area. Knowing that earthquakes have a tendency

to turn burglar alarms on, he returns to his work.
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Figure 2: The Bayesian network for the burglary or earthquake example.

The scenario described in Example 1.1 can be represented by the Bayesian
network in Figure 2. In general, there are only three types of connections
among variables in a DAG: serial, converging and diverging connections.
Therefore, it is enough to explain how information flows for these three types
of connections. We will use the example above to illustrate this.

1. Serial connections. “Burglary” has a causal influence on “Alarm”,
which in turn has a causal influence on “Watson calls”. Therefore,
information flows from “Burglary” to “Watson calls” and vice versa,
since knowledge about one of the variable provides information about
the other. However, if we observe “Alarm”, any information about the
state of “Burglary” is irrelevant to our belief about “Watson calls” and
vice versa, since once we have certainty about the fact that the alarm
has gone off, the information provided by Watson does not change our
state of belief.

2. Diverging connections. “Earthquake” has a causal influence on both
“Alarm” and “Radio news”. Therefore, information flows from “Alarm”
to “Radio news” and vice versa, since knowledge about one of the vari-
able provides information about the other. For instance, if our only
knowledge is that the radio news reported a small earthquake, our be-
lief about the alarm going off would increase. On the other hand, if
we observe “Earthquake”, i.e. we have certainty about that, any infor-
mation about the state of “Alarm” is irrelevant for our belief about an
earthquake report in the “Radio news” and vice versa.
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3. Converging connections. “Alarm” is causally influenced by both “Bur-
glary” and “Earthquake”. However, in this case the last two variables
are irrelevant to each other: if we do not have any information about
the alarm, there is no relationship between the other two variables.
However, if we observe “Alarm” and “Burglary”, then this will effect
our belief about “Earthquake”: burglary explains the alarm, reducing
our belief that earthquake is the triggering factor, and vice versa.

In general, applying these three rules, it is possible to determine the
variables that are relevant to our goal variable.

1.2.2. Quantitative component of a Bayesian network

Once the structure is defined, it is necessary to know how strong the rela-
tionships are among the variables. This is achieved by using the quantitative
component of the Bayesian network.

Taking into account the independencies encoded by the network structure,
it holds that the joint distribution over all the variables is equal to the product
of the conditional distributions attached to each node, so that

p(x1, . . . , xn) =
n∏

i=1

p(xi|pa(xi)) ∀x1, . . . , xn ∈ ΩX1,...,Xn
, (1)

in which ΩXi
represents the set of all possible values of variable Xi.

Assume Xi is a variable in which we are interested, and XE is a set of
variables whose values can be known. Then, the prediction for the value ofXi

given XE can be obtained by computing the probability of each possible value
of Xi given each possible configuration of XE. This probability distribution
can be obtained from the joint distribution in Equation (1). In fact, there is
no need to compute the joint distribution, since there are efficient algorithms
that allow the calculation of p(xi|xE) taking advantage of the factorisation of
the joint distribution imposed by the network structure (Shenoy and Shafer,
1990; Madsen and Jensen, 1999).

1.3. Pros and cons of Bayesian networks

Some pros of BNs in environmental modelling are:

(1) Since nodes are modelled by means of probability distributions, risk and
uncertainty can be estimated more accurately than in models where
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only mean values are taken into account (Uusitalo, 2007). This prob-
abilistic representation makes BNs an appropiate tool for modelling
environmental systems, since it can deal with uncertainty (Rieman
et al., 2001; Ghabayen et al., 2004; McCann et al., 2006; Henriksen
and Barlebo, 2008; Malakmohammadi et al., 2009; Wang et al., 2009;
Haapasaari and Karjalainen, 2010).

(2) Since numeric values are attached to the relationship between the vari-
ables, the probability of a particular hypothesis can be automaticaly
computed (Ordóñez-Galán et al., 2009).

(3) Once the model is learned, the probability distribution of a node given
its parents is obtained, and even the other way round, the probability
distribution of a parent node given its child nodes can also be obtained
(Wooldridge and Done, 2004; Uusitalo, 2007), which allows us to know
the effects given the causes and the causes given the effects (Getoor
et al., 2004), and so they are used as inferential models (Nadkarni and
Shenoy, 2004; Malakmohammadi et al., 2009).

