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Abstract

We consider the following discrete Sobolev inner product involving the Gegenbauer weight

(f, g)S :=

∫ 1

−1

f(x)g(x)(1− x2)αdx+M
[
f (j)(−1)g(j)(−1) + f (j)(1)g(j)(1)

]
,

where α > −1, j ∈ N ∪ {0}, and M > 0. Our main objective is to calculate the exact value

r0 = lim
n→∞

log
(
maxx∈[−1,1] |Q̃

(α,M,j)
n (x)|

)
log λ̃n

, α ≥ −1/2,

where {Q̃(α,M,j)
n }n≥0 is the sequence of orthonormal polynomials with respect to this Sobolev

inner product. These polynomials are eigenfunctions of a differential operator and the obtaining
of the asymptotic behavior of the corresponding eigenvalues, λ̃n , is the principal key to get the
result. This value r0 is related to the convergence of a series in a left–definite space. In addition,
to complete the asymptotic study of this family of nonstandard polynomials we give the Mehler–
Heine formulae for the corresponding orthogonal polynomials.

Keywords: Sobolev orthogonality · differential operators · asymptotics.
Mathematics Subject Classification (2010): 33C47 · 42C05

1 Introduction

In the framework of Sobolev orthogonality, we consider the nonstandard inner product

(f, g)S :=

∫ 1

−1
f(x)g(x)(1− x2)αdx+M

[
f (j)(−1)g(j)(−1) + f (j)(1)g(j)(1)

]
, (1)
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where α > −1, j ∈ N∪{0}, and M > 0. It is usually known as a Gegenbauer–Sobolev inner product
because its absolutely continuous part involves the classical Gegenbauer weight. We denote by

{Q(α,M,j)
n }n≥0 the sequence of orthogonal polynomials with respect to (1). Along this paper we also

use the Sobolev orthonormal polynomials, denoted by {Q̃(α,M,j)
n }n≥0 =

{
Q

(α,M,j)
n√

(Q
(α,M,j)
n ,Q

(α,M,j)
n )S

}
n≥0

.

Consider a sequence of polynomials, {Pn}n≥0, orthogonal with respect to a symmetric inner-
product ϕ that also satisfy a (possibly infinite order) spectral differential equation. In [10] the
authors give conditions for polynomials orthogonal with respect to a related discrete Sobolev
inner product of the form (f, g)S = ϕ(f, g) + Mf (j)(c)g(j)(c) to also satisfy a (possibly infi-
nite order) spectral differential equation. H. Bavinck in [6] extended this result to polynomi-
als {Qn}n≥0 orthogonal with respect to discrete Sobolev inner products of the form (f, g)S =
ϕ(f, g) +Mf (j)(c1)g

(j)(c1) +Nf (k)(c2)g
(k)(c2). Specifically Bavinck constructs a differential equa-

tion ℓ and eigenvalues λ̃n such that

ℓ[Qn](x) =
∞∑
i=1

ai(x)Q
(i)
n (x) = λ̃nQn(x).

Central to the construction of this differential equation is the reproducing polynomial kernel

Kn(x, y) :=
∑n

i=0
Q

(α,M,j)
i (x)Q

(α,M,j)
i (y)

(Q
(α,M,j)
i ,Q

(α,M,j)
i )S

.

Here we consider the Gegenbauer–Sobolev polynomials Q
(α,M,j)
n orthogonal with respect to the

discrete Sobolev–type inner product (1). We are interested in properties of the related polynomial
kernel scaled by the eigenvalues:

K(x, y; r) =
∞∑
i=0

λ̃−r
i

Q
(α,M,j)
i (x)Q

(α,M,j)
i (y)

(Q
(α,M,j)
i , Q

(α,M,j)
i )S

.

They are useful for some applications that two of the authors [12] are developing. Since that
work is unfinished we only give a brief motivation without details. The results on this paper are
self–contained and do not depend on this motivation.

Let (H, ⟨ ·, · ⟩H) be the completion space of polynomials under the inner product (f, g)S . Let
T be the self-adjoint operator in H generated by the differential expression L +MA, where L is
the linear differential operator associated with the Gegenbauer polynomials and A is an operator
that we will define later. T exists as an unbounded operator in H since λ̃n → ∞. In this case the
left–definite space Hr(T) with inner–product

⟨f, g⟩r := ⟨Trf, g⟩H

on the linear manifold D(Tr/2) yields a Hilbert space. Furthermore we may take the power Tr as
a self-adjoint operator in a left-definite space (see [11] for details).
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Now take r0 to be the least number such that for each r > r0 the kernelK(x, y; r) converges both

absolutely and in the left–definite spaceHr(T). Then for r > r0 the sequence

{
Q

(α,M,j)
n (x)√

λ̃r
n(Q

(α,M,j)
n ,Q

(α,M,j)
n )S

}
n≥0

forms a complete, orthonomal basis for Hr(T) and the reproducing property follows from the Par-
seval identity: 〈

TrK(x, ·; r+0 + r), f
〉
H

r+0

=
〈
K(x, ·; r+0 ), f

〉
H

r+0

= f(x).

Notice this gives K(x, y; r) as the reproducing kernel for the r − r+0 left–definite space of the
left–definite operator acting in the r+0 left–definite space generated by T.

It can be shown [12] that

r0 = lim
n→∞

log
(
supx∈[−1,1] |Q̃

(α,M,j)
n (x)|

)
log λ̃n

. (2)

In this paper we find a value for r0 valid for α ≥ −1/2, M > 0 and j ∈ N. The case α ∈ (−1,−1/2)
remains as an open problem since our technique has not worked.

