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Abstract 

Amphidinium carterae is a marine dinoflagellate microalga that produces high-

value bioactive polyketides such as amphidinols and amphidinolides, which have 

remarkable cytotoxic, antifungal and antitumoral activities. This species also produces 

docosahexaenoic acid and the carotenoid peridinin as high-value byproducts. The 

development of any sustainable microalgae-based bioprocess must comprise complete 

valorization of the biomass and reuse of the exhausted culture medium as much as 

possible to comply with the circular economy concept. In this work we have assessed the 

effect of recycling the cell-free supernatant on the growth kinetics and production of 

amphidinols by A. carterae photoautotrophically cultured in a pilot-scale raceway-type 

photobioreactor in semi-continuous mode. Acclimatisation to the recycled medium was 

first studied on a laboratory scale and was accomplished in the fourth sub-culture, except 

for pigment content, which decreased throughout the process. No measurably negative 

effect was detected in the cells. Maximum growth rates and cell productivities increased 

by 60% with use of 75% spent medium, as a result of mixotrophic consumption of the 

organic carbon present in that medium, remaining constant thereafter. In the 

photobioreactor, acclimatisation took 77 days and was also accomplished in the fourth 

sub-culture, with no negative effects on cell health. Biomass and cell productivities were 

higher with the recycled medium than with the fresh medium. Pigments decreased 

throughout the acclimatisation process, probably due to organic carbon-based 

mixotrophic growth. Amphidinols and docosahexaenoic acid biomass contents were not 

affected by medium recycling, which will significantly improve the economics of 

amphidinols production from A. carterae cultures on a circular economy basis.
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1. Introduction

Marine dinoflagellate microalgae have been found to be a source of numerous 

compounds with fascinating bioactivities [1]. Amphidinium carterae, for example, 

produces an interesting group of polyketide metabolites, namely amphidinolides and 

amphidinols (henceforth referred to as APDs indistinctly), which exhibit potent 

anticancer, antifungal and haemolytic activities, amongst others, and have potential use 

in drug design studies [2]. Our previous findings have demonstrated the possibility of 

medium- or large-scale production of A. carterae using simple and scalable processes 

[3] with integral use of the biomass [4]. As is the case for traditional microalgae 

production, the bioprocess should be economically and environmentally optimized 

using the biorefinery concept and the conclusions of water footprint studies from 

lifecycle analysis [5]. The dinoflagellate biomass produced contains significant amounts 

of other high-value compounds with commercial applications [3], such as carotenoid 

pigments [6] and fatty acids [3,7,8], that could be efficiently recovered to improve the 

economy of the process [4]. There is also a need to reuse this growth medium to reduce 

water and nutrient consumption and residue generation [9,10].

Microalgae cultivation is a water-intensive process in which adequate 

management of water consumption and losses is required to reduce its environmental 

impact [11]. Since the majority of the water footprint comes from the cultivation 

system, the maximum amount of spent medium must be recovered and recycled for 

subsequent reuse. In addition, a large quantity of unused nutrients will be lost if water is 

not recirculated into the cultivation system after the harvesting process [12]. As such, 

the reuse of cultivation water reduces the costs and energy associated with pumping 

input water, adding nutrients, and treating discharged water [13,14]. Although it has to 

be replenished with consumed nutrients [15–18] in a balanced manner [19], medium 
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recycling can reduce water consumption sixfold and recover 50-100% of the nutrients 

[12,20].

It is well known that organic matter (OM) is excreted naturally by microalgae 

during growth [21] or suddenly released when cell lysis occurs [22]. However, this is 

strongly dependent on the species [13], culture conditions [23] and growth phase at the 

time when the biomass is harvested [24,25]. In the exponential growth phase, excretion 

is active and comprises low molecular weight substances, such as small proteins and 

peptides [26,27], as a consequence of excess photosynthetic capacity [21,28]. In 

contrast, in the growth deceleration and stationary phases, high molecular weight 

species, such as carbohydrates [26,27] and humic substances (HSs), are excreted due to 

the growth limitation of a nutrient or to decomposition of the accumulated biomass 

[18,24]. Interestingly, it has been reported that HSs affect dinoflagellate growth [29], 

with the response depending on the species concerned [30]. Thus, a gradual 

accumulation of OM [21,31] and counterions [17] occurs in the medium upon recycling, 

especially in cultures with high biomass concentrations. In general, harvesting algae in 

the exponential growth phase should produce the most suitable medium for reuse, 

whereas later phases could more likely cause inhibition [13,32]. Algal growth 

experiments in spent, or conditioned, media date back to the 1940s [33], with the effects 

of OM on growth varying greatly depending on the species and culture conditions. 

Indeed, some authors have found that waste products or toxins may accumulate and 

affect growth [13,26,34]. When cell growth is inhibited, cells release larger amounts of 

dissolved organic matter (DOM), which may indeed inhibit cell growth if the medium is 

recirculated [18,32]. The inhibiting substance depends on the species concerned, but 

fatty acids, carbohydrates and HSs are the most common [23,26]. Chlorella vulgaris 

[33], Nannochloropsis sp. [9,35] and S. costatum [36,37] are examples of species that 

release inhibitory substances. Treatment of the recycled medium with activated carbon, 
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which may retain inhibiting substances, reduces total organic carbon (TOC) and restores 

growth [18]. The presence of particulate matter can also reduce production by inducing 

the formation of cell aggregates, which should therefore be removed [9,38,39]. 

Furthermore, extracellular products could potentially be a cause and source of bacterial 

growth, even in controlled cultivation environments such as closed PBR systems [22]. 

In contrast, recent studies clearly demonstrated the feasibility and benefits of water 

recycling for the long term reuse of culture media [12,39,40]. Thus, Tetraselmis [40] 

and Nannochloropsis [41] could be grown in recycled medium without any harmful 

effects. Most studies did not measure OM or other compounds left over in the recycled 

medium, which is essential in order to be able to correlate the concentrations of these 

compounds with growth response. More research is also needed to determine whether 

mixotrophic growth may help to achieve higher biomass yields in recycled medium 

[13]. For example, most marine dinoflagellates are able to grow in mixotrophic 

environments [42] by consuming DOM [43,44], with mixotrophic growth rates usually 

being higher than photoautotrophic ones. These microorganisms are also able to store 

and take up substantial amounts of various sources of N, which is the major growth-

limiting nutrient [45,46].