(4) In environmental sciences, experts and stakeholders opinions are use-
ful when modelling a problem/system, since they can guide the model
to focus on the most important parts, or by evaluating the candidate
model to find inconsistencies or differences with respect to established
theoretical properties (Batchelor and Cain, 1999; Cain et al., 2003; Mc-
Dowell et al., 2009; Wang et al., 2009; Cyr et al., 2010; Haapasaari and
Karjalainen, 2010). However this procedure has to be done properly
in order to avoid errors or bias in the model (Welp et al., 2006). BNs
are able to incorporate expert knowledge via a participatory modelling
procedure, since the relations between the variables can be visualized
easily through the graphical representation of the network, and so they
can be modified by the experts or stakeholders just by adding or re-
moving variables and links in the graph (Voinov and Bousquet, 2010).
This advantage makes them also easier to understand and visualize by
the final users (Seroussi and Golmard, 1994; Bacon et al., 2002; Cain
et al., 2003; Lacave et al., 2006; McCann et al., 2006; Henriksen et al.,
2007; McDowell et al., 2009).

(5) BNs are able to model complex systems with a large number of variables
(Getoor et al., 2004), in a quick and efficient way under some circum-
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stances (Luo et al., 2005). If an exact solution is unreachable, there
are algorithms available that can deliver an approximate solution, using
simulation techniques or deterministic approximation methods (Cano
et al., 2004).

(6) BNs are able to manage missing values in input data and perform the
proper predictions with the model built from them (Woody and Brown,
2003; Nadkarni and Shenoy, 2004; Ozbay and Noyan, 2006; Uusitalo,
2007; Axelson et al., 2009; Bressan et al., 2009).

However, some authors also mention some limitations:

(1) The building process of the network and the parameter estimation re-
quires more data as the number of variables increases (Pradhan et al.,
1996; Tremblay et al., 2004; Ordóñez-Galán et al., 2009) as long as
the accuracy in the estimations and in the network topology is to be
maintained.

(2) The main problem is due to the fact that most of the data available
are continuous or hybrid, and even though BNs can manage them, the
limitations are too restrictive (Lauritzen, 1992; Nyberg et al., 2006;
Uusitalo, 2007). The most extended solution is to discretize the vari-
ables, although some new solutions have been proposed, such as the
Mixtures of Truncated Exponentials model (MTE) (Moral et al., 2001)
or the Mixtures of Polynomials model (MP) (Shenoy and West, 2011),
however these solutions are not yet available in the usual commercial
BN software.

(3) Time series can be modelled as Dynamic BNs (Kjærulff, 1992; Jensen
and Nielsen, 2007), since the links in the networks may be considered as
the effect of time over the variables. However their complexity makes
medium size models usually intractable, since the number of variables
involved is greater than in static models (McCann et al., 2006; Zorrilla
et al., 2010).

(4) Fuzzy models (Zadeh, 1965; Walley, 1991) are a different way to express
ambiguity in a model, more related to imprecision or fuzzy events. BNs
are useful tools to deal with probabilistic theory, but they are also able
to handle these fuzzy models, using for example Credal networks (Coz-
man, 2000), in which the relation between two variables is expressed in
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terms of sets of probability distributions. However, these models are
not yet incorporated to the usual commercial BN software, and so they
are not available to the general scientific community.

2. Overview

A keyword search of the ISI web of Knowledge, for the period Jan-
uary 1990 to December 2010, using the search terms “Bayesian Networks”,
“Bayesian Belief Networks” and “Bayes Nets” was carried out. The topics
selected were papers or reviews, resulting in 1375 documents retrieved. Fig-
ure 3 shows the distribution of papers by year of publication. Two phases
can be identified: between 1990 and 2002 the number of papers published
per year was less than 50; but from 2003 there was an exponential trend in
the number of papers published, with 226 in 2010 alone.
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Figure 3: Bayesian networks publications in the last two decades.

Over the period reviewed, the highest proportion of publications relating
to BNs fall into two subject areas (Computer Sciences and Mathematics;
Table 1), while Environmental Sciences papers were infrequent (4.2%). These
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Scientific area Percentage
Computer Sciences 27.3

Mathematics 20.9
Engineering 16.2

Health Sciences 15.0
Life Sciences 10.9

Sociology and Education 4.4
Environmental Sciences 4.2

Others 1.0

Table 1: Percentage of papers in different scientific areas obtained from join-
ing similar ISI Web of Knowledge subject areas. Others refer to Goverment
Law, Public Administration, and Demography and Acoustics.

data indicate that, despite their potential, BNs have barely been applied in
Environmental Sciences.