In addition, to complete the study of the polynomials Q
(α,M,j)
n we focus our attention on the

Mehler–Heine asymptotics. These Mehler–Heine type formulae are interesting twofold: they provide

the scaled asymptotics for Q
(α,M,j)
n on compact sets of the complex plane and they supply us with

asymptotic information about the location of the zeros of these polynomials in terms of the zeros
of other known special functions. This result is independent of the main result obtained in Section
4 but it can be deduced straightforwardly from the results in Section 3 and moreover it has its own
interest.

The structure of the paper is the following: in Section 2 we give a background about Gegenbauer

orthogonal polynomials, C
(α)
n , introducing the properties of these polynomials that will be used

along the paper. In Section 3 we establish connection formulae between the polynomials C
(α)
n and

Q
(α,M,j)
n which are useful to state an upper bound for ||Q(α,M,j)

n ||∞ = maxx∈[−1,1] |Q
(α,M,j)
n (x)|. The

results in this section are the keys to obtain the new results in the next sections. In Section 4 we
tackle our main objective, so we calculate the exact value of r0 in Theorem 2. For this purpose it is
essential to obtain the asymptotic behavior of the eigenvalues associated with the linear differential
operator T = L+MA, i.e.

TQ(α,M,j)
n (x) = (L+MA)Q(α,M,j)

n (x) = λ̃nQ
(α,M,j)
n (x).

As far as we know it is the first time in the framework of Sobolev orthogonality that the asymptotic
behavior of the eigenvalues is studied. Finally, as we have commented previously, in Section 5 we

complete the study of this family of Sobolev polynomials Q
(α,M,j)
n establishing the corresponding

Mehler–Heine type asymptotics and giving additional information about the asymptotic behavior
of the zeros of these polynomials.
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Along the text we will use the following notation: if an and bn are two sequences of real numbers,
then an ≈ bn means lim

n→+∞
an/bn = 1.

2 Gegenbauer orthogonal polynomials: a background

In [20] Gegenbauer polynomials are considered as those polynomials which are orthogonal with
respect to the inner product

(f, g) =

∫ 1

−1
f(x)g(x)(1− x2)λ−1/2dx, λ > −1/2.

We denote these polynomials by P
(λ)
n with the normalization convention

P (λ)
n (1) =

Γ(n+ 2λ)

Γ(n+ 1)Γ(2λ)
.

We take α := λ−1/2 and consider the polynomials
P

(λ)
n (x)

P
(λ)
n (1)

. We denote by {C(α)
n }n≥0 this sequence

of Gegenbauer orthogonal polynomials (this normalization is also used in [9]). In this way, it is

obvious that the polynomials C
(α)
n are orthogonal with respect to

(f, g)α :=

∫ 1

−1
f(x)g(x)(1− x2)αdx,

with C
(α)
n (1) = 1, and using the symmetry of these polynomials we have C

(α)
n (−1) = (−1)n. So,

the inner product (1) can be rewritten as

(f, g)S = (f, g)α +M
[
f (j)(−1)g(j)(−1) + f (j)(1)g(j)(1)

]
.

Now, we recall some properties of Gegenbauer orthogonal polynomials. These properties can
be found in [9] or [20] among others.

� Derivatives: (
C(α)
n

)(k)
(x) :=

dkC
(α)
n (x)

dxk
=

(−1)k(n+ 2α+ 1)k(−n)k
2k(α+ 1)k

C
(α+k)
n−k (x), (3)

with k = 0, 1, . . . , where (a)k denotes the Pochhammer’s symbol, i.e., (a)k = a(a+1) · · · (a+
k − 1) = Γ(a+k)

Γ(a) , k ≥ 1, (a)0 = 1.
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� Differential equation and eigenvalues:

(x2 − 1)
(
C(α)
n

)′′
(x) + 2(α+ 1)x

(
C(α)
n

)′
(x) = λnC

(α)
n (x),

λn = n(n+ 2α+ 1). (4)

� Leading coefficient:

kn(α) :=
(n+ 2α+ 1)n
2n(α+ 1)n

=
Γ(2n+ 2α+ 1)Γ(α+ 1)

2nΓ(n+ α+ 1)Γ(n+ 2α+ 1)
. (5)

� Squared norm:

||C(α)
n ||2α :=

∫ 1

−1
(C(α)

n (x))2(1− x2)αdx =
22α+1Γ2(α+ 1)Γ(n+ 1)

(2n+ 2α+ 1)Γ(n+ 2α+ 1)
. (6)

Next we compute certain limits to be used later. To do this, we take into account (see, for
example, [4, f. (5.11.13)] or [13, f. (7)])

lim
n→+∞

nb−aΓ(n+ a)

Γ(n+ b)
= 1. (7)

In the next lemma we provide some useful asymptotic behaviors of Gegenbauer polynomials.

Lemma 1 For k ∈ N ∪ {0}, we have

lim
n→+∞

(
C

(α)
n

)(k)
(1)

n2k
=

1

2k(α+ 1)k
. (8)

Furthermore,
lim

n→+∞
||C(α)

n ||2αn2α+1 = 22αΓ2(α+ 1). (9)

Proof: Using (3), (7) and the fact that Cα
n (1) = 1, we obtain

lim
n→+∞

(
C

(α)
n

)(k)
(1)

n2k
=

(−1)k

2k(α+ 1)k
lim
n→∞

(n+ 2α+ 1)k(−n)k
n2k

=
(−1)k

2k(α+ 1)k
(−1)k =

1

2k(α+ 1)k
.

Formula (9) is deduced in a straightforward way from (6) using (7). 2
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We will use the following notation:

K(j,k)
n (x, y) =

n∑
i=0

(
C

(α)
i

)(j)
(x)
(
C

(α)
i

)(k)
(y)

||C(α)
i ||2α

,

κ
(j,k)
2n (x, y) =

n∑
i=0

(
C

(α)
2i

)(j)
(x)
(
C

(α)
2i

)(k)
(y)

||C(α)
2i ||2α

, (10)

κ̃
(j,k)
2n (x, y) =

n∑
i=0

(
C

(α)
2i+1

)(j)
(x)
(
C

(α)
2i+1

)(k)
(y)

||C(α)
2i+1||2α

. (11)

Notice that K
(0,0)
n (x, y) = Kn(x, y) are the usual kernel polynomials associated with Gegenbauer

polynomials.

