htt	os://creativecommons.org/licenses/by-nc-nd/4.0/(opens in new tab/window)
	A new approach to finding optimal centrifugation conditions for shear-sensitive
	microalgae
	A. Molina-Miras, L. López-Rosales, M. C. Cerón-García, A. Sánchez-Mirón, F.
	García-Camacho, A. Contreras-Gómez*, E. Molina-Grima
	Department of Chemical Engineering, University of Almería, 04120, Almería (Spain)
	* Author for correspondence
	Department of Chemical Engineering
	University of Almería
	04120 Almería, Spain
	e-mail: acontre@ual.es
	1

Abstract

A study has been conducted to assess clarification efficiency and cell damage during centrifugation, and to optimize this operation for the dinoflagellate microalga *Amphidinium carterae*. Although cells were easily recovered from the cell suspension, cell damage was observed in some experiments once the cells had sedimented. Cell damage depends on both the residence time of the cells in the pellet and on the g-force applied. 2D CFD simulations were carried out to simulate and predict microalgal cell settling times, and a dimensionless number was used to obtain an operating window (combinations of g-force and centrifugation time) for optimal centrifugation of the microalga. The approach used in this study can be extrapolated to other cells and other centrifuges.

Keywords: *Amphidinium carterae*, CFD, centrifugation, cell damage, centrifugation number

1. Introduction

Microalgae have been traditionally used as food for larval and juvenile animals in aquaculture [1]. However, nowadays, they are also attracting enormous interest due to their vast potential in a large variety of other applications, for example in wastewater treatment and sequestration of atmospheric CO_2 [2], production of biofuels (mainly biodiesel) as promising alternatives to fossil fuels in terms of economic, renewability, and environmental concerns [3], and production of numerous high-value compounds, including polyunsaturated fatty acids, antioxidants, vitamins, and antimicrobial and anticancer drugs [4].

Marine dinoflagellates are an intriguing class of microalgae (class Dinophyceae) that are known to produce a range of fascinating bioactive compounds [5-6]. For example, the dinoflagellate *Amphidinium carterae* produces an interesting group of polyketide metabolites, namely amphidinolides and amphidinolds (both referred to henceforth as APDs), which elicit potent anticancer, antifungal and haemolytic activities and are therefore potentially useful in studies of drug design [7]. As such, the demand for increasing quantities of APDs, as well as other dinoflagellate-derived bioactive compounds, is increasing [6]. However, the only source of APDs is currently APDproducing microalgae, and supply constraints are a major obstacle to the successful research, development, and marketing of these compounds [5-6, 8]. In recent studies, the feasibility of producing bioactive substances from pilot-plant cultures of the dinoflagellates *A. carterae* and *Karlodinium veneficum* using simple and scalable processes has been assessed [9-13].

Despite the huge potential of microalgae in general, and dinoflagellates in particular, in a wide range of applications, microalgal-based production systems for high-value

Accepted manuscript. https://doi.org/10.1016/j.algal.2019.101677 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/(opens in new tab/window)

 bioactives are not yet economically viable. Different upstream strategies to improve the economics of these processes have been discussed extensively, including the use of genetically modified strains [14], the use of wastewater as a culture medium to reduce both the freshwater requirement and production costs [3, 15], and the implementation of biorefinery-based production strategies, taking advantage of every component of the microalgal biomass to obtain useable products in order to lower overall production costs [16, 17]. However, despite the progress made in microalgal cultivation systems, the final concentration of biomass when grown phototrophically is very low (less than 1 gL⁻¹ for open ponds and about 5 gL⁻¹ for closed systems), with small cell sizes (5-30 μ m) and cell densities close to that of water (average ~ 1020 kg m⁻³) [16]. As such, large volumes of algal suspensions need to be handled in downstream processing.

Harvesting of the biomass from the broth is considered a critical step and has been estimated to account for up to 30% of the total cost of microalgae production [18]. As such, the implementation of energy-efficient and cost-effective technologies and protocols for effective separation and recovery is imperative [19]. Microalgal harvesting relies on reducing the water content of the microalgal suspension as much as possible. Moreover, an ideal separation process should be applicable to most strains of microalgae, provide a product biomass with a high dry weight, and require reduced energy, operating and maintenance costs. Amongst others, the processes commonly used to harvest microalgae include screening, flocculation, sedimentation, filtration, and centrifugation. Although it is generally accepted that there is currently no definitive and highly efficient harvesting method that can be used with all microalgal strains, it is widely accepted that centrifugation is the fastest method, is applicable to the vast majority of microalgae and, in many cases, can be used as a one-step separation process [18, 20].

Centrifugation is routinely used for research and small-scale operations, and for the recovery of high-value metabolites. Nonetheless, although the reliability and efficiency of centrifugation are high, evidence that high shear rates and centrifugal forces can potentially result in cell damage [13, 21], and operating costs [20], frequently offset its merits for large-scale algal separation.

Centrifuges are normally adjusted to maximize recovery efficiency. However, recovery efficiency depends on the settling characteristics of the cell, centrifuge design, and the centrifugation protocol (settling depth, retention time, and centrifugal force). As such, the highest recovery efficiency may not coincide with cost-effective and damage-free algal cell harvesting.

Herein we introduce an approach based on a dimensionless number to develop cell damage free centrifugation protocols for shear-sensitive microalgae. The model microalga used was *A. carterae* and the procedure was corroborated using literature data for a microalga lacking a cell wall (*Dunaliella salina*) and for an extremely shear-sensitive cell (*Spodoptera exigua*). Our findings corroborate that the approach presented in this work may be useful for developing reliable centrifugation protocols, thereby avoiding cell damage.

2. Materials and Methods

2.1. The microalga and maintenance

Monocultures of the marine dinoflagellate microalga *A. carterae* (strain Dn241EHU) were used. The strain was provided by the Culture Collection of the Plant Biology and Ecology Department at UPV (Spain). *A. carterae* inocula were grown in flasks at 21 ± 1

°C under a 12:12 h light–dark cycle. The irradiance at the surface of the culture flasks (60 μ E m⁻² s⁻¹) was provided by four 58 W fluorescent lamps. f/2 medium with an N:P molar ratio of 24 [22, 23] was used for inoculum maintenance.