The review of papers related to environmental sciences, using the search
terms “Bayesian Networks”, “Bayesian Belief Networks” and “Bayes Nets”
were achieved from the subjects areas: Environmental Sciences & Ecology,
Agriculture, Water Resources, Marine & Freshwater Biology, Biodiversity
& Conservation, Forestry, Geology, Meteorology & Atmospheric Sciences,
Fisheries, Developmental Biology, Virology, Geography, Antrophology, Geo-
chemistry & Geophysics, Demography, Zoology, Plant Sciences, Energy &
Fuels, Evolutionary Biology, Mycology, Chemistry, Microbiology, Life Sci-
ences & Biomedicine-Other Topics and Operations Research & Management
Science. We only obtained valid references from the first nine subject areas
mentioned above. The list obtained was refined to exclude papers not related
to Environmental Sciences or Bayesian networks. The search was extended
manually to papers and journals outside the scope of the ISI Web of Knowl-
edge. Finally 128 papers were selected. In Table 2 these papers are classified
according to the different ISI Web of Knowledge subject areas. Those pa-
pers assigned by the ISI Web of Knowledge to more than one subject area
and those from journals not included in the index were assigned to a specific
subject area according to our criteria. From the total of 128 papers selected,
14 do not build any BN model, despite they discuss about BNs and Envi-
ronmental Sciences. These papers are assigned to a general category named
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“Others”.
Table 3 lists the different features of a BN, thoroughly explained in Section

3, and Table 4 shows the results of the papers reviewed.

3. Model implementation

The process of modelling involves different steps (Marcot et al., 2006;
Nyberg et al., 2006; Maier et al., 2010). A general procedure applicable to
the BN modelling can be summarized as follows:

1. Identification of the aim of the model.

2. Data pre-processing: Data preparation and refinement.

3. Model learning: Build the model from available information.

4. Validation: Check the representativity of the model and the accuracy
of the inference results.

Each of these steps can be done is many different ways. This is what will
be explained in the remainder of this section.

3.1. Aim of the model

The first result we obtain when modelling a problem through a BN is a
characterization of the actual problem, in terms of the relationships between
the different variables and their strength. Due to the (in)dependence rela-
tionships expressed in the graph through the presence or absence of links,
this information is presented in a clear and simple way.

One of the most interesting features of BNs is their ability to compute
posterior probabilities, given some evidence. We call evidence or finding the
knowledge about the value of one or more variables of the model. The com-
putation of the posterior probability is called inference, evidence propagation
or belief updating. It is an interesting tool since we can observe the change,
in terms of probability, of some variables, given the value of some others. A
lot of different algorithms to compute probabilities have been proposed by
different researchers. Exact algorithms are usually based on the idea of per-
forming the computations locally, e.g., the fusion algorithm (Pearl, 1986b,
1988), the variable elimination method (Zhang and Poole, 1996) and the
junction tree algorithm (Lauritzen and Spiegelhalter, 1988; Jensen et al.,
1990a,b). Although the independence relationships may help, computing
probabilities in a BN can be too costly (Cooper, 1990); to solve partially
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Category # References
Environmental
Science & Ecology
(ES&E)

37 Aalders and Aitkenhead (2006), Aitkenhead and Aalders (2009), Bacon
et al. (2002), Borsuk et al. (2004), Dlamini (2010), Dorner et al. (2007),
Faisal et al. (2010), Farmani et al. (2009), Fernandes et al. (2010), Haa-
pasaari and Karjalainen (2010), Hosack et al. (2008), Howes et al. (2010),
Johnson et al. (2010a), Kocabas and Dragicevic (2009), Lehmkuhl et al.
(2001), Liedloff and Smith (2010), Little et al. (2004), Lynam et al.
(2010), Marcot et al. (2001), Mesbah et al. (2009), Milns et al. (2010),
Molina et al. (2009a), Nash et al. (2010), Newton (2010), Pal et al. (2001),
Park and Stenstrom (2008), Pellikka et al. (2005), Pollino et al. (2007b),
Qu et al. (2008), Raphael et al. (2001), Steventon et al. (2006), Steventon
and Daust (2009), Stiber et al. (1999), Ticehurst et al. (2007), Varis and
Kuikka (1997b), Voie et al. (2010), Walshe and Massenbauer (2008)

Water Resources
(WR)