Proposition 1 Let k and s be nonnegative integer numbers. Then,

lim
n→+∞

K
(k,s)
n−1 (1, 1)

n2k+2s+2α+2
=

1

22α+k+s+1
Ck,s, (12)

lim
n→+∞

κ
(k,s)
2(n−1)(1, 1)

n2k+2s+2α+2
= lim

n→+∞

κ̃
(k,s)
2(n−1)(1, 1)

n2k+2s+2α+2
= 2k+sCk,s, (13)

where

Ck,s =
1

(k + s+ α+ 1)Γ(α+ k + 1)Γ(α+ s+ 1)
.

Proof: First, we observe that

n2α+2k+2s+2 − (n− 1)2α+2k+2s+2 ≈ (2α+ 2k + 2s+ 2)n2α+2k+2s+1.

Using Stolz’s criterion, (8), and (9) we get

lim
n→+∞

K
(k,s)
n−1 (1, 1)

n2k+2s+2α+2
= lim

n→+∞

K
(k,s)
n−1 (1, 1)−K

(k,s)
n−2 (1, 1)

n2k+2s+2α+2 − (n− 1)2k+2s+2α+2

= lim
n→+∞

(
C

(α)
n−1

)(k)
(1)

(
C

(α)
n−1

)(s)
(1)

||C(α)
n−1||2α

2(α+ k + s+ 1)n2α+2k+2s+1

=
1

2(α+ k + s+ 1)
lim

n→+∞

(
C

(α)
n−1

)(k)
(1)

n2k

(
C

(α)
n−1

)(s)
(1)

n2s

1

||C(α)
n−1||2αn2α+1

=
1

2(α+ k + s+ 1)

1

2k(α+ 1)k

1

2s(α+ 1)s

1

22αΓ2(α+ 1)
.
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Finally, using (α+1)k =
Γ(α+ k + 1)

Γ(α+ 1)
we obtain (12). To establish (13) we can proceed in the

same way. 2

All the results introduced in this section about the well–known family of Gegenbauer orthogonal
polynomials are necessary and used in the next sections.

3 Connection formulae and some asymptotic behaviors

It is well known that {C(α)
i }mi=0 constitute a basis of the linear space Pm[x] of polynomials with

real coefficients and degree at most m. Therefore, the Gegenbauer–Sobolev polynomials orthogonal
with respect to (1), with leading coefficient kn(α) given in (5), can be expressed as

Q
(α,M,j)
2n (x) = C

(α)
2n (x) +

n−1∑
i=0

a2n,2iC
(α)
2i (x),

Q
(α,M,j)
2n+1 (x) = C

(α)
2n+1(x) +

n−1∑
i=0

a2n+1,2i+1C
(α)
2i+1(x).

Thus, applying a well–established procedure (see, for example, [16, Sect. 2] among others), we
deduce the following connection formulae.

Proposition 2 We have,

Q
(α,M,j)
2n (x) = C

(α)
2n (x)−

2M
(
C

(α)
2n

)(j)
(1)κ

(j,0)
2(n−1)(1, x)

1 + 2Mκ
(j,j)
2(n−1)(1, 1)

, (14)

Q
(α,M,j)
2n+1 (x) = C

(α)
2n+1(x)−

2M
(
C

(α)
2n+1

)(j)
(1) κ̃

(j,0)
2(n−1)(1, x)

1 + 2Mκ̃
(j,j)
2(n−1)(1, 1)

. (15)

Proof: For i = 0, . . . , n− 1 fixed, we have

0 = (Q
(α,M,j)
2n (x), C

(α)
2i (x))S =

(
C

(α)
2n (x) +

n−1∑
k=0

a2n,2kC
(α)
2k (x), C

(α)
2i (x)

)
S

=
(
C

(α)
2n (x), C

(α)
2i (x)

)
α
+

n−1∑
k=0

a2n,2k

(
C

(α)
2k (x), C

(α)
2i (x)

)
α

+ M

[(
Q

(α,M,j)
2n

)(j)
(−1)

(
C

(α)
2i

)(j)
(−1) +

(
Q

(α,M,j)
2n

)(j)
(1)
(
C

(α)
2i

)(j)
(1)

]
= a2n,2i||C(α)

2i ||2α + 2M
(
Q

(α,M,j)
2n

)(j)
(1)
(
C

(α)
2i

)(j)
(1),

7



thus,

a2n,2i =
−2M

(
Q

(α,M,j)
2n

)(j)
(1)
(
C

(α)
2i

)(j)
(1)

||C(α)
2i ||2α

,

and

Q
(α,M,j)
2n (x) = C

(α)
2n (x) +

n−1∑
i=0

−2M
(
Q

(α,M,j)
2n

)(j)
(1)
(
C

(α)
2i

)(j)
(1)

||C(α)
2i ||2α

C
(α)
2i (x)

= C
(α)
2n (x)− 2M

(
Q

(α,M,j)
2n

)(j)
(1)

n−1∑
i=0

(
C

(α)
2i

)(j)
(1)C

(α)
2i (x)

||C(α)
2i ||2α

= C
(α)
2n (x)− 2M

(
Q

(α,M,j)
2n

)(j)
(1)κ

(j,0)
2(n−1)(1, x).

Differentiating the above expression j times and evaluating at x = 1 yields

(
Q

(α,M,j)
2n

)(j)
(1) =

(
C

(α)
2n

)(j)
(1)

1 + 2Mκ
(j,j)
2(n−1)(1, 1)

, (16)

which proves (14). For the odd case, relation (15) is established in the same way. 2

Proposition 2 is very useful to obtain the following relative asymptotics at the point x = 1.