2.2. Centrifugation assays

Cultures for centrifugation experiments were obtained by inoculating cells in exponential growth phase in a 10-liter bubble column photobioreactor, as described elsewhere [24]. Briefly, the culture medium was a modification of f/2 with an N:P molar ratio of 5 [13], and the culture temperature was maintained at 21 ± 1 °C under a 12:12 h light–dark cycle irradiance at the surface (600 µE m⁻² s⁻¹). Cultures were sparged continuously with filtered air at a flow rate of 0.5 vvmin, and the pH was maintained at 8.5 by automatic on-demand injection of pure carbon dioxide.

Microalgal cultures at a cell concentration of 4.0×10^6 cells mL⁻¹ and with a viability of more than 98% were used in all experiments. Cell concentration and viability were quantified by flow cytometry, as described elsewhere [11]. Five measurements per sample were performed and the average value was used. The mean cell equivalent diameter was 12.39±0.78 µm (n=105). Since *A. carterae* cells have an ellipsoidal shape [25], the equivalent diameter was used to calculate the longest ($L = 22 \mu m$), intermediate ($I = 12 \mu m$), and shortest ($S = 7 \mu m$) lengths of the cells.

Cultures were deposited in 50 mL Falcon tubes and centrifuged in a benchtop centrifuge (Beckman Coulter, model Allegra 25R) using a rotor (swing-out head) with a maximum radius of 13.7 cm (max RCF = $15300 \times g$). The height of the suspension (h_c) was 10.4 cm throughout the experimental work; g-forces (g_c) of up to $13500 \times g$, and centrifugation times (t_c) of up to 35 min were used. After centrifugation, the supernatant was removed

Accepted manuscript. https://doi.org/10.1016/j.algal.2019.101677 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/(opens in new tab/window)

 and the cell pellet was re-suspended in fresh medium. Cell concentration was measured using a hemocytometer under a light microscope, and cell viability was estimated using chlorophyll as a marker for cell rupture. The relationship between broken cell and chlorophyll concentration was obtained as follows: A volume of 100 mL of cell suspension was sonicated on ice using an ultrasonic probe-type device (Hielscher Ultrasonics, model UP200S) with the following settings: 0.5 pulse cycle, 80% amplitude. The extent of cell rupture was checked by light microscopy. All cells were broken after 6 minutes. After sonication, the samples were centrifuged (3000×g, 8 min) to remove cell debris, and serial dilutions were prepared using the culture medium as diluent. Volumes of 200 µL of solution were placed in a black, clear-well, flat-bottomed 96-well microplate (Corning, ref 3603) to prevent well-to-well crosstalk, and the fluorescence of chlorophylls was measured using a monochromator-based microplate reader (BioTek, model Synergy Mx). The excitation wavelength was 480 nm and emission wavelengths were between 500 and 700 nm. The area below the emission curve between 640 and 800 nm was related to broken cells, as shown in Fig. 1. The cell density was measured by density gradient centrifugation in Percoll according to the method described by Whitelam et al. [26]. A value of 1200 g mL⁻¹ was obtained. The bulk density of the culture medium was measured using a pycnometer and found to be 1037 g mL⁻¹. The viscosity of suspensions was measured using a viscometer (Brookfield, model DV-II+Pro) and found to be 1180×10^{-6} Pa s. No significant changes in these parameters were observed for the different cultures.

The efficiency of the centrifugation process (η_c) was defined as

$$\eta_c = \frac{N_p}{N_i} \tag{1}$$

where N_p and N_i are the total number of cells in the pellet and in suspension prior to

treatment, respectively. All experiments were carried out in duplicate.

Fig. 1. Relationship between broken *A. carterae* cell concentration and the area below the chlorophyll emission curve between 640 and 800 nm, after excitation at 480 nm. The equation allows the estimation of cell viability after centrifugation experiments. The experimental data are represented as the average for duplicate experiments \pm standard deviation.

2.3. CFD simulations

Cell-sedimentation times for each centrifugation experiment were simulated using the CFD software Fluent® v19.2 (Ansys, Canonsburg, PA, USA). As the tube is axissymmetrical, it was simulated in 2D using a structured grid with an optimum size of 0.2 mm. Laminar flow was assumed and a two-phase Eulerian model, in which the cells represent the granular phase, was used to describe the solid-liquid interactions. The initial cell volume fraction in the suspension was 0.00458, as calculated from the cell diameter and the cell concentration in suspension. No energy balance was imposed, as isothermal conditions were assumed. The reference for pressure was at the top of the suspension. Boundary conditions included non-slip conditions at the walls. The schemes

used for spatial discretization were second -order upwind for momentum, Green-Gauss Node Based for gradient and Modified HRIC for volume fraction. The SIMPLE scheme with implicit formulation was chosen for pressure-velocity coupling. All simulations in the present study were performed in transient mode using a time step of 0.0005 s. The convergence criteria were checked at every time-step and residuals for all the variables were fixed at 10⁻⁵. An HP Z840 Workstation with two Intel® Xeon E5-2670 v3 processors running at 2.3 GHz with 128.0 GB RAM and 3 TB×2 hard disks was used for the simulations [27].

3. Results and Discussion

3.1. The approach

Despite the critical relevance of the operating parameters (mainly h_c , t_c , and g_c) on the output of discontinuous centrifugation, the performance of a centrifugation operation for harvesting microalgae and other cells or microorganisms is usually expressed in qualitative terms [28], and a wide variety of centrifugation protocols, with different suspension heights, times, and centrifugal forces, are used for no specific reason [29]. Indeed, they are frequently selected arbitrarily as the same separation can be achieved with different combinations of parameters. However, it is widely accepted that the conditions required to achieve complete cell separation can potentially damage cells, particularly in the case of shear-sensitive cells. The origin of this cell damage has been mainly related to hydrodynamic shear forces associated with the velocity gradients, relative cell-fluid movement during settlement, and the compressive centrifugal forces to which cells are submitted in the pellet. As such, the time that cells remain in the pellet, and the g-force applied, are critical parameters determining cell survival in

Accepted manuscript. https://doi.org/10.1016/j.algal.2019.101677 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/(opens in new tab/window)

 centrifugation processes. Indeed, the longer the cells remain in the pellet, the longer the compressive forces act, eventually producing cell damage [30, 31]. It has also been shown that long periods of time in the pellet may also result in severe cell deterioration or even death due to the exhaustion of essential nutrients [32].