30 Ames et al. (2005), Barton et al. (2008), Batchelor and Cain (1999),
Borsuk et al. (2001), Bromley et al. (2005), Calder et al. (2008), Castel-
letti and Soncini-Sessa (2007b), Chan et al. (2010), Cheon et al. (2008),
Dawsey et al. (2006), Ghabayen et al. (2004), Henriksen et al. (2007),
Henriksen and Barlebo (2008), Kollat et al. (2008), Kragt et al. (2010),
Malakmohammadi et al. (2009), Mart́ınez-Santos et al. (2010), Molina
et al. (2009b), Park and Stenstrom (2006), Robertson et al. (2009b),
Robertson et al. (2009a), Said et al. (2005), Said (2006), Santa Olalla
et al. (2005), Santa Olalla et al. (2007), Saravanan (2008), Stow et al.
(2003), Varis and Keskinen (2006), Wang et al. (2009), Zorrilla et al.
(2010)

Agriculture (A) 9 Bashari et al. (2009), Bressan et al. (2009), Cain et al. (2003), Gambelli
and Bruschi (2010), Holt et al. (2006), Kristensen and Rasmussen (2002),
McDowell et al. (2009), Saravanan (2010), Tari (1996)

Geology (G) 7 Eidsvik et al. (2004), Grêt-Regamey and Straub (2006), Hapke and Plant
(2010), Harris et al. (2009), Oliveros et al. (2008), Porwal et al. (2006),
Qin et al. (2006)

Marine & Fresh-
water Biology
(MF&B)

9 Grech and Coles (2010), Langmead et al. (2009), Reinert and Peterson
(2008), Renken and Mumby (2009), Shenton et al. (2010), Stelzenmüller
et al. (2010), Stewart-Koster et al. (2010), Ticehurst (2008), Wooldridge
and Done (2004)

Biodiversity &
Conservation
(B&C)

8 Aguilera et al. (2010), Johnson et al. (2010b), McNay et al. (2006), New-
ton et al. (2007), Pollino et al. (2007a), Smith et al. (2007), Tattari et al.
(2003), Wilson et al. (2008)

Forestry (Fo) 6 Cyr et al. (2010), Henderson and Burn (2004), Ordóñez-Galán et al.
(2009), Rieman et al. (2001), Stassopoulou et al. (1998), Walton and
Meidinger (2006)

Fisheries (Fi) 5 Axelson et al. (2009), Giles (2008), Haapasaari et al. (2007), Hammond
and O’Brien (2001), Uusitalo et al. (2005)

Meteorology and
Atmospheric Sci-
ences (M&AS)

3 Barrientos and Vargas (1998) , Mount and Stott (2008), Varis and Kuikka
(1997a)

Others 14 Aspinall et al. (2006), Castelletti and Soncini-Sessa (2007a), Croke et al.
(2007), Hammond (2004), Lynam et al. (2007), Marcot et al. (2006),
McCann et al. (2006), Nyberg et al. (2006), Pshenichny et al. (2009),
Ricci et al. (2003), Tremblay et al. (2004), Uusitalo (2007), Varis (1997),
Varis and Kuikka (1999)

TOTAL 128

Table 2: Papers reviewed by subject.
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Characteristic Options Abbreviations

Aim of the model (A)

Inference I
Characterize C
Classification with fixed str. Clf
Classification (no str.) Clg
Regression R

Variable (Var)

Discrete D
Discretize Dis
Continuous C
Hybrid Hy
No information NI

Discretize (Dis)

Experts Exp
Software Soft
Equal Frecuency Interval EFI
Entropy minimizator EM
Deterministic equations DE
Several S
No information NI

Model learning (ML)

Data D
Experts Exp
Both B
No information NI

Validation (Val)

Train & Test TT
Cross Validation CV
Experts Exp
Previous models Pm
Sensitivity analysis SA
Goodness of fit Gof
Several S
No validation NV

Software (Soft)

Analytica A
WINBUGS W
B-course Bc
Elvira E
C++ C
Genie G
Hugin H
Netica N
SamIam SA
Matlab M
Weka We
Several S
No information NI

Table 3: Abbreviations for each option of the characteristics under study.
Experts refer to domain experts, stakeholders and/or literature.
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Char. opt. ES&E WR A G M&FB B&C Fo Fi M&AS Total %

A

I 28 24 8 3 5 4 3 4 2 81 71.1
C 1 2 0 1 1 1 0 0 0 6 5.3
Clg 7 1 0 2 3 2 3 1 1 20 17.5
Clf 1 2 1 1 0 1 0 0 0 6 5.3
R 0 1 0 0 0 0 0 0 0 1 0.9

Var

D 20 13 6 3 6 4 5 2 1 60 52.6
Dis 9 13 3 2 2 1 1 3 1 35 30.7
C 3 1 0 0 0 1 0 0 0 5 4.4
Hy 0 1 0 0 0 1 0 0 0 2 1.8
NI 5 2 0 2 1 1 0 0 1 12 10.5