Proposition 3 Let k be a nonnegative integer. Then, we have

lim
n→+∞

(
Q

(α,M,j)
n

)(k)
(1)(

C
(α)
n

)(k)
(1)

=
k − j

j + k + α+ 1
.

Proof: We only prove the even case since the proof for the odd case is similar. We differentiate

the expression (14) k times and evaluate at x = 1. Then, we divide by
(
C

(α)
2n

)(k)
(1) and use the

8



limit relations (8) and (13) to obtain

lim
n→+∞

(
Q

(α,M,j)
2n

)(k)
(1)(

C
(α)
2n

)(k)
(1)

= 1− lim
n→+∞

2M
(
C

(α)
2n

)(j)
(1)κ

(j,k)
2(n−1)(1, 1)(

1 + 2Mκ
(j,j)
2(n−1)(1, 1)

)(
C

(α)
2n

)(k)
(1)

= 1− lim
n→+∞

2M

(
C

(α)
2n

)(j)
(1)

n2j

κ
(j,k)
2(n−1)

(1,1)

n2j+2k+2α+2(
C

(α)
2n

)(k)
(1)

n4j+2k+2α+2 + 2M
κ
(j,j)
2(n−1)

(1,1)

n4j+2α+2

(
C

(α)
2n

)(k)
(1)

n2k

= 1− (2j + α+ 1)(α+ 1)kΓ(α+ j + 1)

(α+ 1)j(j + k + α+ 1)Γ(α+ k + 1)

= 1− 2j + α+ 1

j + k + α+ 1
=

k − j

j + k + α+ 1
. 2

In the following proposition we show that the norm of the Gegenbauer–Sobolev orthogonal
polynomials, induced by the nonstandard inner product (1), behaves like the norm of classical
Gegenbauer polynomials.

Proposition 4 We have,

lim
n→∞

||Q(α,M,j)
n ||S

||C(α)
n ||α

= 1.

Proof: Again, we only prove the even case.

(
Q

(α,M,j)
2n , Q

(α,M,j)
2n

)
S
=
(
Q

(α,M,j)
2n , C

(α)
2n

)
S
= ||C(α)

2n ||2α + 2M
(
Q

(α,M,j)
2n

)(j)
(1)
(
C

(α)
2n

)(j)
(1).

Then, applying (16) we get

||Q(α,M,j)
2n ||2S

||C(α)
2n ||2α

= 1 +
2M

(
Q

(α,M,j)
2n

)(j)
(1)
(
C

(α)
2n

)(j)
(1)

||C(α)
2n ||2α

= 1 +

2M

((
C

(α)
2n

)(j)
(1)

)2

(
1 + 2Mκ

(j,j)
2(n−1)(1, 1)

)
||C(α)

2n ||2α

= 1 +
2M

((
C

(α)
2n

)(j)
(1)

)2

n4j

1+2Mκ
(j,j)
2(n−1)

(1,1)

n4j+2α+2 ||C(α)
2n ||2α n2α+1n

.
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It is enough to observe that taking limits in the above expression, and applying (8)–(13), we
get the result. 2

The number of terms of the connection formula given in Proposition 2 depends on n, so this
number increases when n grows. To avoid this, we can give another connection formula in which the

polynomials Q
(α,M,j)
n can be expressed as a finite linear combination of polynomials not depending

on n.

Proposition 5 There exists a family of real numbers {γn,i}j+1
i=0 , not identically zero, such that the

following connection formula holds

Q(α,M,j)
n (x) =

j+1∑
i=0

γn,i(1− x2)i
(
C

(α+i)
n−i

)(i)
(x), n ≥ 2j + 2. (17)

Proof: An analogous result was established in a similar framework in [19, Th. 1], although in that
paper the discrete part of the Sobolev inner product is located at only one point c. The proof in
this context is essentially the same and we omit the details. 2

Proposition 6 Let {γn,i}j+1
i=0 be the coefficients given in (17). Then,

lim
n→+∞

γn,i = γi ∈ R, 0 ≤ i ≤ j + 1,

where

γi =


−j

j + α+ 1
, if i = 0;

(−1)i
i−j

j+i+α+1 −
∑i−1

k=0 γk
(
i
k

)
(−2)kk! (α+1)i

(α+k+1)i

i! 2
i(α+1)i

(α+i+1)i

, if 1 ≤ i ≤ j + 1.
(18)

Proof: As we have commented in the previous proposition, this result was also established in a
similar context in [19, Th. 1] (see also [13, Th. 2]). But, now the discrete part of our inner product
(1) is concentrated in two points, not only in one like the references cited. Anyway, the technique
is the same. However, we include the main lines of the proof because in this concrete case we can
establish the exact value of γi which has interest by itself.

To begin we differentiate the formula (17) k times and evaluate at x = 1. Then, for 0 ≤ k ≤ j+1,
we find (

Q(α,M,j)
n

)(k)
(1) =

k∑
i=0

γn,i

(
k

i

)
(−1)ii!

(
k−i∑
l=0

i!

(i− l)!
2i−l

(
C

(α+i)
n−i

)(k−l)
(1)

)
. (19)

10



Taking into account Proposition 3, we divide (19) by
(
C

(α)
n

)(k)
(1) to see the result if and only if

limn→+∞

(
C

(α+i)
n−i

)(k−l)
(1)(

C
(α)
n

)(k)
(1)

∈ R, with 0 ≤ l ≤ k − i. But this is true by Lemma 1. In fact,

lim
n→+∞

(
C

(α+i)
n−i

)(k−l)
(1)(

C
(α)
n

)(k)
(1)

=

{
(α+1)k

(α+i+1)k
, if l = 0;

0, if 1 ≤ l ≤ k − i.
(20)

We have proved that the sequences {γn,i}n are convergent with i ∈ {0, . . . , j+1} when n → ∞.
Now, we want to compute explicitly the corresponding limits γi with 0 ≤ i ≤ j + 1. Taking k = 0
in (19) and using Proposition 3, we get

lim
n→+∞

Q
(α,M,j)
n (1)

C
(α)
n (1)

= lim
n→+∞

Q(α,M,j)
n (1) = lim

n→+∞
γn,0 =

−j

j + α+ 1
. (21)

Thus, we can construct a recursive algorithm based on (19) and, paying attention to (20), we
deduce easily (18). 2

Finally, we give an upper bound of the uniform norm of the Sobolev polynomials. This result
will be useful to establish one of our main target in Section 4.