In addition to growth, the recycled medium influences biomass composition and 

affects the cellular lipid, pigment, carbohydrate and protein contents in microalgae 

[10,16,18,22,26,39]. However, as far as we are aware, only two laboratory scale studies 

have been conducted with dinoflagellates. In one of these, the results were inconclusive 

as no growth was observed after the first reinoculation [30]. In the other study, the 

addition of HSs to cultures at concentrations of the order of a few milligrams per litre 

was found to exert a stimulatory effect on growth rates but not on final cell 

concentrations [25]. In addition, the biochemical composition of the biomass was not 

analysed. It has recently been demonstrated that valuable products (e.g. APDs, PUFAs 

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

Accepted manuscript. https://doi.org/10.1016/j.algal.2020.101820 
© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
https://creativecommons.org/licenses/by-nc-nd/4.0/(opens in new tab/window)



7

and carotenoids) from A. carterae can be robustly produced in conventional pilot-scale 

raceway photobioreactors (RW-PBR) [3] and efficiently recovered from multi-step 

processes [4]. Moreover, A. carterae has been robustly cultured in a RW-PBR for more 

than 170 days in semi-continuous mode, obtaining high biomass productivities [3]. This 

paper reports our evaluation of the influence of medium recycling on the stability, 

biomass productivity and composition of A. carterae cultured in a pilot-scale LED-

illuminated RW-PBR in semi-continuous mode.

2. Materials and methods

2.1. Microalgal strain and maintenance

Amphidinium carterae strain from the culture collection belonging to the Plant 

Biology and Ecology Department of the University of the Basque Country 

(Dn241EHU) was used. Inocula were grown in standard f/2 medium prepared with 

Mediterranean seawater, except that the phosphate concentration was increased to 181 

µM to achieve an N:P molar ratio of 5 to prevent growth limitation by this nutrient [3].

2.2. Identification of recycling percentage

The feasibility of recycling the supernatant of an RW-PBR for culturing A. 

carterae was initially evaluated on a small scale, performing assays in static T-flasks 

(ref. 169900 Nunc. EasYFlask 25cm2 Thermo Fisher Scientific) with a culture volume 

of 50 mL. Flasks were illuminated laterally using multicolor RGBW-LED strips (red, 

green, blue and warm white, collectively; Edison Opto Co., Taiwan) arranged 

horizontally. A 12h/12h light/dark (L/D) cycle was used, with an average irradiance 

(Iav) at the surface of the flasks of 300 µE m-2 s-1. The temperature was maintained at 

21±1 ºC at the flask illuminated surface. Cell-free supernatant recovered from a RW-

PBR after 172 culture days, as reported previously [3], was mixed with seawater in 

different proportions (25%, 50%, 75% and 100% v/v). Nitrates and phosphates were 

then measured in each case and replenished as required to achieve the fresh medium 
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formulation (f/2, N:P = 5). The four resulting medium formulations based on recycled 

medium (RM) were filtered through a 0.22 µm pore filter (Sartorius Stedim Biotech; 

model. Sartopore 2 Sterile Midicap) for sterilization and removal of particulate organic 

matter (POM), then autoclaved. The exhausted nutrients were then replenished with 

filter-sterilized concentrated stocks. Micronutrients were added in all cases, assuming 

complete consumption. Fresh medium (f/2, N:P = 5) was used as control. Four sub-

cultures of each growth medium were performed to evaluate possible acclimatisation 

processes. In order to check if the accumulation of DOM was responsible for the culture 

responses, the same culture medium formulations were prepared but with cell-free 

supernatant previously passed through a C18 column (Agela Technologies; model. 

Flash Column 80 g. 40-60µm 60Å) prior to nutrient replenishment.

2.3. Cultivation in the LED-illuminated raceway photobioreactor with recycled medium

The culture experiments performed correspond to the second phase of a long-

term (>170 days) culture of A. carterae (strain Dn241EHU), as reported recently [3], in 

which the culture medium was freshly prepared, i.e. non-recycled. The photobioreactor 

used was a fiberglass paddlewheel-driven raceway PBR (RW-PBR [3]. The PBR had a 

surface area of 0.44 m2 and a culture volume of 33 L. A six-bladed paddlewheel with 

flat blades was operated at a rotation speed of 23.1±0.6 rpm. The system was 

illuminated using multicolor RGBW-LED strips (Edison Opto Co., Taiwan) 

horizontally attached to the back of the flat plastic (PVC) PBR cover. After seven sets 

of experiments, the optimal environmental conditions found were those from SET 7: (i) 

a sinusoidal diel variation pattern of irradiance imposed with a maximum irradiance of 

900 µE m-2s-1, at midday, in a 24:0 h L/D cycle, with a daily mean irradiance supplied 

to the culture medium of 573 µE m-2s-1; (ii) f/2×3 (N:P = 5) as culture medium 

composition; (iii) repeated semi-continuous culture as operation mode.
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In the work presented herein, experiments were carried out in the same RW-PBR 

under the same conditions described above, but using a strategy for recycling the 

exhausted supernatants obtained after centrifugation in each biomass harvesting. 

Briefly, experiments started with a 250-day culture broth in the RW-PBR, pure carbon 

dioxide was injected on demand via a small microporous gas diffuser placed at the 

bottom immediately behind the paddlewheel to maintain the pH at 8.5. Thermostatted 

water circulating through a 4.6 m long stainless steel tubular loop (6 mm inner and 8 

mm outer diameters) located at the bottom of the channels was used to maintain the 

culture temperature at 21±1 ºC.

All culture media were prepared using Mediterranean seawater (38 psu) and 

subsequently autoclaved. The reused medium was prepared following the procedure 

described in section 2.2. Thus, after harvesting 75% of the whole culture volume, it was 

centrifuged at 1000×g (RINA model 100 U. 200 SM centrifuge) for cell separation, 

filtered through a 0.2 µm filter (Sartorius Stedim Biotech; model. Sartopore 2 Sterile 

Midicap), autoclaved, the exhausted nutrients replenished with filter-sterilized 

concentrated stock solutions and the resulting mixture returned to the PBR. Harvesting 

was carried out once the cultures entered a stationary phase. The spent medium was 

supplemented with phosphate and nitrate stock solutions to achieve the values 

established (f/23, N:P = 5) for the whole culture volume. The remaining nutrients were 

added in equivalent quantities to those of the medium formulation selected. Four sub-

cultures with recycled-replenished medium were carried out to evaluate the 

acclimatisation and stability of the culture.

Fig. 1 summarizes the strategy followed in the RW-PBR culture. This strategy 

started with a repeated semi-continuous culture named SET8 (I and II) for 77 days, 

which was performed as described for SET 7 in the preliminary study (see above) to 

confirm the robustness of the PBR. The experiments carried out with recycled medium 
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were named RM1 and RM2 (see Fig. 1). These two sets also comprised two sub-

cultures (I and II) each. As can be seen in Fig. 1, the cell-free supernatants were used 

alternately to allow time for characterization and subsequent preparation for use. In this 

sense, RM1-I used the cell-free supernatant from SET8-I once it had been replenished 

with nutrients, and the replenished cell-free supernatant from RM1-I was used in RM2-

I. The other sequence of recycled culture medium was from SET8-II to RM1-II and then 

the replenished cell-free supernatant from RM1-II was  used in RM2-II. The average 

irradiance inside the culture (Iav), the effective light attenuation across a cell averaged 

over the PAR wavelengths (α), and the effective attenuation coefficient of the 

microalgal suspension averaged over the PAR wavelengths (κ) were calculated as 

described by Molina-Miras et al. [3].