Dis

Exp 1 3 2 0 0 1 1 1 0 9 25.7
Soft 1 0 0 0 0 0 0 0 0 1 2.9
EFI 0 1 0 0 0 0 0 0 0 1 2.9
EM 0 0 0 1 0 0 0 0 0 1 2.9
DE 0 3 0 0 0 0 0 0 0 3 8.6
S 2 0 0 0 1 0 0 0 0 3 8.6
NI 5 6 1 1 1 0 0 2 1 17 48.6

ML

D 9 4 0 2 1 1 0 0 1 18 15.8
Exp 9 14 3 1 2 3 3 2 1 38 33.3
B 17 9 6 3 5 4 3 2 1 50 43.9
NI 2 3 0 1 1 0 0 1 0 8 7.0

Val

TT 3 3 0 1 0 1 2 0 0 10 8.8
CV 3 1 1 2 1 1 1 0 0 10 8.8
Exp 4 6 1 0 1 0 2 0 1 15 13.2
Pm 2 0 0 0 0 0 0 1 0 3 2.6
SA 5 4 2 1 2 0 1 0 0 15 13.2
Gof 1 1 0 0 0 0 0 0 1 3 2.6
S 5 4 1 0 2 3 0 0 0 15 13.2
NV 14 11 4 3 3 3 0 4 1 43 37.7

Soft

A 1 1 0 0 0 0 0 0 0 2 1.8
W 0 0 0 0 0 1 0 0 0 1 0.9
Bc 0 0 0 1 0 0 0 0 0 1 0.9
E 0 0 0 0 0 1 0 0 0 1 0.9
G 0 0 1 0 0 0 0 0 0 1 0.9
H 4 10 3 1 0 2 0 3 0 23 20.2
N 15 7 2 1 6 3 3 2 0 39 34.2
C 0 1 0 0 0 0 0 0 0 1 0.9
SA 0 0 0 0 1 0 0 0 0 1 0.9
M 1 0 0 0 0 0 0 0 0 1 0.9
We 1 0 0 0 0 0 0 0 0 1 0.9
S 3 1 0 0 0 0 1 0 0 5 4.4
NI 12 10 3 4 2 1 2 0 3 37 32.5

Table 4: Number of papers analyzed in terms of the characteristics under
study, its options, and subject areas.
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this problem, some approximate algorithms have been proposed. These al-
gorithms do not return the actual probability distribution of the variables
of interest, but an approximation to it. Approximate algorithms can be di-
vided into two different groups: methods based on simulation, that obtain
a sample of the variables in the network via Monte Carlo simulation, and
the marginal probability distributions are then estimated from it (Fung and
Chang, 1990; Dagum and Luby, 1997; Hernández et al., 1996, 1998; Salmerón
et al., 2000) and deterministic methods, based on different ideas, e.g., replace
low-probability values by zeros, to decrease complexity, (Jensen and Ander-
sen, 1990), or simplify the network structure removing weak dependencies
(Kjærulff, 1994). These algorithms are implemented internally in the usual
commercial BN software packages, and so the final user may not be aware
of using them. That is the reason why most of the papers do not state the
algorithms they use, and so we have not included this topic in the results of
the review. The same happens with the algorithms about structural learning
of the model, explained in Section 3.3.

A specific problem related to inference is classification. In a classification
problem we are interested in predicting the value of one of the variables,
usually denoted as class variable, given the values of some of the remaining
variables, called feature variables. This is done via the inference process
mentioned before. The main difference with respect to the above results is
that our interest lies on one of the variables, and so we can concentrate and
try to model as precisely as possible the relationships regarding the class
variable, and not pay so much attention to the others. In fact, the BN is
constructed in such a way that it is more feasible that it returns the correct
value of the class variable given the evidence, rather than trying to accurately
model the joint probability of all the variables in the network. Although any
BN can be used for classification, in order to stress the importance of the
class variable, some fixed-structure BN models are used, like the Näıve Bayes
(Duda et al., 2001), Tree Augmented Network (Friedman et al., 1997) and
kDB (Sahami, 1996) models.

If instead, our aim is to predict the value of a continuous target variable,
then we are interested in a regression model. Regression models are widely
known in the Statistics literature (Faraway, 2005), however, they can also be
expressed as a BN (Fernández et al., 2007; Morales et al., 2007; Fernández
and Salmerón, 2008; Fernández et al., 2010), with some advantages: we do
not need to know the value of every variable to predict the value of the
response variable, and a complete probability distribution is returned for the
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target variable, so that the prediction values can be the mean value, mode,
median, or some other central tendency measure. Figure 4 shows the results
of the review process according to the different aims of the models.