Theorem 1 Let Q(α,M,j)
n (x) be the orthogonal polynomials with respect to (1), then

||Q(α,M,j)
n ||∞ := max

x∈[−1,1]

∣∣∣Q(α,M,j)
n (x)

∣∣∣ ≤ { 3j+2α+2
j+α+1 +D, if α ≥ −1/2;

F n−α−1/2, if −1 < α < −1/2,

when n → +∞, being D and F positive constants independent of n.

Proof: Taking α = λ− 1/2 and considering the expression (4.7.1) in [20], we have

C(α)
n (x) =

P
(λ)
n (x)

P
(λ)
n (1)

=
Γ(n+ 1)Γ(2α+ 1)

Γ(n+ 2α+ 1)
P (λ)
n (x) =

Γ(n+ 1)Γ(α+ 1)

Γ(n+ α+ 1)
P (α,α)
n (x), (22)

where P
(α,β)
n are the classical Jacobi polynomials orthogonal with respect to the weight function

(1− x)α(1 + x)β, α, β > −1.

Now, we use a uniform bound of |P (α,α)
n | given in [1, f. (22.14.1)] and with more detail in [20,

f. (7.33.2)–(7.33.3)] to deduce, via (22), that we have for −1 ≤ x ≤ 1,

|P (α,α)
n (x)| ≤

 P (α,α)
n (1) =

(
n+ α

n

)
≈ nα

Γ(α+ 1)
, if α ≥ −1/2;

C n−1/2, if −1 < α < −1/2,
(23)

where C is a constant. To prove the result we use different approaches according to each case.
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� Case α ≥ −1/2. From (22) and (23), it is clear that maxx∈[−1,1] |C
(α)
n (x)| = 1, and this

maximum is reached at x = 1. We only prove the even case since the proof of the odd case is
totally similar. First, we have

max
x∈[−1,1]

|κ(j,0)2(n−1)(1, x)| = max
x∈[−1,1]

∣∣∣∣∣∣∣
n−1∑
i=0

(
C

(α)
2i

)(j)
(1)C

(α)
2i (x)

||C(α)
2i ||2α

∣∣∣∣∣∣∣
≤

n−1∑
i=0

(
C

(α)
2i

)(j)
(1)maxx∈[−1,1]

∣∣∣C(α)
2i (x)

∣∣∣
||C(α)

2i ||2α

=
n−1∑
i=0

(
C

(α)
2i

)(j)
(1)C

(α)
2i (1)

||C(α)
2i ||2α

= κ
(j,0)
2(n−1)(1, 1).

Therefore, using (14) and the previous bound we get,

max
x∈[−1,1]

|Q(α,M,j)
2n (x)| ≤ max

x∈[−1,1]

∣∣∣C(α)
2n (x)

∣∣∣+ max
x∈[−1,1]

∣∣∣∣∣∣∣
2M

(
C

(α)
2n

)(j)
(1)κ

(j,0)
2(n−1)(1, x)

1 + 2Mκ
(j,j)
2(n−1)(1, 1)

∣∣∣∣∣∣∣
= 1 +

2M
(
C

(α)
2n

)(j)
(1)κ

(j,0)
2(n−1)(1, 1)

1 + 2Mκ
(j,j)
2(n−1)(1, 1)

.

On the other hand, it was established in the proof of Proposition 3 for k = 0 that

lim
n→∞

2M
(
C

(α)
2n

)(j)
(1)κ

(j,0)
2(n−1)(1, 1)

1 + 2Mκ
(j,j)
2(n−1)(1, 1)

=
2j + α+ 1

j + α+ 1
.

Thus, we claim that for any positive constant D and n large enough we have

max
x∈[−1,1]

|Q(α,M,j)
2n (x)| ≤ 1 +

2j + α+ 1

j + α+ 1
+D =

3j + 2α+ 2

j + α+ 1
+D.

In fact, numerical experiments indicate that the sequence
2M

(
C

(α)
2n

)(j)
(1)κ

(j,0)
2(n−1)

(1,1)

1+2Mκ
(j,j)
2(n−1)

(1,1)
is decreas-

ing, so D cannot be removed.

� Case −1 < α < −1/2. For our purpose it is easier to take into account (17). In this way, we
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get

max
x∈[−1,1]

∣∣∣Q(α,M,j)
n (x)

∣∣∣ ≤
j+1∑
i=0

max
x∈[−1,1]

∣∣∣∣γn,i(1− x2)i
(
C

(α+i)
n−i

)(i)
(x)

∣∣∣∣
≤ (j + 2) max

i∈{0,...,j+1}
max

x∈[−1,1]

∣∣∣∣γn,i(1− x2)i
(
C

(α+i)
n−i

)(i)
(x)

∣∣∣∣ .
We are going to compute maxx∈[−1,1]

∣∣∣∣γn,i(1− x2)i
(
C

(α+i)
n−i

)(i)
(x)

∣∣∣∣ . First, we observe that

using (3) we get

(1− x2)i
(
C

(α+i)
n−i

)(i)
(x) = (1− x2)iρn,iC

(α+2i)
n−2i (x)

= (1− x2)iρn,i
Γ(n− 2i+ 1)Γ(α+ 2i+ 1)