Figure 1. Schematic description of the culture strategy in the raceway photobioreactor 

for reusing the exhausted culture medium. SET8 is a semicontinuous culture with 

fresh medium and RM1 and RM2 semicontinuous cultures carried out with recycled 

medium. I and II refer to two consecutive sub-cultures.

2.4. Hemolytic activity and amphidinol quantification

It has recently been determined that the biomass from A. carterae (strain 

Dn241EHU) contains at least two members of the amphidinol family, namely 

amphidinol A and its 7-sulfate derivative amphidinol B [47]. Their titers were expressed 

in terms of hemolytic activity of cell extracts on erythrocytes from defibrinated sheep 
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blood, as described elsewhere [48]. Briefly, EC50 values for A. carterae (i.e. number of 

cells per well giving 50% hemolysis) and a saponin control were calculated from dose-

response Hill curves. Saponin was supplied by Sigma Aldrich (47036, CAS n. 8047-15-

2, Saint Louis, MO, USA) and the corresponding EC50 was 8.5  0.6·106 pg per well. 

An equivalent saponin potency (ESP) expressed in terms of pg saponin per A. carterae 

cell was calculated by dividing the EC50 for saponin by the EC50 for A. carterae.

Values for the concentration (% by weight) of APDs in the biomass can be 

determined from both the ESP values obtained in the hemolytic assays and the absolute 

value of the integral of the proton peak at δH = 5.07 ppm in the 1H NMR spectrum of 

aqueous solutions of the NMR standard 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid 

(TSP, 0.01% w/w) sodium salt. This determination procedure is based on the work of 

Henderson (2002) [49], since the NMR signal intensity for a defined region of the 

spectrum represents the total number of the respective nuclei and, thus, the 

concentration of any substance can be obtained from a known concentration of a 

standard substance when their spectra are obtained under the same conditions [49]. 

Therefore, the mass of APDs in the biomass can be obtained from this equation, adapted 

from Henderson (2002) [49]:

𝐴𝑃𝐷𝑠, % 𝑑.𝑤. = (𝑛𝑅

𝑚𝑏) × (𝐼𝐴𝑃𝐷𝑠

𝐼𝑅 ) × 𝑀𝐴𝑃𝐷𝑠 × 100

where IR is the signal intensity of the reference compound, IAPDs is the signal intensity of 

the APDs, nR is the number of mols of reference standard used in the determinations, 

MAPDs is the average molecular weight of amphidinols A and B (g·mol-1) and mb is the 

mass of dried biomass in the sample (g). IAPDs is the signal intensity of the APDs 

spectra. This can be obtained from NMR spectra of the cell extracts or from the 

correlation recently developed by Abreu et al. [47]:
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𝐼𝐴𝑃𝐷𝑠 =
𝐸𝑆𝑃 ‒ 122.68

0.0002

This correlation is only valid for this A. carterae strain, and eliminates the need to 

acquire complicated NMR spectra for the biomass extracts. 

NMR spectra for the reference standard were recorded using a Bruker Avance III 

600 spectrometer operating at a proton frequency of 600 MHz, as described previously 

[47]. The spectra were automatically phased, baseline-corrected, and calibrated to the 

TSP signals located at 0.0 ppm for aqueous extracts.This signal strength has been 

considered to be ideal for the identification and quantification of APDs [47].

2.5. Supernatant characterisation

Prior to proceeding with chemical characterisation of the supernatants, POM 

was removed by filtration through a 0.2 µm-pore filter (Sartorius Stedim Biotech; model 

Sartopore 2 Sterile Midicap). The total DOM in the supernatants was quantified using a 

TOC analyser, as described by González-López et al. [16]. The soluble carbohydrates 

(SCH) released by cells present in the supernatant were determined using the phenol-

sulfuric acid method, with glucose as standard [50]. Proteins (Prot) and humic 

substances (HSs) were quantified by fluorescence emission measurements in a 

multiplate reader (BioTek, model SynergyMx). The excitation and emission 

wavelengths were selected based on the studies of Kong et al. [51] and Chen et al. [52] 

and corroborated using the excitation-emission matrices (EEMs) of real supernatants. 

EEMs were performed as described by Henderson et al. [27] using the multiplate reader, 

with 0.22 µm-filtered seawater as blank. The excitation and emission wavelengths for 

protein quantification were 280 and 340 nm, respectively. Bovine serum albumin (BSA) 

(Acros Organics, code 134730100) in the range 0-70 mg/L was used as protein 

calibration standard. A good correlation was found between emission intensity (EI) and 

protein concentration in the range tested (CProt = 0.0131×EI, mg·L-1; r2 = 0.999). The 
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excitation and emission wavelengths for humic species were 350 and 440 nm, 

respectively. Humic acid (Ref 53680, Sigma-Aldrich, Spain) in the concentration range 

0-80 mg/L was used for calibration, and a linear relationship was found between EI and 

humic acid concentration (CHA = 0.0437×EI, mg·L-1; r2 = 0.998). In both cases, 0.2 µm-

filtered seawater was used as blank. Carbohydrate, protein and humic acid 

measurements were performed in triplicate for every sample.

2.6. Antiproliferative bioassays

Crude methanol extracts obtained from A. carterae biomass were used. In the 

case of supernatants, 24 L of RM2-II supernatant was slowly percolated through 

prepackaged reverse phase C18 cartridges (Agela Technologies; model. Flash Column 

80 g. 40-60µm 60Å), then the salts were removed by washing with distilled water. Any 

organic compounds adsorbed by the cartridges were eluted with methanol. The solvent 

was then evaporated in vacuo, and the organic extract was freeze-dried to yield 20 mg 

of dry residue per liter of supernatant. Antiproliferative assays were performed using 

these crude methanolic extracts, as described elsewhere [53,54]. Four human tumour 

cell lines obtained from the American Type Culture Collection (ATCC), namely A549 

(ATCC CCL-185; lung carcinoma, NSCLC), HT-29 (ATCC HTB-38; colon 

adenocarcinoma), MDA-MB-231 (ATCC HTB-26; breast adenocarcinoma) and PSN-1 

(ATCC CRL-3211; pancreas adenocarcinoma), were used. Cell survival was measured 

after treatment for 72 h.

2.7. Flow cytometric measurements

Flow cytometry was used to quantify the cell number concentration (N), the 

average cell equivalent diameter (De), the side scatter (SS) related to cell composition and 

complexity; and the average autofluorescence intensity at specified wavelengths [55]. 

Five measurements were performed per sample and an average value was used. Cell 

volume (Vc) was calculated as . All flow cytometric measurements used a π𝐷3
𝑒/6
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CellLabQuanta SC flow cytometer (Beckman Coulter Inc., Brea, CA, USA) equipped 

with an argon-ion excitation laser (blue light, 488 nm). The flow rate was kept at a 

moderate setting (data rate = 600 events s-1) to prevent interference between cells. 