Inference Characterize Classification (fixed str.) Classification (no str.) Regression
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Figure 4: Aim of the model in the papers reviewed.

3.2. Data pre-processing

Before starting the process of learning, we have to prepare the data in
such a way that learning algorithms can deal with them. Data pre-processing
requires to address the following issues:

Type of variables: general BNs were initially implemented for discrete
random variables. However, later on, some specific BN models were devel-
oped, incorporating the ability to deal with continuous or hybrid (discrete
and continuous) domains (Lauritzen and Wermuth, 1989; Lauritzen, 1992;
Cowell et al., 1999; Moral et al., 2001; Rumı́ et al., 2006; Langseth et al.,
2009). These models impose some restrictions over the structure of the net-
works, as well as over the probability distributions. They are proved to
perform better than discrete models, if the above mentioned restrictions are
consistent with the problem under consideration, since no error approxima-
tion is introduced, but specific algorithms are needed to perform inference on
them. If the use of some of these models is not possible, we need first to dis-
cretize the continuous values of our database, and then proceed as if all the
variables were discrete. The discretization of a variable is the process of mod-
ifying its values so that it is transformed into a discrete one. There are sev-
eral algorithms to do this, like entropy minimization, equal width and equal

15



frequency binning, deterministic equations, k-means, dynamic discretization
(Dougherty et al., 1995; Kozlov and Koller, 1997; Christofides et al., 1999),
but in general the result is an approximation to the actual data, which im-
plies loss of information. The narrower the discretization band, the smaller
the error that is added to the model. Figure 5 shows the percentage of the
papers according to the type of variables, and Figure 6 shows the distribution
of the different discretization methods found in the review process.

Hybrid Continuous Discretize Discrete No information

P
er

ce
nt

ag
e

0
10

20
30

40
50

60

1.8%
4.4%

30.7%

52.6%

10.5%

Figure 5: Type of variables in the papers reviewed. No information means
the percentage of papers that gave no information about the type of the
variables of the model.

Number of variables: nowadays it is easy to find extremely large databases
(variables and cases). The presence of many cases in the database implies
that the estimation of the distributions and the (in)dependence relationships
will be recovered more precisely. However, increasing the number of variables
in the network raises the complexity of the problem exponentially, and more
data are needed to estimate the probability distributions properly. Some of
the variables may represent the same information, so not every variable of
the database has to be part of the BN model. In the articles reviewed, the
number of variables ranged from 3 to 63, although 57.9% of the papers omit
the number of variables employed.

Missing values: most of the classical statistical techniques are not able to
deal with missing values. If only one value is missing in a case of the database,
even though the rest of values are present, the entire case is dropped, with
the corresponding loss of information. In contrast, learning algorithms of
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Figure 6: Discretization methods in the papers reviewed. Note that only
papers that discretized the data are considered. No information means the
percentage of papers that gave no information about how the discretization
was carried out. Several makes reference to papers that apply different meth-
ods to different variables of the model. They include experts, equal frequency
and equal width.

BNs can be adapted to use the Expectation Maximization algorithm (Demp-
ster et al., 1977; Lauritzen, 1995) and benefit from the partial information
contained in a case with missing values. This makes BNs excellent tools to
deal with very expensive or corrupted data.

Our literature review highlighted that only 9.6% of the networks con-
structed worked with missing values.

3.3. Model learning

This is the main step when modelling a problem using BNs. As mentioned
in Section 1, a BN has two main components, a qualitative component, i.e.
the graph structure, and a quantitative component, the probability distri-
butions. These two components have to be learned in connection, since the
graph structure conditions the distributions to be estimated.

Once the graph structure is learned, the probability distributions are ob-
tained by estimating the corresponding parameters; in the case of a general
discrete BN, the parameters of a multinomial distribution are estimated by
maximum likelihood, which is reduced to frequency counts, or a more sophis-
ticated formula is applied, like the Laplace correction (Good, 1965), oriented
to avoid zero-probabilities. In the case of continuous or hybrid BNs some
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other procedures are available (Castillo and Gutiérrez, 1998; Moral et al.,
2003; Rumı́ et al., 2006; Langseth et al., 2010).

So, the structure selection defines the BN. As mentioned before, there are
specific BN models with a fixed structure, e.g., Näıve Bayes and TAN, but
general BNs require a procedure to select the structure from the information
available.