Γ(n+ α+ 1)
P

(α+2i,α+2i)
n−2i (x),

where

ρn,i =
(−1)i(n+ 2α+ i+ 1)i(−n+ i)i

2i(α+ i+ 1)i
≈ n2i

2i(α+ i+ 1)i
. (24)

Using (23), (24) and Proposition 6, we get for n large enough,

max
x∈[−1,1]

∣∣∣∣γn,i(1− x2)iρn,i
Γ(n− 2i+ 1)Γ(α+ 2i+ 1)

Γ(n+ α+ 1)
P

(α+2i,α+2i)
n−2i (x)

∣∣∣∣
≤ E n2in−α−2in−1/2 = E n−α−1/2,

where E is a positive constant, which proves the result for this case. 2

4 Asymptotics behavior of the eigenvalues of Gegenbauer-Sobolev
orthogonal polynomials and the exact value of r0

In Section 3 we have established some of the necessary results to attack the problem of computing
the value of r0 given in (2). But we need a bit more: the asymptotic behavior of the eigenvalues of
Gegenbauer-Sobolev polynomials.

In [7] the authors claim that there exists a linear differential operator of the form T = L+MA
for discrete Sobolev orthogonal polynomials with respect to an inner product such as

(f, g) =

∫
I
f(x)g(x)dµ+M

[
f (j)(−c)g(j)(−c) + f (j)(c)g(j)(c)

]
, c > 0,

13



where µ is a finite symmetric Borel measure supported on the interval I. L is the linear differential
operator associated with the standard polynomials orthogonal with respect to µ. This operator
L + MA can have infinite order. Obviously, the inner product (1) here considered lies in this
framework.

In addition, the authors give expressions for the eigenvalues associated with L+MA. Then, if
we particularize this for the Gegenbauer–Sobolev orthogonal polynomials, we have

(L+MA)Q(α,M,j)
n (x) = λ̃nQ

(α,M,j)
n (x).

We are looking for the asymptotic behavior of λ̃n which is the key to establish one of our main
goals in this work.

Following [7], we get that
λ̃n = λn +Mµn, (25)

where λn are as in (4), µ0 = 0 and the numbers {µm}j+1
m=0 can be chosen arbitrarily. Then,

{µm}∞m=j+2 and the operator A are uniquely determined once the choice of these arbitrary numbers
has been done (see [7, Sec. 2.2] or with more detail Theorem 2.1 in [5] where this statement is
established). In fact, they obtain

µj+2t = µj +
t∑

i=1

(λj+2i − λj+2i−2)qj+2i,j+2i, t ∈ N, j ∈ N ∪ {0},

µj+2t+1 = µj+1 +
t∑

i=1

(λj+2i+1 − λj+2i−1)qj+2i+1,j+2i+1, t ∈ N, j ∈ N ∪ {0},

where
qn,n = K

(j,j)
n−1 (1, 1) + (−1)n+jK

(j,j)
n−1 (1,−1).

Since {µm}j+1
m=0 can be chosen arbitrarily, for simplicity we take µ0 = · · · = µj+1 = 0. Using (4),

we obtain

µj+2t = 2
t∑

i=1

(2j + 4i+ 2α− 1)qj+2i,j+2i, t ∈ N, j ∈ N ∪ {0}, (26)

µj+2t+1 = 2

t∑
i=1

(2j + 4i+ 2α+ 1)qj+2i+1,j+2i+1, t ∈ N, j ∈ N ∪ {0}. (27)

We are going to establish the asymptotic behavior of the sequence {µn}n given by (26)–(27) when
n → ∞. First, we need a technical result.
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Proposition 7 We have,

qs+2i,s+2i =


2κ

(j,j)
s+2i−2(1, 1), if s is even;

2κ̃
(j,j)
s+2i−3(1, 1), if s is odd,

(28)

where κ
(j,k)
2m (x, y) and κ̃

(j,k)
2m (x, y) are given in (10) and (11), respectively.

Proof: We use the definition of qs,s.

qs+2i,s+2i = K
(j,j)
s+2i−1(1, 1) + (−1)s+jK

(j,j)
s+2i−1(1,−1)

=
s+2i−1∑
m=0

((
C

(α)
m

)(j)
(1)

)2

||C(α)
m ||2α

+ (−1)s+j
s+2i−1∑
m=0

(
C

(α)
m

)(j)
(1)
(
C

(α)
m

)(j)
(−1)

||C(α)
m ||2α

=
s+2i−1∑
m=0

((
C

(α)
m

)(j)
(1)

)2 (
1 + (−1)s+m+2j

)
||C(α)

m ||2α
.

Then, if s is even we get

qs+2i,s+2i = 2

s+2i−1∑
m=0,m even

((
C

(α)
m

)(j)
(1)

)2

||C(α)
m ||2α

= 2κ
(j,j)
s+2i−2(1, 1).

The odd case is established in the same way. 2

It is easy to observe from (25) that if we want to obtain the asymptotic behavior of λ̃n we must
to know the one of µn. Thus, we establish the following result.

Proposition 8 It holds

lim
n→+∞

µ2n

n4j+2α+4
= lim

n→+∞

µ2n+1

n4j+2α+4
=

22j+3

(2j + α+ 2)(2j + α+ 1)Γ2(α+ j + 1)
.

Proof: For n large enough we can write 2n = 2m+ j, and so j is even. To establish this result we
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are going to use the Stolz’s criterium and formulae (13) and (28).

lim
n→+∞

µ2n

n4j+2α+4
= lim

m→+∞

µj+2m

m4j+2α+4

= lim
m→+∞

2
∑m

i=1(2j + 4i+ 2α− 1)qj+2i,j+2i − 2
∑m−1

i=1 (2j + 4i+ 2α− 1)qj+2i,j+2i

m4j+2α+4 − (m− 1)4j+2α+4

=
1

(2j + α+ 2)
lim

m→+∞

(2j + 4m+ 2α− 1)qj+2m,j+2m

m4j+2α+3

=
1

2j + α+ 2
lim

m→+∞

(2j + 4m+ 2α+ 1)

m

2κ
(j,j)
2(m−1+j/2)(1, 1)

m4j+2α+2

=
22j+3

(2j + α+ 2)(2j + α+ 1)Γ2(α+ j + 1)
.