Despite all the efforts made in the past, quantification of the impact of varying centrifugation parameters on the performance of centrifugation, especially when fragile biological materials are used, is currently not possible [31, 33]. Nonetheless, a quantitative approach can provide a deeper insight into centrifugation performance and the effect on cells. This work uses a new approach to study the influence of centrifugation parameters on separation efficiency capacity and cell damage. This approach allows the operating conditions for complete separation and operating conditions that lead to cell damage to be determined, thus providing an "operating window" for a specific cell in a particular centrifugation number (*Ce*), which is equivalent to a dimensionless time, to represent the intensity of the treatment. It is defined as:

$$Ce = \frac{t_c}{t_s} \tag{2}$$

where t_c is the centrifugation time and t_s is the sedimentation time. If the time taken for acceleration and deceleration of the rotor is neglected, t_c represents the time that the cells are subjected to centrifugal forces. t_s is the time needed to sediment all the cells. t_c is an operating variable and t_s can easily be determined from experimental data. If no experimental t_s values are available, a theoretical value of t_s can be estimated from h_c and the settling velocity.

According to the theory of particle movement through a fluid, the terminal settling velocity of a small particle in dilute suspension under gravity is given by [34]:

$$v = \sqrt{\frac{2 g(\rho_s - \rho)m_s}{A \rho_s C_D \rho}}$$
(3)

where *v* is the sedimentation velocity under gravity, *g* is the gravitational acceleration, ρ_S is the density of the particle, ρ is the density of the fluid, m_s is the mass of the particle, *A* is the projected area of the particle (the area obtained projecting the particle on a plane perpendicular to the line of flow), and C_D is the drag coefficient. In a centrifuge, the corresponding terminal velocity is:

$$v_c = \sqrt{\frac{2\omega^2 r(\rho_s - \rho)m_s}{A\rho_s C_D \rho}} = \sqrt{\frac{2 g_c(\rho_s - \rho)m_s}{A \rho_s C_D \rho}}$$
(4)

where ω is the angular velocity, r is the radius of the centrifuge, and g_c is the g-force, the force developed in a centrifuge relative to the force of gravity. For spherical particles, equation (4) can be written as:

$$v_c = \sqrt{\frac{4g_c(\rho_s - \rho)D_s}{3C_D\rho}}$$
(5)

where D_s is the diameter of the particle. The drag coefficient for spherical particles is a function of the particle Reynolds number Re, and in laminar flow can be written as [34]:

$$C_D = \frac{24}{Re} = \frac{24}{\frac{D_s v_c \rho}{\mu}} \tag{6}$$

where μ is the viscosity of the liquid. Substituting this into equation (5) gives the following equation:

Accepted manuscript. https://doi.org/10.1016/j.algal.2019.101677 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/(opens in new tab/window)

$$v_c = v_{Stokes} = \frac{g_c D_s^2 (\rho_s - \rho)}{18\mu} \tag{7}$$

known as Stokes' law.

Hence, for spherical particles in dilute solutions, if no experimental t_s values are available, the theoretical t_s can be estimated from h_c and Stokes' settling velocity as:

$$t_s = \frac{h_c}{v_{Stokes}} = \frac{18\mu h_c}{g_c D_s^2 (\rho_s - \rho)} \tag{8}$$

Substituting Eq. (8) into Eq. (2) gives the following expression for Ce:

$$Ce = \frac{t_c}{t_s} = a \frac{g_c t_c}{h_c} \tag{9}$$

where *a* is a constant for a particular cell-fluid system given by:

$$a = \frac{D_s^2(\rho_s - \rho)}{18\mu} \tag{10}$$

For non-spherical particles, general equation (4) can be used to estimate sedimentation velocity. Numerous correlations can be found in the literature to estimate C_D for different particles, with one of the most recent correlations for estimating the average drag coefficient of freely falling solid non-spherical particles in liquids or gases being proposed by Bagheri and Bonadonna [36], modifying Eq. (6):

$$\frac{C_D}{k_N} = \frac{24 k_s}{Rek_N} \left(1 + 0.125 \left(Re^{k_N}/k_S\right)^{2/3}\right) + \frac{0.46}{1 + 5330/(Re^{k_N}/k_S)}$$
(11)

where

$$k_{S} = \left(F_{S}^{1/3} + F_{S}^{-1/3}\right)/2 = 1.101$$

$$k_N = 10^{\alpha_2 [-\log(F_N)]\beta_2} = 0.936$$

$$\alpha_2 = 0.45 + \frac{10}{exp(2.5 \log \rho' + 30)} = 0.45$$

$$\beta_2 = 1 - \frac{37}{\exp(3\log\rho' + 100)} = 1$$

and

$$F_S = f e^{1.3} = 0.263$$

 $F_N = f^2 e = 0.191$

where *e* is the elongation (*I/L*) and *f* the fatness (*S/I*). *L*, *I*, and *S* are the longest, the intermediate, and the shortest length of the particle, respectively; and ρ ' is the particle-to-fluid density ratio. Eq. (11) is based on dimensional analysis, by normalizing the drag coefficient and particle Reynolds number, and has been shown to be valid for any particle shape and any normalized Reynolds number [36].

A high particle concentration negatively affects particle settling velocity in a suspension, and different models have been proposed over the past 100 years or so to predict the settling velocity for different particles in concentrated suspensions [37], although the prediction of sedimentation times under these conditions remains complicated. In this scenario, CFD can also be successfully used to predict sedimentation times. Thus, in this work, the Bagheri and Bonadonna equation [36] was incorporated into a user-defined function to modify the drag force in Fluent to estimate the theoretical t_s .