Autofluorescence of native pigments and morphology of microalgal cells are 

good indicators for the acclimatisation of cells to new culture environments [56] as 

these cell responses are closely related to the pigment content and distribution in cells. 

As such, cells were excited in the flow cytometer using a 488 nm argon laser, and mean 

fluorescence intensities were measured in three different wavelength ranges (FL1: 525 

nm band-pass (BP), FL2: 575 nm (BP) and FL3: 670 nm long-pass), with each range 

being characteristic of a group of pigments. The fluorescence detected by FL3 and FL1-

FL2 can be used as a proxy for monitoring chlorophyll and carotenoid contents, 

respectively, when excited at 488 nm [56]. Mathematical relationships between the 

pigment content in the cell or the effective cell attenuation cross-section and the FL1,2,3 

and SS measurements have been reported recently [55]. For comparison purposes, 

FL1,2,3 intensities were expressed relative to average cell volume (Vc).

2.8. Other analytical measurements

The biomass dry weight was determined as described previously [57]. Biomass 

(d.w.) and cell productivities were calculated in terms of culture volume (i.e. volumetric 

values) and occupied area (i.e. areal productivities). The ratio between the maximum 

variable fluorescence (FV) and maximum fluorescence (FM) of chlorophyll (i.e. FV/FM) 

in cells was routinely determined as described previously [48]. Phosphate-P and nitrate-

N in supernatants were determined as described in a recent study [57]. Measurements 

were carried out in duplicate, and the average value was used. The NOCHSP elemental 

composition of the biomass was determined as published previously [57]. 

Measurements were carried out in triplicate. The saponifiable fatty acids (FAs) content 

and profile were obtained by direct transesterification and gas chromatography (6890N 

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826

Accepted manuscript. https://doi.org/10.1016/j.algal.2020.101820 
© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
https://creativecommons.org/licenses/by-nc-nd/4.0/(opens in new tab/window)



15

Series Gas Chromatograph, Agilent Technologies, Santa Clara, CA, USA) as described 

by Rodríguez-Ruiz et al. [58]. Measurements were carried out in duplicate. 

Chlorophylls were quantified spectrophotometrically after extraction with 

acetone from the cell dry biomass following the method of Hansmann [59], with 

measurements being carried out in duplicate. Pigments were identified and quantified as 

described by Molina-Miras et al. [57]. The carotenoid content and profile in cells were 

determined using a diode array HPLC equipment, following the method described by 

Zapata et al. [60]. Measurements were carried out in duplicate.

2.9. Kinetic parameters

Culture cell productivities were calculated as:

𝑃 =
𝑁𝑓 ‒ 𝑁𝑖

𝑡𝑓 ‒ 𝑡𝑖

Accumulation rates (AR) for TOC, HSs and proteins in the cell-free supernatant were 

calculated as:

𝐴𝑅𝑗 =
𝐶𝑓 ‒ 𝐶𝑖

𝑡𝑓 ‒ 𝑡𝑖
        𝑖𝑓 𝐶𝑓 > 𝐶𝑖

Consumption rates (CR) for the chemical species mentioned above were calculated as:

𝐶𝑅𝑗 =‒
𝐶𝑓 ‒ 𝐶𝑖

𝑡𝑓 ‒ 𝑡𝑖
     𝑖𝑓 𝐶𝑓 < 𝐶𝑖

Specific accumulation rates (SAR) were calculated as follows:

𝑆𝐴𝑅𝑗 =
𝐶𝑓 ‒ 𝐶𝑖

(𝑡𝑓 ‒ 𝑡𝑖) ∙ 𝑁𝑎𝑣𝑒
       𝑖𝑓 𝐶𝑓 > 𝐶𝑖

And specific consumption rates (SCR) as:

𝑆𝐶𝑅𝑗 =‒
𝐶𝑓 ‒ 𝐶𝑖

(𝑡𝑓 ‒ 𝑡𝑖) ∙ 𝑁𝑎𝑣𝑒
      𝑖𝑓 𝐶𝑓 < 𝐶𝑖
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where N is cell concentration, C is the concentration of the given chemical species, t is 

culture time. Subscripts f and i refer to final and initial time of the time interval for 

calculation, respectively; subscript j refers to TOC, HSs, Prot or CH; and Nave is the 

average cell concentration in the time interval.

2.10. Statistical analyses

Multifactor ANOVAs and non-linear regression analyses were performed using 

Statgraphics Centurion XVI (StatPoint, Herndon, VA, USA).

3. Results

3.1. Optimization of the recycled medium percentage

In this work, the use of recycled medium from the RW-PBR started with a small-

scale acclimatisation study. A. carterae, maintained over a long period (> 1 year) with 

f/2 medium, was subjected to four sub-culturing steps using different percentages of 

recycled medium (%RM). The effect on culture performance and cell health was studied 

in terms of the kinetics parameters typically used in microalgal culture studies, namely 

maximum cell concentration attained (Nmax), FV/FM, FL1, FL2, FL3 and SS. The 

corresponding values are collected in Table 1 for each sub-culture. Cells from the same 

original inoculum were cultured in T-flasks in batch mode with different %RM in 

duplicate. To determine whether DOM in the recycled medium had any effect on culture 

performance, experiments in which the medium was passed through a C18 column prior 

to culture were also performed (25C18 to 100C18 assays). To analyze the effect of the 

factors involved (sub-culture and replicate) on the variability of the parameters in each 

experiment in Table 1, a two-way ANOVA was carried out (values denoted by a 

different uppercase for each mean value differ significantly; p<0.05). No significant 

differences between the two replicates of each experiment were observed.
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Nmax and the values of fluorescence in the FL 1, 2 and 3 channels were affected by 

RM% and sub-culture (Table 1).Thus, whereas the former increased from RM25 to 

RM100 and stabilized in the fourth sub-culture, the fluorescence, in general, varied 

inversely with Nmax, with significant differences (p<0.05), and did not stabilize, even in 

the last sub-culture. The final cell concentration in RM100 was 60% higher than the 

value for the control culture, whilst the FL2 value (the most affected by %RM) for that 

%RM was half the CTRL one. In contrast, when the recycled medium at any percentage 

was passed through the C18 column, Nmax and FL1,2,3 were less affected and found to 

stabilize by the third sub-culture. The maximum cell concentration for 100C18 was 32% 

higher than that for the control. With average values for all medium compositions and 

sub-cultures of 0.59 ± 0.02 (n = 72) for FV/FM and 4.12± 0.32 (n = 72) for SS, these 

variables were not affected by the recycled medium.