Analogously, for n large enough 2n + 1 = 2m + j + 1, so j + 1 is odd. Then, to prove the other
limit we can use (28) with s = j + 1. 2

Finally, we are ready to establish the asymptotic behavior of the eigenvalues λ̃n.

Proposition 9 Let λ̃n be the eigenvalues associated with the linear differential operator T = L+
MA. Then,

lim
n→+∞

λ̃n

n4j+2α+4
=

M

22j+2α+1(2j + α+ 2)(2j + α+ 1)Γ2(α+ j + 1)
.

Proof: Applying (4) and Proposition 8

lim
n→+∞

λ̃n

n4j+2α+4
= lim

n→+∞

λn +Mµn

n4j+2α+4
= lim

n→+∞

Mµn

(n/2)4j+2α+4 24j+2α+4

=
M

(2j + α+ 2)(2j + α+ 1)Γ2(α+ j + 1)22j+2α+1
. 2

To conclude this section, we establish the main goal of this paper.

Theorem 2 Let Q̃
(α,M,j)
n (x) be orthonormal polynomials with respect to (1), j > 0, and λ̃n the

eigenvalues associated with the linear differential operator T = L+MA. Then, for α ≥ −1/2,

r0 = lim
n→+∞

log(maxx∈[−1,1] |Q̃
(α,M,j)
n (x)|)

log(λ̃n)
=

α+ 1/2

4j + 2α+ 4
.
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Proof: We are going to use Theorem 1, Proposition 4, Proposition 9, and (9). We have

log(maxx∈[−1,1] |Q̃
(α,M,j)
n (x)|)

log(λ̃n)
=

log(maxx∈[−1,1] |Q
(α,M,j)
n (x)|/||Q(α,M,j)

n ||S)
log(λ̃n)

=
log
(
maxx∈[−1,1] |Q

(α,M,j)
n (x)|/

(
||Q(α,M,j)

n ||S nα+1/2n−α−1/2
))

log
(

λ̃n

n4j+2α+4n4j+2α+4
)

=
log(maxx∈[−1,1] |Q

(α,M,j)
n (x)|)− log

(
||Q(α,M,j)

n ||S nα+1/2
)
− (−α− 1/2) log(n)

(4j + 2α+ 4) log(n) + log
(

λ̃n

n4j+2α+4

) .

Taking limits, we obtain

lim
n→+∞

log(maxx∈[−1,1] |Q̃
(α,M,j)
n (x)|)

log(λ̃n)
=

α+ 1/2

4j + 2α+ 4
.

It is enough to take limits to prove the result.

Note that we need to have a lower and an upper bound for maxx∈[−1,1] |Q
(α,M,j)
n (x)|. The

upper bound is guaranteed by Theorem 1. We also need that the lower bound is greater than

zero. This is deduced from the fact that maxx∈[−1,1] |Q
(α,M,j)
n (x)| ≥ |Q(α,M,j)

n (1)| and by (21)

limn→∞ |Q(α,M,j)
n (1)| = j

j+α+1 . However, this argument does not work when j = 0. 2

Remark.

� When α ≥ −1/2 and j = 0 we cannot assure that r0 exists. In the case it exists, using some

inequalities, it would be easy to establish that r0 ∈ [−α−3/2
2α+4 , α+1/2

2α+4 ].

� When α ∈ (−1,−1/2) we could proceed in a similar way as in the proof of Theorem 2, but
again we have the same problem with the lower bound as in the case α ≥ −1/2 and j = 0.
Thus, this result remains as an open problem.

� It is worth paying attention to the fact that the value of r0 for Gegenbauer polynomials
is very different of the one for discrete Gegenbauer–Sobolev polynomials. For Gegenbauer
orthogonal polynomials and α ≥ −1/2, we get

r0 =
α+ 1/2

2
,

and for discrete Gegenbauer-Sobolev orthogonal polynomials with α ≥ −1/2 and j ∈ N, we
have

r0 =
α+ 1/2

4j + 2α+ 4
.

Essentially, this is due to the different asymptotic behavior of the eigenvalues λn ≈ n2 and
λ̃n ≈ Gn4j+2α+4, when n → +∞. The constant G is computed in Proposition 9.
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5 Mehler–Heine asymptotics for Gegenbauer–Sobolev orthogonal
polynomials

To complete this study we address the issue of Mehler-Heine formulae which are very relevant
because they describe in detail the asymptotic behavior around the point x = 1 where we have
located the perturbation (using the symmetry of these polynomials we also have the information
around the point x = −1). This type of asymptotics has been considered in several frameworks.
In the context of Sobolev orthogonality there is a wide literature, we can cite the surveys [15] and
[17], and the references therein. Even more recently and conceptually closer to the inner product
(1) we can point out [13, 14, 19] among others.

To establish Mehler–Heine formula for the discrete Gegenbauer–Sobolev orthogonal polyno-
mials considered in this work, we need the corresponding formula for classical Jacobi orthogonal
polynomials. For α, β real numbers and s an integer number, it holds (see [20, Th. 8.1.1]):

lim
n→∞

n−αP (α,β)
n

(
cos

(
x

n+ s

))
= lim

n→∞

1

nα
P (α,β)
n

(
1− x2

2(n+ s)2

)
= (x/2)−αJα(x), (29)

uniformly on compact subsets of C, where Jα(x) denotes the Bessel function of the first kind, i.e.,

Jα(x) =
∞∑
k=0

(−1)k

k!Γ(k + α+ 1)

(x
2

)2k+α
.