As pointed out above, the dimensionless number used in this approach, *Ce*, represents the intensity or magnitude of the centrifugation treatment. If Ce = 1, we have an "ideal treatment" where t_c equals t_s , all the cells are separated and the mean time that cells

remain in the pellet approaches 0. If Ce < 1, we have a "deficiency of treatment" and not all the cells sediment. If Ce is > 1, we have an "excess of treatment". In this case, all the cells are separated, but the time that the cells remain in the pellet is > 0 and, if the process lasts too long, it will potentially be deleterious for cells at some point. This approach provides an "operating window" for optimal centrifugation of a particular cellcentrifuge system, as discussed below for three different cells in three different centrifuges.

3.2. Application to Amphidinium carterae cells

The clarification efficiency for representative g-forces up to $2000 \times g$ used in this work is shown in Fig. 2. As can be seen, the longest time needed to recover all the cells (15 min) was obtained for the lowest g_c (100×g). As g_c increased, the time needed for complete cell separation decreased, reaching roughly 1 min at 2000×g.

Fig. 2. Centrifugation of *A. carterae* cells. Influence of centrifugation time (t_c) on the clarification efficiency (η_c) for different centrifugation forces (g_c) . For clarity, only experiments up to 2000×g are shown. The experimental data are represented as the

 Accepted manuscript. https://doi.org/10.1016/j.algal.2019.101677 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/(opens in new tab/window)

average for duplicate experiments \pm standard deviation.

The experimental t_s values derived graphically from the data presented in Fig. 2, as the time needed to reach a separation efficiency of 100% for the different g_c values, are shown in Fig. 3.

Fig. 3. Influence of g_c on sedimentation time (t_s) of *A. carterae* cells. Experimental times are derived graphically from Fig. 2. Theoretical values of t_s predicted using Eq. (8), Eq. (4), and CFD are also shown.

The values obtained for *t_s* using equation (8) and (4) are also shown in Fig. 3. As stated above, the application of Stokes' equation implies several assumptions for the behavior of the cells, with the most relevant being: spherical particles, laminar flow, and the particles do not interfere with each other during the settling process. As can be seen from Fig. 3, Stokes' equation greatly underestimates sedimentation times and therefore should not be used to describe sedimentation of *A. carterae* cells. Since the calculated *Re* number reveals that the flow remained in the laminar region for all experiments (data not shown), this significant discrepancy between the sedimentation times obtained using

Stokes' equation and the experimental values may be due to the morphology of the *A*. *carterae* cell, which presents the typical shape of the *Amphidinium* genus, namely oval in ventral view and dorso-ventrally flattened, with two flagella, or to the interference of cells with each other during the settling process.

The morphology of the cells undoubtedly negatively affects sedimentation. As such, to take cell shape into account, the general equation for terminal velocity (Eq. (4)) with C_D obtained from Eq. (11) was also used to predict settling velocities. It is clear that although Eq. (4) improves the prediction of Stokes' equation, predicted t_s values are still about 50% lower than experimental times (see Fig. 3). In this scenario, CFD was also used to predict t_s . Thus, the Bagheri and Bonadonna equation [36] was incorporated into a user-defined function to modify the drag force in Fluent.

As can be seen in Fig. 3, CFD provided t_s values very close to the experimental ones. The minor discrepancies observed are probably due to the lack of precision in the graphical determination of experimental t_s [31]. These results support the use of CFD as a solid and useful tool for predicting sedimentation times for single-cell suspensions in discontinuous centrifugation without the need for experimentation. As such, CFD was also used to predict t_s for g-forces over 2000×g because settling times over this g-force were below the minimum working time of the centrifuge (1 minute).

Fig. 4a shows the separation efficiency (η_c) and percentage of viable cells (V_c) versus *Ce* for all experiments. It can be seen from this figure that, for *Ce* < 1, η_c increases linearly to reach its highest value (100%) at a *Ce* value of 1. For higher *Ce* values up to 80, η_c remains constant, subsequently decreasing sharply due to cell rupture for Ce > 80. V_c , in turn, is close to 100% up to a *Ce* value of 80, whereas for *Ce* > 80, V_c also decreases sharply due to cell rupture in a similar manner to η_c . In this scenario, a *Ce*

	Accepted manuscript. https://doi.org/10.1016/j.algal.2019.101677 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
945	https://creativecommons.org/licenses/by-nc-nd/4.0/(opens in new tab/window)
946	1 ··· · · · · · · · · · · · · · · · · ·
947	-1
948	value of 80 is the critical Ce and represents the maximum magnitude of treatment that
949	
950	A. carterae cells can withstand in this centrifuge.
051	
901	
952	
953	
954	
955	
956	
957	
958	
959	
960	
961	
962	
963	
964	
965	
905	
900	
967	
968	
969	
970	
971	
972	
973	
974	
975	
976	
977	
978	
979	
080	
960	
981	
982	
983	
984	
985	
986	
987	
988	
989	
990	
991	
992	
993	
994	
995	
006	
990 007	
997	
998	
999	
1000	
1001	
1002	17

Fig. 4. Separation efficiency (η_c) and cell viability (V_c) for different centrifugation numbers (*Ce*) (a), and operating window (b), for *A. carterae* cells centrifugation. *Ce* = 1 is the *Ce* value for complete cell separation and *Ce* = 80 is the "critical *Ce*", the *Ce* value above which cell integrity is compromised. The separation efficiency and cell viability data are represented as the average for duplicate experiments ± standard deviation. See text for further details.

These data can be rearranged as shown in Fig. 4b, which shows the operating window (values of t_c and g_c) for this cell. All combinations of t_c and g_c inside the operating window will give complete cell separation with no cell damage. For combinations

Accepted manuscript. https://doi.org/10.1016/j.algal.2019.101677 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/(opens in new tab/window)

below the line representing Ce = 1, the treatment will be deficient and not all cells will be separated. For combinations over the line of Ce = 80, cells will be damaged.