Table 1. Trend in the acclimatisation of Amphidinium carterae to different 
recycled medium percentages (RM%) through four sub-cultures (1, 2, 3 and 4). 
Control experiments (CTRL) were carried out with fresh f/2 medium (N:P = 5). 
Experiments with recycled medium passed through a C18 column prior to culture 
are named as %C18. The kinetics parameters were measured in broth samples 
withdrawn at the end of every sub-culture. Data points are averages of duplicate 
cultures, with errors corresponding to their standard deviation. Values denoted by 
a different uppercase letter at each point, for the same parameter, differ 
significantly (p < 0.05) in the two-way ANOVA. Nmax: maximum cell 
concentration; FV/FM: maximum photochemical yield of photosystem II; FL1,2,3: 
cell fluorescence intensities measured in the FL1, FL2 and FL3 channels of the 
flow cytometer normalized to the cell average volume; SS: side-scatter of the cells. 
Shaded values indicate that the variable has stabilized, therefore there are no 
significant differences with respect to previous and subsequent sub-cultures.

Sub-culture

Nmax, (×105), cell·mL-1 1 2 3 4
CTRL 2.97±0.16 a 2.32±0.07 b 2.47±0.08 b 2.76±0.15 a,b

RM25 2.45±0.05 a 2.04±0.12 b 2.13±0.08 b 2.57±0.06 a
RM50 2.70±0.01 b 2.76±0.06 b 2.27±0.12 c 2.94±0.01 a
RM75 3.57±0.03 b 3.46±0.04 b 3.52±0.08 b 3.91±0.17 a
RM100 3.82±0.04 b 3.32±0.08 c 4.33±0.02 a 4.49±0.08 a
18C25 2.94±0.11 a 2.96±0.02 a 2.57±0.08 b 2.81±0.05 a,b

18C50 3.53±0.05 a 3.30±0.02 b 3.19±0.05 b 3.21±0.07 b
18C75 3.45±0.07 a 3.18±0.02 b 3.43±0.01 a 3.43±0.06 a
18C100 3.41±0.02 b 3.65±0.10 a 3.65±0.02 a 3.54±0.02 a
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Sub-culture
FV/FM 1 2 3 4
CTRL 0.59±0.02 a 0.59±0.01 a 0.61±0.01 a 0.60±0.01 a
RM25 0.58±0.02 a 0.54±0.01 a 0.60±0.02 a 0.60±0.01 a
RM50 0.57±0.01 a 0.56±0.01 b 0.59±0.01 a 0.59±0.01 a
RM75 0.56±0.01 b,c 0.55±0.01 c 0.60±0.02 a,b 0.60±0.01 a
RM100 0.56±0.01 b 0.54±0.01 c 0.58±0.01 a 0.59±0.01 a
18C25 0.58±0.01 b 0.58±0.01 b 0.64±0.01 a 0.63±0.01 a
18C50 0.60±0.01 b 0.59±0.01 b 0.60±0.01 a 0.59±0.01 a
18C75 0.58±0.01 a 0.59±0.03 a 0.62±0.03 a 0.61±0.01 a
18C100 0.58±0.01 a 0.58±0.01 a 0.61±0.02 a 0.60±0.01 a

Sub-culture
FL1 (x10-3), µm-3 1 2 3 4
CTRL 12.95±3.34 a 12.60±1.11 a 15.02±2.46 a 13.87±1.49 a
RM25 12.61±0.86 b 12.69±0.56 a 12.97±0.62 a 12.27±0.01 a
RM50 17.32±0.54 a 16.03±1.04 a,b 14.71±1.70 b 10.74±0.96 c
RM75 19.55±0.13 a 15.04±0.18 b 14.11±0.11 b 9.99±0.64 c
RM100 15.03±2.19 a 9.95±1.02 b 12.00±0.27 a,b 9.30±1.04 b
18C25 10.62±0.42 a 10.39±0.22 a 10.57±1.33 a 10.75±0.35 a
18C50 12.49±1.87 a 12.11±0.25 a 14.59±2.63 a 13.89±1.91 a
18C75 13.51±0.43 a 12.26±0.21 b 12.74±0.01 b 12.78±0.53 a,b

18C100 14.06±3.24 a 17.04±0.43 a 19.63±2.01 a 14.85±2.91 a
Sub-culture

FL2 (x10-3), µm-3 1 2 3 4
CTRL 4.41±1.00 a 4.22±0.26 a 4.08±0.77 a 6.36±0.06 a
RM25 4.30±0.44 b 4.43±0.35 b 5.03±0.20 a,b 5.44±0.04 a
RM50 6.32±0.11 a 6.73±0.40 a 6.52±0.95 a 4.85±0.80 b
RM75 8.33±0.39 a 7.52±0.28 b 5.99±0.15 c 4.64±0.71 d
RM100 6.39±1.37 a 3.95±0.69 b 4.10±0.00 a,b 3.10±0.26 b
18C25 3.09±0.08 a 3.13±0.01 a 3.24±0.46 a 3.56±0.04 a
18C50 3.80±0.40 a 3.76±0.12 a 4.49±0.66 a 4.53±0.66 a
18C75 4.30±0.02 a 3.93±0.06 b 4.21±0.13 a 4.24±0.10 a
18C100 4.63±1.03 a 5.48±0.20 a 6.49±0.62 a 4.93±1.01 a

Sub-culture
FL3 (x10-3), µm-3 1 2 3 4
CTRL 20.80±5.50 a 16.07±0.61 a 22.36±4.21 a 21.30±1.73 a
RM25 18.07±0.86 a 16.81±0.50 a 17.28±0.67 a 16.33±0.14 a
RM50 25.45±0.01 a 21.02±1.63 b 18.18±1.33 c 15.30±0.40 d
RM75 25.66±0.45 a 17.44±0.65 b 19.62±1.14 c 14.64±0.14 d
RM100 19.12±0.65 a 14.48±0.06 b 18.96±1.21 a 16.68±1.50 a,b

18C25 17.59±0.74 a 15.61±0.09 b 13.55±1.39 c 14.91±0.52 b,c

18C50 22.48±3.69 a 18.21±0.02 a 19.96±2.85 a 20.63±2.62 a
18C75 24.32±1.97 a 18.14±0.07 b 19.06±0.55 b 19.69±1.16 b
18C100 26.36±6.77 a 24.49±1.11 a 26.44±1.37 a 21.45±3.91 a

Sub-culture
SS 1 2 3 4
CTRL 4.23±0.05 a 4.18±0.19 a 4.07±0.00 a 4.03±0.07 a
RM25 4.37±0.01 c 4.46±0.02 b 4.53±0.04 a 4.53±0.01 a,b