Learning a structure implies discovering the (in)dependence relationships
between the variables, so one of the methods in the literature is based on
conditional independence tests, the so-called PC algorithm (Spirtes et al.,
1993).

A BN can also be seen as an abstraction of the database, and so the
problem can be reformulated as follows: “which is the BN among all possible
BNs that best represents the database?” In this sense, structure learning is
an optimization problem, where the solution is a BN in the set of all BNs.
This is the approach of the K2 method (Cooper and Herskovitz, 1992) and
similar ones (Romero et al., 2006). In order to check if one BN is better than
another, we need a measure of how good a BN is. There are many of them,
but one of the most frequently used is based on the Bayesian Information
Criterion (BIC) measure (Schwarz, 1978), which depends on the likelihood
and complexity of the estimated model.

Learning the structure of a BN directly from data may require a great
amount of data, however, as mentioned in Section 1.3, one of the advantages
of BNs is the possibility to incorporate expert knowledge to the model, in such
a way that the network is fully defined by the experts, or they incorporate
their knowledge to the network, for instance, by fixing a particular part of the
graph, while learning the rest from data, or stating probabilities for particular
events, considered as fundamental in the domain of application. Figure 7
shows the percentage of the papers depending on the learning procedure.

3.4. Validation methods

Depending on the aim of the model, the validation methods will be differ-
ent. If the model was constructed to characterize or perform inference, the
validation can be carried out through a different model which also represents
the same problem, or via stakeholders, to assess the relationships expressed
in the model. If the BN has a target variable, a sensitivity analysis (Jensen
and Nielsen, 2007) is also useful to determine which variables and states of
the variables are more influential with respect to the target variable. It shows
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Figure 7: Model learning in the papers reviewed. Both makes reference to
papers that combine expert knowledge and data. No information means the
percentage of papers that do not state how the model was learned.

when small changes in the probability of a state returns great changes in the
probability distribution of the target variable.

In the case of regression and classification scenarios, as any statistical
tool, BNs are learned from a set of cases, but intended to perform properly
for a wider range of data. To avoid the so-called overfitting, the database is
split into two different sets, a bigger one used for training the model, called
the training set and a smaller set called test set used to test the model. Then,
some measure of the accuracy of the model performance is computed, e. g.
log-likelihood, root mean squared error, prediction accuracy. The division
is usually made randomly, selecting about 80% of the data for training and
the rest for testing. If the same set of cases were used both for learning and
testing, then obviously, the performance measure would be higher, but not so
reliable. However, this train and test technique can produce a high variance
of the validation measure. To avoid this, two techniques can be used: Cross
validaton and Leave-one-out (Stone, 1974). These algorithms learn several
models, using in each of them different sets of train and test sets, and the
final performance measure is the average of the performances of all of them.
In this way, every data case has been used both for training and testing
the model, and since the different estimations of the validation measure are
negatively correlated, the final variance of the estimated validation measure
is decreased.
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It should be noted that, the estimated model should be learned with the
entire data set, even though the validation method used is Train & Test or
Cross Validation. The data division is only carried out in order to check the
model, but not to develop a final model, especially if it is to be used in a final-
user application. In that case the main interest is that the model behaves as
accurately as possible, and this is achieved by using in the learning process
as much information as possible.

An alternative validation method is carried out by means of a Goodness
of fit procedure, in which the results obtained with the model are compared
with the actual results from the database (real-world data), with no data
division. Figure 8 shows the general distribution of the papers according
to the validation method carried out, whilst Figures 9 and 10 show this
distribution depending on the aim of the model.
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Figure 8: Validation methods in the papers reviewed. No validation means
the percentage of papers that do not validate the model. Several makes
reference to papers that apply different validation methods. They include
experts, train & test, sensitivity analysis and prior models.

3.5. Software

As soon as the problem is medium-sized, the use of a computer and a
proper software to learn the model and compute the distributions is necessary.
Commercial and free software packages available are able to deal with many
of the components of a BN model problem. In Korb and Nicholson (2003)
and Murphy (2007) different software tools for managing BNs are explained
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Figure 9: Validation methods when the aim of the model was characterization
or inference in the papers reviewed. No validation means the percentage of
papers that do not validate the model. Several makes reference to papers
that apply different validation methods. They include experts, train & test,
sensitivity analysis and prior models.

and compared. Figure 11 shows the results of the review process according
to the software used.