To corroborate the applicability of this approach, a new set of experiments was carried out under different centrifugation conditions. These experiments are shown in Fig. 4b (points A to G). In experiment A (400×g, 1 min) a η_c of 90% was obtained, with a V_c of 99%. This experiment represents a deficient treatment and clearly lies outside the operating window. In experiments B (2000×g, 1 min) and C (2000×g, 5 min), a η_c of 100% with a V_c of 98% and 99%, respectively, was obtained. These two points are clearly inside the operating window and represent optimal centrifugation conditions. However, in experiment D (2000×g, 120 min) η_c and V_c decreased to 90% due to cell rupture. This experiment represents an excessive treatment and is clearly outside the limits of the operating window. Similar results were obtained in experiments carried out at 12,000×g. Thus, in experiments E (12000×g, 1 min) and F (12000×g, 5 min), a η_c of 100% was obtained, with a V_c of 99% in both cases, whereas in experiment G (12,000×g, 120 min) both η_c and V_c decreased to 60%.

As noted in section 2.2, the height of the suspension in the centrifuge tubes was 10.4 cm in all experiments carried out in this work. According to Eq. (9), if the height of the suspension changes, g_c or t_c , or both, have to change in order to keep *Ce* constant. This implies that a change in the height of the suspension would produce a displacement of the operating window to higher or lower values of g_c , t_c , or both, while keeping the width of the operating window constant.

To corroborate the applicability of the *Ce* number approach discussed above to different cell-centrifuge systems, it was applied to centrifugation data from the literature for a

microalga lacking a cell wall (*Dunaliella salina*; [21]) and to the very shear-sensitive *Spodoptera exigua* Se301 cell line [31].

3.3. Application to Dunaliella salina cells

 Recently, Xu et al. [21] used mechanistic calculations to explore the potential cell damage that may result due to different forces acting on *Dunaliella salina* cells during centrifugation in a benchtop microcentrifuge (Eppendorf, model 5415R) using a fixed-angle rotor at different g-forces (from 1000 to 15,000×g) for a fixed time (10 min). The authors assumed a spherical shape with a diameter of 10 μ m for *Dunaliella* cells and that Stokes' law (Eq. 7) was applicable. Calculations included hydrodynamic stress due to turbulence, viscous drag, hydrostatic pressure exerted on cells at the bottom of the centrifugal force, and the pressure of the cells due to their own mass and the centrifugal force, and the pressure of the cells in the pellet acting on the cells at the bottom of the pellet. They concluded that *D. salina* cell rupture observed for g-forces over 5000×g was due to the hydrostatic pressure, with the other forces being considerably lower than those estimated to be required for cell rupture [21].

To apply the *Ce* number approach to these experiments, the same assumptions (spherical cells and Stokes' law applicable) were applied. CFD could not be used due to a lack of geometrical data for the centrifuge rotor and centrifuge tube, and the absence of experimental values for t_s . Fig. 5a shows that, with those assumptions, the *Ce* used in these experiments were thousands of times higher than that needed for complete separation of *Dunaliella* cells (*Ce* = 1). Indeed, cell rupture, with a sharp decline in V_c , was observed for *Ce* values over 5600. This provides a very large operating window, as seen in Fig. 5b. According to the authors, in the experiment carried out at $3000 \times g$,

Accepted manuscript. https://doi.org/10.1016/j.algal.2019.101677 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/(opens in new tab/window)

100% cell separation, with a V_c of 100%, was obtained. It can be seen from Fig. 5b that these centrifugation conditions (3000×g, 10 min) are inside the operating window (point A). The authors point out that the number of intact cells present in the pellet decreased upon increasing g_c above 5000×g. These results are clearly corroborated in Fig 5b, which shows that $g_c = 5000 \times g$ and $t_c = 10$ min are in the limit of the operating window (point B), and that increasing g_c over 5000×g is expected to result in an increasing number of cells being damaged, as observed by the authors in experiments at $g_c =$ 9000×g, where V_c for the pellet decreased to 60%. As can be seen from Fig 5b, the combination 9000×g and 10 min clearly lies outside the operating window (point C).

Fig. 5. Separation efficiency (η_c) and cell viability (V_c) for different centrifugation numbers (*Ce*) (a), and operating window (b), for centrifugation of *D. salina* cells. *Ce* =

1 is the *Ce* value for complete cell separation and Ce = 5600 is the "critical *Ce*", the *Ce* value above which cell integrity is compromised. See text for further details.

3.4. Application to Spodoptera exigua cells

In a recent study, Molina-Miras et al. [31] studied the effect of centrifugation on the Spodoptera exigua Se301 cell line, using the "Excess of Treatment", an intensive variable, to predict cell damage. Experiments were carried out using 15 mL Falcon tubes (2.2 cm suspension height) in a benchtop centrifuge (Sigma, model 4-15C) using a swing-out rotor with a maximum radius of 18.2 cm at g-forces ranging from 20 to 4000×g for different times of up to 45 min. The authors assumed a spherical shape with a diameter of 18 μ m for *S. exigua* and Stokes' law and CFD were used to estimate t_s and make a comparison with experimental values. The results for S. exigua (see Fig. 6) were similar to those found for A. carterae (Fig. 3). Although the deviation from Stokes' equation is less than with A. carterae, this equation underestimated t_s , whereas CFD provided t_s values similar to the experimental ones. The authors also used CFD to determine the shear stress magnitude in a conical centrifugation tube, with the highest shear stress value $(7.4 \times 10^{-1} \text{ Pa})$ being obtained at the wall at the bottom of the tube. This value was well below the breaking shear stress value (233 Pa) previously found for S. exigua cells in a microfluid flow-concentration device [27]. These results clearly show that, under the conditions used in that study, S. exigua cells were not damaged by the velocity gradient present in the settling process. These authors concluded that cell damage correlated with long residence times in the pellet at the bottom of the tube, and with high centrifugal forces. They were also able to distinguish between mechanical cell damage at high g-forces and cell damage due to oxygen depletion in the pellet at longer times [31]. These findings were in accordance with those previously reported by

 Peterson et al. [29], who observed that compressive forces squeezed the cells against the tube wall and defined a "Compaction Parameter" to determine the fraction of the pellet that was damaged in a specific centrifugation protocol.