RM50 4.31±0.04 d 4.55±0.01 b 4.64±0.05 a 4.42±0.04 c
RM75 4.23±0.05 a 4.54±0.02 a 4.13±0.68 a 4.32±0.00 a
RM100 4.31±0.02 a,b 4.34±0.11 a 4.22±0.08 a,b 4.02±0.12 b
18C25 3.94±0.03 b 4.16±0.01 a 4.20±0.00 a 4.22±0.04 a
18C50 3.83±0.01 a 3.97±0.02 a 3.92±0.07 a 3.87±0.06 a
18C75 3.81±0.05 a 3.94±0.02 b 3.78±0.04 a 3.83±0.01 a
18C100 3.70±0.05 a 3.92±0.04 a 3.71±0.06 a 3.73±0.10 a
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Maximum growth rates (µmax), calculated in the exponential growth phase, and 

cell productivities (Pcell), calculated from N at the culture onset and Nmax, were obtained 

from the time-evolution of the cell concentrations corresponding to the four sub-cultures 

for all medium compositions. Figure 2 shows these two parameters relative to the 

control culture. Relative Pcell shows a slight increase with RM25 and RM50 compared 

to the control with fresh medium, although there are no statistically significant 

differences between these two values. The use of 75% recycled medium (RM75) 

increased Pcell roughly two- to threefold compared with the control culture, the value for 

which was 3.63 ± 0.36·104 cell·mL-1·day-1. The culture in 100% recycled medium 

(RM100) did not improve Pcell significantly compared to RM75. The cultures performed 

with the C18 treatment are also shown in Fig. 2. Thus, 25% recycled medium (18C25) 

had no significant effect on culture performance compared to the CTRL. Further 

increases in the percentage of spent medium slightly improved Pcell to a similar degree 

as for the RM25 culture, with no differences between them. Apparently, the C18 

column retained some of the growth-stimulating substances. µmax for the control culture 

was 0.53 ± 0.04 day-1. The relative values for the other medium formulations followed 

the same trend as Pcell, except for 100% RM (which presented a lower value than 

RM75), 25C18 (which presented a higher value than the control) and 100C18 (which 

presented a similar value to RM100). The highest value (170% that of the control) was 

obtained for RM75.

As centrifugation takes a short time on a laboratory scale, sub-cultures can be 

performed by sterile centrifugation of the cell broth and subsequently resuspending the 

pellet in the selected culture medium in another flask. On larger scales, however, 

centrifugation takes longer, there is no replacement for the photobioreactor and thus the 

risk of contamination is high. On these scales, it is easier to carry out sub-cultures by 

removing a percentage of the culture broth and adding the cell-free supernantant 
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replenished with nutrients afterwards. As such, 75% of the culture broth was removed 

from the RW-PBR and replaced with nutrient-supplemented used supernatant. Thus, as 

25% of spent medium remains in the RW-PBR, 100% recycled medium was used for 

the culture experiments on a larger scale in the RW-PBR as this resulted in the highest 

Pcell and µmax.
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Figure 2. Cell productivities (Pcell) and maximum growth rates (µmax) relative to the 
control culture as a function of the percentage of recycled medium with or without 
prior treatment on a C18 column. Data points are the averages of four sub-cultures for 
each percentage, and intervals represent 95% confidence based on Fisher’s least 
significant difference (LSD) procedure. Values denoted by a different letter differ 
significantly. Acronyms correspond to control experiments (CTRL) carried out with 
fresh f/2 medium (N:P = 5), experiments with different recycled medium percentages 
(RM%) and experiments with recycled medium passed through a C18 column prior to 
culture (%C18).

3.2. Culture in the RW-PBR

Culture results from the LED-illuminated RW-PBR are displayed in Fig. 3, 

which uses the nomenclature of each sub-culture according to Fig. 1. An average Nmax 

of around 4.7±0.2·106 cell·mL-1 was attained for the three sets, although the maximum 

Nmax (5·106 cell·mL-1) was found for SET8-I using fresh medium, this value being 

similar to that reported for a similar experiment (SET 7) [3]. However, the average Nmax 

values in RM1 and RM2 were reached more quickly and, as a result, volumetric and 
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areal cell productivities (Pcell) were 13% and 11% higher, respectively, than for SET8 

(see Table 2), although there were no statistically significant differences between RM1 

and RM2. In contrast, the corresponding biomass productivities (Pb) increased from 

SET8 to RM2 (p<0.05), with the average maximum Pb (0.039 g·L-1·day-1) in RM2 being 

22% higher than the value for SET8. This was caused by a slightly larger cell size in 

RM2 (7.84±0.33 102 µm3) than in SET8 (7.04±0.21·102 µm3) (Table 2). 

Fv/Fm was highest at the onset of sub-culture, subsequently decreasing with 

increasing culture time in a similar manner for all three culture sets. The value ranged 

between 0.56 and 0.69, with an average value of 0.614±0.030 for the three sets (Fig. 

3a). The evolution of Iav over culture time was very similar in the three sets: peaking at 

the onset of every sub-culture when N was lowest and decreasing sharply to a similar 

minimum value (always higher than 100 µE·m-2·s-1) in the stationary phase due to the 

increased mutual shading between cells (see Fig. 3b). During the growth deceleration 

phase, Iav increased slightly even though N continued to increase as κ decreased over 

time. As can be seen from Fig. 3b, α evolves in parallel with Iav, decreasing a few days 

after the beginning of each batch to reach a minimum of around 7·10-12 m2·cell-1 in the 

stationary growth phase. This minimum value was consistent between sets, whereas the 

maximum values showed more variability. The κ value, which directly depends on α 

and cell concentration, increased to a maximum in the growth deceleration phase and 

decreased at the end of the culture (Fig. 3b). The patterns described above were in line 

with those reported previously for this kind of culture [3]. 

As can be seen from Fig. 3c, nitrates and phosphates were replenished in the 

recycled medium prior to every sub-culture to the concentrations corresponding to the 

formulation used in SET8 (2646 µM NO3
- and 549 µM PO4

3-). The evolution of these 

substances was parallel and almost coincident in the three sets, being rapidly taken up 

by the cells in the first three days of every sub-culture. Nitrates were completely 
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depleted by the end of the culture, thus indicating a mainly N-limited growth. Nitrate in 

SET8 and RM2-II was completely consumed at the onset of the linear growth phase. 

Close to 5% of the initial phosphate remained in the medium, although for RM1-I it was 

exhausted. Initial phosphate ( ) and nitrate ( ) uptake rates in the exponential 𝑅𝑃𝑜 𝑅𝑁𝑜

growth phase, averaged over all sets, were 179±54 and 877±244 µmol L-1·day-1, 

respectively. However, phosphate was consumed more rapidly in RM1 and RM2 than in 

SET8, probably due to a faster growth in the latter two sets. As such, the maximum  𝑅𝑃𝑜

and  values (550 µmol P·L-1·day-1 and 2200 µmol N·L-1 day-1, respectively) were 𝑅𝑁𝑜

found in RM2-II. The corresponding specific initial nutrient uptake rates (  and ) 𝑟𝑃𝑜 𝑟𝑁𝑜

followed the same trend, with  and  values averaged over all sets at around 0.21 𝑟𝑃𝑜 𝑟𝑁𝑜

and 0.94 pmol cell-1·day-1, respectively. Nitrate biomass yields (Yb/N) were statistically 

identical for all three sets. In contrast, Yb/P differed between RM1 and RM2 (p<0.05) as 

phosphate was depleted in RM2-I (see Table 2).