The integer number s will play an important role in the proof of Theorem 3. The original statement
of Mehler–Heine formula for classical Jacobi polynomials was made with s = 0, but it can be
extended for every integer number s as it was established in the proof of Corollary 1 in [3]. In that
paper it was proved a more general result: if (fn)n is a sequence of holomorphic functions on C
and (bn)n is a sequence of complex numbers satisfying limn→∞

bn
bn+s

= 1 for every integer number

s such that (fn(z/bn))n converges to a function f uniformly on compact subsets of C, then

lim
n→∞

fn

(
z

bn+s

)
= f(z),

uniformly on compact subsets of C for every integer s.
Thus, we can claim:

Theorem 3 For the sequence {Q(α,M,j)
n }n≥0 the following Mehler–Heine formula holds

lim
n→∞

Q(α,M,j)
n

(
cos
(x
n

))
= lim

n→+∞
Q(α,M,j)

n

(
1− x2

2n2

)
= φα,j(x), (30)

uniformly on compact subsets of C, where

φα,j(x) =

j+1∑
i=0

2iγiΓ(α+ i+ 1)(x/2)−αJα+2i(x), (31)

18



with the coefficients γi given in (18).

Proof: Scaling adequately in (17) and using (3), (22) and (24), we get

lim
n→+∞

Q(α,M,j)
n

(
1− x2

2n2

)
=

lim
n→+∞

j+1∑
i=0

γn,iρn,i
x2i

n2i

(
1− x2

4n2

)i
Γ(n− 2i+ 1)Γ(α+ 2i+ 1)

Γ(n+ α+ 1)
P

(α+2i,α+2i)
n−2i

(
1− x2

2n2

)
=

lim
n→+∞

j+1∑
i=0

γn,ix
2i ρn,i
n2i

(
1− x2

4n2

)i
nα+2iΓ(n− 2i+ 1)Γ(α+ 2i+ 1)

Γ(n+ α+ 1)

P
(α+2i,α+2i)
n−2i

(
1− x2

2n2

)
nα+2i

.

It only remains to apply the asymptotic behaviors given by (7), Proposition 6, (24) and (29) to
obtain the result. 2

Next, we consider the zeros of the polynomials Q
(α,M,j)
n . When j = 0 the inner product (1) is

standard, i.e, it is related to the measure µ given by dµ = (1−x)α(1+x)βdx+M(δ(x+1)+δ(x−1))

where δ(x) is the Dirac’s delta function. Thus, all the zeros of Q
(α,M,0)
n are real and are contained

within (−1, 1).
However, when j > 0 the situation changes. It was proved by H. G. Meijer in [18, Th. 4.1] (see

also [2, Lemma 2]) in a more general framework that the polynomial Q
(α,M,j)
n (x), n ≥ 1, has n real

and simple zeros and at most two of them are located outside (−1, 1). However, on the one hand,

using Proposition 3 we have that lim
n→+∞

Q(α,M,j)
n (1) =

−j

j + α+ 1
< 0, but on the other hand, the

leading coefficient of Q
(α,M,j)
n (x) is kn(α) > 0 given by (5), so we have lim

x→+∞
Q(α,M,j)

n (x) = +∞.

Thus, we deduce that there exists a zero within (1,+∞) and, by the symmetry of the polynomials,
another one within (−∞,−1). Therefore, we can summarize it in the following result.

Proposition 10 If j > 0 the polynomial Q
(α,M,j)
n (x), n ≥ 1, has n real and simple zeros and, for n

large enough, exactly two of them are located outside (−1, 1). If j = 0, then all the zeros are within
(−1, 1).

Finally, we establish the asymptotic behavior of the zeros as a consequence of Theorem 3. It
is only necessary to apply Hurwitz’s theorem (see [20, Th. 1.91.3]) to (30). We denote by [a] the
integer part of a. Thus, we have

Proposition 11 For j > 0, we denote by sn,i, i = 1, . . . , [n/2] − 1, the [n/2] − 1 positive zeros of

Q
(α,M,j)
n within (0, 1) in a decreasing order, i.e., sn,[n/2]−1 < sn,[n/2]−2 < · · · < sn,1. Then,

lim
n→∞

n arccos(sn,i) = yi, i = 1, . . . , [n/2]− 1,
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where 0 < y1 < · · · < y[n/2]−1 denote the first [n/2]− 1 positive real zeros of the function φα,j given
in (31).

For j = 0 the inner product (1) appears in [8] as a very particular case in a context which
involves continuous Sobolev polynomials. Notice that in this situation using (18) we deduce that
the limit function (31) is

φα,0(x) = −Γ(α+ 1)(x/2)−αJα+2(x).

The above result was obtained in [8, Proposition 2] but in that paper the inner product considered
was

(f, g)S :=

∫ 1

−1
f(x)g(x)(1− x2)α−1/2dx+M (f(−1)g(−1) + f(1)g(1)) ,

where the corresponding Sobolev orthogonal polynomials were monic. Then, to compare both

results we must take into account these facts. Anyway, the zeros of Q
(α,M,0)
n behave asymptotically

like the zeros of x−αJα+2(x) (obviously in [8, Proposition 2] α must be changed by α+1/2). Thus,
following the above notation, in the case j = 0 we get

lim
n→∞

sn,1 = 1, lim
n→∞

n arccos(sn,i) = j
(α+2)
i , i = 2, . . . , [n/2],

where 0 < j
(α+2)
1 < · · · < j

(α+2)
[n/2] denote the first [n/2] positive zeros of the Bessel function of the

first kind Jα+2.
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Sobolev orthogonal polynomials involving Gegenbauer weights, J. Comput. Appl. Math. 235
(2010), 904–915.
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