Fig. 6. Influence of g_c on sedimentation time (t_s) for *S. exigua* cells. Experimental times are taken from reference [31]. Theoretical values of t_s predicted with Eq. (8) and CFD are also shown.

Application of the *Ce* approach to data for *S. exigua* cells is shown in Fig. 7. Fig. 7a shows that η_c increases with *Ce* to 100% at a *Ce* value of 1, remaining constant for higher values of *Ce*. Severe cell damage, with a marked decrease in V_c , was observed for *Ce* values higher than 3.5. This means that the operating window for this cell type is very narrow, as can be seen from Fig. 7b and corroborated by the experimental data. According to the authors, in the experiment carried out at 60×g and $t_c = 1$ min, the time that the cells were in the pellet was < 0, with a V_c of 98%. This indicates a deficient treatment, as can be seen in Fig. 7b (point A). Point B in Fig. 7b represents the experiment at 400×g and $t_c = 1$ min. According to the authors, in this experiment all cells were sedimented and the V_c for the cells in the pellet was 98%. This experiment

Accepted manuscript. https://doi.org/10.1016/j.algal.2019.101677 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/(opens in new tab/window)

 clearly falls within the operating window. However, when the g-force was increased to $1000 \times g$ with t_c remaining constant (1 min), a decrease in cell viability in the pellet to 90% was observed. This experiment is clearly outside the operating window (point C). A similar result was observed in the experiment at 400×g and $t_c = 4$ min (point D), with a decrease in V_c to 91% being observed. However, the most damaging conditions are represented by point E (4000×g, $t_c = 16$ min), with a decrease in V_c to 60%. Clearly, the selection of g_c and t_c in this case is highly critical to obtain complete separation and avoid cell damage.

Fig. 7. Separation efficiency (η_c) and cell viability (V_c) for different centrifugation numbers (*Ce*) (a), and operating window (b), for centrifugation of *S. exigua* cells. *Ce* = 1 is the *Ce* value for a complete cell separation and *Ce* = 3.5 is the "critical *Ce*", the *Ce*

value above which cell integrity is compromised. The separation efficiency and cell viability data are represented as the average for duplicate experiments \pm standard deviation. See text for further details.

4. Conclusions

 In this study, Computer Fluid Dynamics has been successfully used to simulate and predict the settling time of a single-cell suspension in discontinuous centrifugation. In addition, the centrifugation number (*Ce*) has been used to obtain an operating window for *Amphidinium carterae* centrifugation in a discontinuous centrifuge. This approach has been extrapolated to other cells in benchtop centrifuges and has been shown to provide an efficient guide for selecting the combination of critical centrifugation parameters from a cell separation-cell integrity perspective.

Acknowledgements

This research was funded by the Spanish Ministry of Economy and Competitiveness (grant CTQ2014-55888-C3-02) and the European Regional Development Fund Program.

Contributions

All authors were involved in the conception and design of the study, acquisition, analysis, and interpretation of the data, and drafting of the paper. All authors agree to submission of the final version of the manuscript. A. Contreras-Gómez takes responsibility for the integrity of the entire work and can be contacted at acontre@ual.es.

References

- Coutteau, A., Sorgeloos, P., 1992. The use of algal substitutes and the requirement for live algae in the hatchery and nursery rearing of bivalve molluscs: and international survey. J. Shellfish Res. 11, 467-476.
- [2] Razzak, S.A., Hossain, M.M., Lucky, R.A., Bassi, A.S., 2013. Integrated CO₂ capture, wastewater treatment and biofuel production by microalgae culturing-a review. Renew. Sust. Energ. Rev. 27, 622-653.
- [3] Christenson, L. and Sims, R., 2011 Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 29, 686-702.
- [4] Khan, M. I., Shin, J. H., Kim, J. D., 2018. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 17(1), 36.
- [5] Assunção, M. F., Amaral, R., Martins, C. B., Ferreira, J. D., Ressurreição, S., Santos, S. D., Varejão, JMTB, Santos, L. M.A., 2017. Screening microalgae as potential sources of antioxidants. J. Appl. Phycol. 29(2), 865-877.
- [6] Gallardo-Rodríguez, J., Sánchez-Mirón, A., García-Camacho, F., López-Rosales, L., Chisti, Y., Molina-Grima, E., 2012. Bioactives from microalgal dinoflagellates. Biotechnol. Adv. 30(6), 1673-1684.
- [7] Kobayashi, J.i., Kubota, T., 2010. 2.09 Bioactive Metabolites from Marine Dinoflagellates, in: Liu, H. W., Mander, L. (Eds.), Comprehensive Natural Products II. Elsevier, Oxford, pp. 263-325.