The cell volume was not greatly affected upon reusing the medium, although it 

was statistically significantly different in RM2 compared to the other sets (see Table 2), 

thus implying differences in biomass and cell productivities (see Table 2).
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Figure 3. Dynamics for sequential culture of the microalga Amphidinium carterae in 
a pilot-scale LED-illuminated raceway photobioreactor. Temporal changes in (a) cell 
concentration (N), maximum photochemical yield of photosystem II (FV/FM); (b) 
average irradiance available for the cells (Iav), effective light attenuation across a cell 
(α) and effective attenuation coefficient of the microalgal suspension (κ); (c) 
dissolved nitrate ([NO3

-]) and phosphate ([PO4
3-]) concentrations in the supernatant. 

The vertical dotted lines delimit the different experimental sets performed. SETs 1-7 
correspond to previously published culture conditions and strategies [3]. The last two 
sub-cultures of SET8 (carried out with fresh medium) are represented, with SETS 
RM1 and RM2 corresponding to two consecutive semi-continuous cultures with 
recycled medium. I and II refer to two consecutive sub-cultures. Data points are 
averages, and vertical bars are standard deviations (SD) for duplicate samples.
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Table 2. Culture productivities, average cell diameters and biomass yields of nitrate and phosphate 
calculated at the onset of the stationary growth phases. Values are averages with standard deviations 
for duplicate cultures. Values denoted by a different uppercase letter for each value, for a same kinetic 
parameter, differ significantly (p<0.05) in the two-way ANOVA. Pcell, cell productivities; Pb, biomass 
productivities; µmax, maximum specific growth rates; VC, average cell volumes; Yb/N, biomass nitrogen 
yields and Yb/P biomass phosphate yields. SET8 is a semi-continuous culture with fresh medium and 
RM1 and RM2 semi-continuous cultures carried out with recycled medium.

SE
T

Pcell 

(×104), 

cell·mL-

1·d-1

Pb, g·L-

1·day-1

Pcell 

(×106), 

cell·m-

2·day-1

Pb, g·m-

2·day-1

µmax, day-

1

VC 

(x102), 

µm3

Yb/N Yb/P

8 25.67±0.6
5 b

0.032±0.0
01 c

19.25±0.4
9 b

2.42±0.0
6 c

0.28±0.0
2 b

7.04±0.2
1 b

2.86±0.1
5 a

9.78±0.0
9 a,b

R
M1

28.96±0.3
6 a

0.036±0.0
01 b

21.72±0.2
7 a

2.66±0.0
3 b

0.32±0.0
3 a,b

7.07±0.0
3 b

2.82±0.1
5 a

9.44±0.1
2 b

R
M2

28.17±0.3
4 a

0.039±0.0
01 a

21.12±0.2
6 a

2.90±0.0
3 a

0.34±0.0
1 a

7.84±0.3
3 a

3.11±0.2
1 a

10.70±0.
29 a
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3.3. Cell-free supernatant characterization

Fig. 4a shows the accumulation of TOC in all sub-cultures. In SET8, TOC 

varied similarly for the two cultures carried out with fresh medium (SET8-I,II), 

increasing from a minimum value of nearly 18 mg·L-1 at the onset to a maximum of 

around 51 mg·L-1 at the end (Fig. 3a). In RM1, TOC also accumulated from the start to 

the end of the sub-culture, although it reached a much higher final concentration (close 

to 99.5 mg·L-1). As RM1 was set up using the cell-free supernatant from SET8-I (see 

Fig. 1), the starting TOC concentration is virtually the same as the final TOC 

concentration in SET8-I. In the next three culture experiments, TOC was consumed 

during the first 3-4 days of culture and then increased practically reaching the same 

maximum value (≥ 90 mg·L-1). Accumulation rates, AR, for TOC averaged 3.5 mg·L-

1·day-1 in SET8, progressively increasing through RM1 to an average of 7.5 mg·L-1·day-1 

in RM2. SARs also varied for the various sub-cultures (see Fig. 4b). In general, the 

values decrease in a very similar fashion over culture time, with the exception that they 

are highest at the culture onset in SET8-I,II and RM1-I, when the maximum SARTOC 

value of 8 ng cell-1·day-1 was obtained. In RM1-II and RM2-I, SARTOC increased slightly 

and then decreased until harvesting time. In contrast, SARTOC in RM2-II decreased 

continuously from the start of the deceleration phase to harvesting time, and TOC was 

consumed at an average CR of 8.3, 6.0 and 16.6 mg·L-1·day-1 during RM1-II and RM2-

I,II, respectively. The maximum SCRTOC of 54 ng·cell-1·day-1 corresponds to RM2-II. 

A comparison between Figures 4a and 4c shows that the temporal evolutions of 

HSs and TOC concentrations are almost parallel, except for RM1-I. The concentrations 

of these species in RM1 and RM2 decreased during the first 3-4 days and then 

increased, reaching a maximum in the stationary growth phase. The maximum and 

minimum HSs values fluctuated more than for TOC. Thus, the maximum ARHS of 10 

mg·L-1·day-1 corresponded to RM1-II, with this value being very similar to those for the 
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two subcultures of RM1-I and RM2 (5 mg·L-1·day-1). The HSs values in SET8 were 

lower (3 mg·L-1·day-1). The SARHS values in RM1 and RM2 were similar (1.68±0.5 

ng·cell-1·day-1), whereas for SET8 this parameter differed between batches, decreasing 

over time in SET8-I and increasing in SET8-II. Consumption rates were similar in the 

first three cultures carried out with recycled medium (2.7 mg·L-1·day-1) and higher in 

RM2-II (7.3 mg·L-1·day-1). SCRs decreased over time in RM1 and RM2, with a 

maximum of 10.5 ng·cell-1·day-1.