4. Analysis of the results

In this section we highlight some of the results of the previous one: (1)
Despite the great potential of BNs to perform classification or regression
tasks, it should be emphasized that only 22.8% of the reviewed papers learn
classification models, and only one paper solves a regression problem, while
in 71.1% of the papers the aim of the model is inference. In particular, only
6 out of the 26 papers whose aim is classification use any of the well known
classification-oriented graphical structures. (2) With respect to the type of
variables, we can observe that 83.3% (including discrete and discretized vari-
ables) of the learnt models are discrete, in contrast to the 6.2% (including
continuous and hybrid variables) of papers that directly handle continuous
variables (3) Regarding validation methods, 37.7% of the reviewed papers do
not validate the model, even though that percentage decreases to 14.8% for
classification or regression models. (4) Expert knowledge is the most used
method in the discretization (25.7%), model learning (77.2% including ex-
perts and both) and validation (13.2%) processes. However, in classification
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Figure 10: Validation methods when the aim of the model was classification
or regression in the papers reviewed. No validation means the percentage of
papers that do not validate the model. Several makes reference to papers that
apply different validation methods. They include train & test and sensitivity
analysis.

and regression models, validation through experts is the less used method
(7.4%). (5) We have found lack of information in every step of the model
implementation. Specially in the discretization methods (48.6%), validation
methods (37.7%) and software used (32.5%).

5. Conclusions and recommendations

The literature review has highlighted how a large proportion of publica-
tions about BNs are from the fields of Mathematics and Computer Science.
This suggests that most of the research effort has been put on the theoreti-
cal and methodological development, as well as on software implementation
issues.

Looked at from another point of view, it is clear that, despite the exis-
tence of commercial software, use of BNs in Environmental Sciences is still
scarce. In environmental studies, BNs are mainly applied as a technique for
inference, using discrete data or discretized continuous variables. Environ-
mental Science experts play a fundamental role in the training and validation
of the models.

We think that the distribution of the papers shown in Table 4 is biased
due to two different factors. First, the software used to learn and interact
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Figure 11: Software applied to configure the structure in the papers reviewed.
Others makes reference to the software used at most in two papers. They
include WinBugs, B-course, Elvira, GeNie, C++, Weka, Matlab and Ana-
lytica. Several makes reference to papers that use different software in the
same paper. They include Netica, Matlab, Hugin, Microsoft Visual Basic,
Microsoft Excel and GeNie & Smile. No information means the percentage
of papers that do not indicate the software used.

with the model determines implicitly which procedures can be carried out
and which ones cannot. Just to mention a few, hybrid BNs are not allowed
in every software, and if so, in most of the cases the Conditional Gaussian
model is the only solution apart from simulation or discretization. Following
this argument, the validation of the model can only be done if the software
includes this feature, as for example, Cross Validation. Second, the affiliation
of the authors should also be taken into account; interdisciplinary works
usually reflect both the computer science and the environmental sides in
the paper, and so, the limitation of the software is in some sense overcome.
Although these papers stress the environmental solution of the problem, the
BN methodology carried out is clearly stated.

Based on this review we can make the following recommendations for
future work:

(1) Though BNs were initially implemented for use with discrete data, some
BN models are able to work with continuous or hybrid variables, avoid-
ing the introduction of errors during the discretization phase. There-
fore, a useful development would be the application of the algorithms
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referenced in Section 1 that allow continuous and hybrid data to be
processed in the same network environment.

(2) Environmental studies are sometimes obliged to work with missing val-
ues, which means that data cannot be processed using the traditional
statistical techniques. We recommend the use of BNs in environmental
studies with missing values, since BNs provide appropriate solutions
for this problem.

(3) A high percentage of the studies using BNs did not validate the model.
We suggest to the researchers to choose, from the many validation
techniques available, the one that best fits the objective of the model.

(4) As mentioned in Section 1.3, BNs are a valid tool for Participatory en-
vironmental modelling with experts and stakeholders, due to the ease
of interpretation and modification of the graph. This ease of modifi-
cation may become a problem, if the experts and stakeholders are not
aware of the concepts involved in the graphical representation of the
BN expressed in Section 1.2.1. We recommend the use of methods for
incorporating expert knowledge properly in a BN, as for example the
proposed by Heckerman et al. (1995) and Cano et al. (2011).

(5) We observe that the studies reviewed do not use a common language
for their BN modelling. There is a need for interdisciplinary meetings
between scientists where the language of BN modelling can be stan-
dardized.

Acknowledgements

This work has been supported by the Spanish Ministry of Science and
Innovation, through projects TIN2007-67418-C03-02 and TIN2010-20900-
C04-02, and by ERDF (FEDER) funds, and by the Regional Ministry of
Economy, Innovation and Science, Junta de Andalućıa, through project P08-
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