	Accepted manu	uscript. https://doi.org/10.1016/j.algal.2019.101677
1535	bttps://creativer	commons ora/licenses/by no nd/4 0/(opens in new tab/window)
1536	nups.//creatived	
1537	503	
1538	[8]	Wang, S., Chen, J., Li, Z., Wang, Y., Fu, B., Han, X., Zheng, L., 2015.
1539		
1540		Cultivation of the benthic microalga Prorocentrum lima for the production of
1541		
1542		diarrhetic shellfish poisoning toxins in a vertical flat photobioreactor.
15/13		
1544		Bioresour, Technol, 179, 243-248.
1545		
1546	[9]	López-Rosales L. García-Camacho F. Sánchez-Mirón A. Chisti Y. 2015
1547	[2]	
1548		An optimal culture médium for growing Karlodinium veneficum: Progress
1549		The optimal culture medium for growing Karlounium veneficum. 110gress
1550		towards a migroalgal dinoflagallate based bioprocess. Algal Peak 10, 177
1551		towards a microargar unionagenate-based bioprocess. Argar Rech. 10, 177-
1552		182
1553		182.
1554	[10]	
1555	[10]	Molina-Miras, A., Morales-Amador, A., de Vera, C. R., Lopez-Rosales, L.,
1556		
1557		Sánchez-Mirón, A., Souto, M. L., Fernández, J. J., Norte, M., García-
1558		
1559		Camacho, F., Molina-Miras, E., 2018. A pilot-scale bioprocess to produce
1560		
1561		amphidinols from the marine microalga Amphidinium carterae: Isolation of a
1562		
1563		novel analogue. Algal Rech. 31, 87-98.
1564		
1565	[11]	López-Rosales, L., García-Camacho, F., Sánchez-Mirón, A., Beato, E. M.,
1566		
1567		Chisti, Y., Grima, E. M., 2016. Pilot-scale bubble column photobioreactor
1568		
1569		culture of a marine dinoflagellate microalga illuminated with light emission
1570		
1571		diodes Bioresour Technol 216 845-855
1572		diodes. Dioresour. Teennor. 210, 045 055.
1573	[12]	Lónaz Rosalas I. Sánchaz Mirón A. García Camacho F. Dlaca A. P.
1574		Lopez-Rosales, L., Saliellez-Willoll, A., Galela-Calilaello, F., Flace, A. R.,
1575		Chisti V. Moline Crime E. 2018 Bilot scale outdoor photobiorogeter
1576		Cinsu, Y., Molina-Olinia, E., 2018. Phot-scale outdool photobioleactor
1577		
1578		culture of the marine dinoflagellate Karlodinium veneficum: Production of a
1579		
1580		karlotoxins-rich extract. Bioresour. Technol. 253, 94-104.
1581		
1582	[13]	Molina-Miras, A., López-Rosales, L., Sánchez-Mirón, A., Cerón-García, M.
1583		
1584		C., Seoane-Parra, S., García-Camacho, F., Molina-Grima, E., 2018. Long-
1585		
1586		term culture of the marine dinoflagellate microalga Amphidinium carterae in
1587		
1588		
1589		
1590		
1591		27
1092		27

4504	Accepted manu © 2019. This m	uscript. https://doi.org/10.1016/j.algal.2019.101677 anuscript version is made available under the CC-BY-NC-ND 4.0 license
1594	https://creativeo	commons.org/licenses/by-nc-nd/4.0/(opens in new tab/window)
1595		
1590		an indoor LED-lighted raceway photobioreactor: Production of carotenoids
1598		
1599		and fatty acids. Bioresour. Technology. 265, 257-267.
1600		
1601	[14]	León-Bañares, R., González-Ballester, D., Galván, A., Fernández, E., 2004.
1602 1603		Transgenic microalgae as green cell-factories. Trends Biotechnol. 22(1), 45-
1604 1605		52.
1606		
1607 1608	[15]	Badvipour, S., Eustance, E., Sommerfeld, M. R., 2016. Process evaluation of
1609 1610		energy requirements for feed production using dairy wastewater for algal
1611 1612		cultivation: Theoretical approach. Algal Rech. 19, 207-214.
1613	[16]	Chisti Y 2007 Biodiesel from microalgae Biotechnol Adv 25(3) 294-
1614	[-•]	
1615		306.
1616		
1618	[17]	Gerardo, M. L. Van Den Hende, S. Vervaeren, H., Coward, T., Skill, S. C.,
1619		
1620		2015. Harvesting of microalgae within a biorefinery approach: A review of
1621		
1622		the developments and case studies from pilot-plants. Algal Rech. 11, 248-
1623		
1624		262.
1625		
1626	[18]	Molina-Grima E., Belarbi, E. H., Acién-Fernández, F. G., Robles-Medina, A.,
1628		
1629		Chisti, Y., 2003. Recovery of microalgal biomass and metabolites: process
1630		antions and accounting Distactural Adv. 20, 401,515
1631		options and economics. Biotechnol Adv. 20, 491-515.
1632	[10]	Dirwitz K. Elassig D. I. Dibko Struckmann, I. K. Sundmachar, K. 2015
1633	[19]	Filwitz, K., Flassig, K. J., Kliiko-Suluckinaliii, L. K., Sululilachel, K., 2015.
1634		Energy and operating cost assessment of competing harvesting methods for
1635		Energy and operating cost assessment of competing harvesting methods for
1636		D saling in β-carotene production process Algal Rech 2015 12 161-169
1638		2. swiin nip en etere production process. ringui reen. 2010, 12, 101 10).
1639	[20]	Barros, A. I., Goncalves, A. L., Simões, M., Pires, J. C., 2015. Harvesting
1640	L · J	
1641		techniques applied to microalgae: a review. Renew. Sust. Energ. Rev. 41,
1642		
1643		1489-1500.
1644		
1645		
1645		
1648		
1649		
1650		

1653	Accepted manu © 2019. This m https://creativeo	uscript. https://doi.org/10.1016/j.algal.2019.101677 anuscript version is made available under the CC-BY-NC-ND 4.0 license commons.org/licenses/by-nc-nd/4.0/(opens in new tab/window)
1654		
1655	[21]	Xu Y Milledge I I Abubakar A Swamy R A R Bailey D Harvey
1656	[21]	Au, T., Minedge, J. J., Abubukui, A., Swuniy, R. A. R., Duney, D., Hurvey,
1657		P I 2015 Effects of centrifugal stress on cell disruption and glycerol
1658		1. J., 2013. Encets of continugal stress on contaisruption and gryceror
1659		leakage from <i>Dunaliella salina</i> . Microalgae Biotechnol. 1, 20-27.
1661		
1662	[22]	Guillard, R.R.L. Ryther, J.H., 1962. Studies of marine planktonic diatoms. I.
1663		
1664		Cyclotella nana Hustedt and Detonula confervacea Cleve. Can. J. Microbiol.
1665		
1666		8, 229-239.
1669	[00]	
1669	[23]	Guillard, R.R.L., 19/5. Culture of phytoplankton for feeding marine
1670		invertebrates in: Smith W. J., Chanley M. H. (Eds.) Culture of Marine
1671		invertebrates, in: Sinth w. L., Chamey W. H., (Eds.), Culture of Marine
1672		Invertebrate Animals Plenum Press New York pp 26-60
1673		inverteerate minimus. Trendin Trees, iven Torn, pp. 20 00.
1674	[24]	López-Rosales, L., García-Camacho, F., Sánchez-Mirón, A., Contreras-
1676		1 , , , , , , , , , , , ,
1677		Gómez, A., Molina Grima, E., 2015. An optimisation approach for culturing
1678		
1679		shear-sensitive dinoflagellate microalgae in bench-scale bubble column
1680		
1681		photobioreactors. Bioresour. Technol. 197, 375–382.
1682	[25]	Sacana S. Malina Miras A. Lánaz Dasalas I. Sánahaz Mirán A. Carán
1684	[23]	Sedane, S., Monna-Minas, A., Lopez-Rosales, L., Sanchez-Minon, A., Ceron-
1685		García M C. García-Camacho F. Madariaga I. Molina-Grima E. 2018
1686		
1687		Data on the <i>Amphidinium carterae</i> Dn241EHU isolation and morphological
1688		
1689		and molecular characterization. Data Brief. 20, 1-5.
1691		
1692	[26]	Whitelam, G. C., Lanaras, T., Codd, G. A., 1983. Rapid separation of
1693		nime lass has denoted and diset as the for stime in more 11 Dr. Dhared J. 10(1)
1694		microalgae by density gradient centrifugation in percoil. Br. Phycol. J. 18(1),
1695		23-28
1696		23 20.
1698	[27]	Gallardo-Rodríguez, J. J., López-Rosales, L., Sánchez-Mirón, A., García-
1699	[·]	
1700		Camacho, F., Molina-Grima, E., Chalmers, J. J., 2016. New insights into
1701		
1702		shear-sensitivity in dinoflagellate microalgae. Bioresour. Technol. 200, 699-
1703		205
1705		/05.
1706		
1707		
1708		
1709		20
1/10		L1

1712	Accepted manu © 2019. This m	iscript. https://doi.org/10.1016/j.algal.2019.101677 anuscript version is made available under the CC-BY-NC-ND 4.0 license
1713	mups.//creatived	commons.org/licenses/by-lic-lid/4.0/(opens in new tab/window)
1713		
1714	[28]	Fasaei, F., Bitter, J. H., Slegers, P. M., van Boxtel, A. J. B., 2018. Techno-
1715		-
1716		economic evaluation of microalgae harvesting and dewatering systems. Algal
1717		economie evaluation of microargae narvesting and dewatering systems. Augur
1718		$D_{} 21 247 2(2)$
1719		Res. 31, 34/-362.
1720		
1721	[29]	Peterson, B. W., Sharma, P. K., van der Mei, H. C., Busscher, H. J., 2012.
1722		
1723		Bacterial cell surface damage due to centrifugal compaction. Appl. Environ.
1724		
1725		Microbiol 78 120-125
1726		Wilciobiol. 76, 120-125.
1720	[20]	
1727	[30]	Maybury, J. P., Hoare, M., Dunnill, P., 2000. The use of laboratory
1728		
1729		centrifugation studies to predict performance of industrial machines: Studies
1730		
1731		of shear-insensitive and shear-sensitive materials Riotechnol Rioeng 67(3)
1732		of shear insensitive and shear sensitive indefinits. Diotechnol. Diotechnol. (3) ,
1733		2(5.272
1734		203-273.
1735		
1736	[31]	Molina-Miras, A., Sánchez-Mirón, A., García-Camacho, F., Molina-Grima,
1737		
1738		E., 2018. CFD-aided optimization of a laboratory-scale centrifugation for a
1730		
1735		shear sensitive insect cell line Food Bioprod Process 107 113 120
1740		shear-sensitive insect cen inic. Food Dioprod. Frocess. 107, 115-120.
1741	[20]	
1742	[32]	Haggstrom, L., 2003. Cell metabolism. Anim. Encycl. Cell Technol. 1, 392-
1743		
1744		411, http://dx.doi.org/10.1002/0471250570.spi040
1745		
1746	[33]	Boychyn, M., Yim, S. S. S., Shamlou, P. A., Bulmer, M., More, J., Hoare,
1747		
1748		M 2001 Characterization of flow intensity in continuous centrifuges for the
1749		wi., 2001. Characterization of now intensity in continuous centifuges for the
1750		
1751		development of laboratory mimics. Chem. Eng. Sci. 56(16), 4/59-4//0.
1752		
1753	[34]	Geankoplis, C.J., 2003. Transport Processes and Separation Process
1754		
1755		Principles: (Includes Unit Operations) fourth ed Prentice Hall Upper Saddle
1755		
1750		Divor MI
1757		RIVEL, INJ.
1758	50.57	
1759	[35]	Bagheri, G., Bonadonna, C., 2016. On the drag of freely falling non-spherical
1760		
1761		particles. Powder Technol. 301, 526-544.
1762		
1763	[36]	Major, J.J., 2003. Hindered settling, in: Middleton, G. W. Church M. J.
1764	[2,3]	<i>, , ,</i>
1765		Conjulio M. Hardie I. A. Longstaffe F. I. (Eds.) Encyclonedia of
1766		Comeno, M., Harure, E. A., Longstane, F. J. (Eus), Encyclopedia of
1767		
1768		
1769		30
1770		

	Accepted manuscript. https://doi.org/10.1016/j.algal.2019.101677
4	@ 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
1//1	https://creativecommons.org/licenses/by-nc-nd/4.0/(opens in new tab/window)
1//2	
1773	Sediments and Sedimentary Rocks. Kluwer Academic Publishers, Dordrecht,
1//4	
1775	The Netherlands pp. 358-360
1776	The recitementation, pp. 556 566.
1777	
1778	
1779	
1780	
1781	
1782	
1783	
1784	
1785	
1786	
1787	
1788	
1789	
1790	
1791	
1792	
1793	
1794	
1795	
1796	
1797	
1798	
1799	
1800	
1801	
1802	
1803	
1804	
1805	
1806	
1807	
1808	
1809	
1810	
1811	
1812	
1813	
1814	
1815	
1816	
1817	
1818	
1810	
1820	
1821	
1822	
1822	
1020	
1024	
1020	
1020	
102/	21
1020	31
1829	

Conflict of interest

The authors have no conflicts of interest to disclose.