Proteins and carbohydrates accumulate to a lesser extent, especially the latter, 

the concentration of which is always below 1 mg·L-1. Protein concentrations followed 

an inverse trend to nitrates, TOC and HSs in the medium, accumulating markedly in the 

first days of culture. However, there were some differences between sets. Thus, whereas 

the concentrations of these species increased throughout the whole culture time in the 

two sub-cultures for SET8, they only accumulated during the first few days in the 

remaining sub-cultures, subsequently being consumed until the stationary growth phase 

(Fig. 4e). There appeared to be an adaptation effect in protein accumulation, as the 

maximum concentration decreased from the first to the third sub-culture carried out with 

recycled medium. The highest value corresponded to RM2-II (approx. 6 mg·L-1). ARProt 

ranged between 0.06 for the first sub-culture of SET8 and 1.28 mg·L-1·day-1 for the 

second sub-culture of RM2 (see Fig. 4f), in which nitrates were completely depleted 

(Fig. 3c). SAR decreased steadily in all experiments except for RM1-I, that is the first 

subculture in which recycled medium was used (Fig. 4f). SARs ranged between 1.34 for 

the first sub-culture of SET8 and 2.57 ng·cell-1·day-1 for RM2-II (Fig. 4f).
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Figure 4. Evolution with culture time of: a) Total Organic Carbon (TOC); b) specific accumulation 
rate of TOC in the culture medium (SARTOC); c) concentration of humic substances; d) specific 
accumulation rate of HSs in the culture medium (SARHS); e) protein and carbohydrate concentration; 
and e) specific accumulation rate of proteins in the culture medium (SARProt). SET8 was carried out 
with fresh medium and sets RM1 and RM2 correspond to two consecutive semi-continuous cultures 
carried out with recycled medium. I and II refer to two consecutive sub-cultures within each set. 
Error bars correspond to standard deviation of two measurements. Cell concentrations have also been 
included for clarification purposes. Arrows indicate the substance concentration after dilution with 
the recycled medium. 
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3.3. Biomass characterization 

3.3.1. Elemental analysis

Table 3 reports the elemental composition of the A. carterae biomass harvested from 

the six sub-cultures with averaged data for each condition. As can be seen, the use of 

recycled medium does not affect the biomass elemental mass composition to a 

statistically significant degree. Only N is continuously reduced in the biomass from 

SET8 to RM2 (15% reduction). When molar ratios are calculated, C is increased 

compared to P and N. Thus, there are statistically significant differences in the C:P and 

C:N molar ratios for the biomass harvested in RM2 compared with the other two sets. 

Apparently, once the cells have acclimatised to growth in a supernatant with high TOC, 

they increase their C content at the expense of reducing N and P. This is also evident 

when the biomass P-molar formulas are calculated, with C (32.9 to 38.3), H (60.7 to 

70.8) and O (16.7 to 18.3) increasing from SET8 to RM2.

Table 3. Elemental composition, elemental molar ratios and P-molar formula of harvested 
A. carterae biomass. Values are the average for the two sub-cultures of each set. The error 
is the SD of three determinations per sub-culture. Values for each element percentage with 
different uppercase letters differ significantly. SET8 was carried out with fresh medium and 
sets RM1 and RM2 correspond to two consecutive semi-continuous cultures carried out 
with recycled medium.

Experimental SET

Elements 8 RM1 RM2

% N 5.5±0.2 a 5.2±0.1 b 4.8±0.2 c

% C 48.7±0.5 a 49.3±1.3 a 50.2±0.1 a

% H 7.5±0.0 a 7.6±0.1 a 7.7±0.0 a

% S 1.0±0.2 a 1.3±0.1a  1.3±0.0 a

% P 3.8±0.1 a 3.6±0.3 a 3.4±0.0 a

C:P 32.9±0.9 b 35.2±1.6 b 38.3±0.4 a

C:N 10.3±0.5 c 11.0±0.6 b 12.2±0.5 a

N:P 3.2±0.2 a 3.2±0.3 a 3.2±0.2 a

P-molar 
formula C32.9 O16.7 H60.7 N3.2 S0.3 P1 C35.2 O17.5 H64.8 N3.2 S0.4 P1 C38.3 O18.3 H70.8 N3.2 S0.4 P1

3.3.2. Fatty acids 
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Fig. 5a shows the averaged saponifiable fatty acids (FAs) contents determined 

for the A. carterae biomass corresponding to culture SETS 8 to RM2. FAs were 

grouped into three classes, namely saturated (SFAs), monounsaturated (MUFAs) and 

polyunsaturated (PUFAs) fatty acids (Fig. 5a inset). A comparison of the distribution of 

FA classes between sets showed no statistically important differences. Thus, PUFAs 

showed a slight decrease and SFAs a slight increase, whereas MUFAs were not affected 

when the recycled medium was used (i.e. from SET8 to RM2). PUFAs were the most 

important group, representing more than the 50% of all FAs, followed by SFAs, with 

more than the 30% of the total; MUFAs always represented less than 20% of all FAs 

(Fig. 5a inset).

Irrespective of the set considered, the majority SFA was 16:0 (PA) (Fig. 5a). The 

dominant MUFA was 18:1n9, although it represented only about 1% of the biomass 

d.w. and, as such, was included in the group of minority FAs. The biomass was always 

rich (in this order) in 22:6n3 (DHA), 18:4n3 (SDA) and 20:5n3 (EPA) (Fig. 5a). 

Minority FAs (14:0, 18:0, 18:1n9, 20:1n9 and others) represented less than 3.5% of the 

biomass d.w. With an average content of 5% d.w., there were no statistically 

significant differences between the DHA content in the biomass between sets (Fig. 5a), 

with productivity being highest in RM2 (1.85 mg·L-1·day-1). With regard to PA, the next 

FA in abundance, statistically significant differences were found between sets. Thus, the 

abundance of this FA was highest in RM2 biomass (4% d.w.), followed by SET8 and 

RM1. SDA decreased linearly, with statistically significant differences being found 

between SET8 (2.6% d.w.) and RM2 (1.75% d.w.). The average EPA content (1.8% 

d.w.) did not differ significantly between the three sets. The minority FA content only 

differed significantly between SET8 (3.5% d.w.) and RM1 (3.1% d.w.).
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The total FA content (FAT) did not differ significantly between sets, with an 

average content of 15.90.8% d.w. for all sets (Fig. 5d). 

3.3.3. Pigments

Fig. 5b displays the cell pigment percentage by biomass dry weight 

corresponding to the three majority pigments in the cultures for experimental sets 8 to 

RM2 (the data represented in Fig. 5b were calculated as the average of the two semi-

continuous cultures for each set). Chlorophyll a (Chl-a) was the main pigment, followed 

by Peridinin (Per) and Chlorophyll c2 (Chl-c2), with all samples analyzed also 

containing diadinochrome, β-carotene, peridininol, diatoxanthin, dinoxanthin, 

pyrrhoxanthin and diadinoxanthin, with these representing less than 0.7% d.w. 

(minority pigments in Fig. 5b). There were significant differences in the Chl-a content 

between sets, decreasing linearly from 1.5% d.w. in SET8 to 0.65 d.w. in RM2 (Fig. 

5b). The evolution of Per mirrored that of Chl-a, with a maximum content of 0.95% 

d.w. (5.5 mg·L-1) in SET8 and a minimum of 0.4% in RM2-II. Chl-c2, the least 

abundant of the majority pigments, also decreased from RM1-I (0.6% d.w.) to RM2-II 

(0.12% d.w.) in a statistically significant manner. The minority pigments followed the 

same trend as Chl-a.

The total pigment yields, expressed as percentage of biomass dry weight, 

differed significantly between the three sets, decreasing almost linearly from a value of 

3.5% d.w. in RM1-I to 1.2% d.w. in RM2-II, mainly because Chl-a and Per, the main 

pigments, followed this trend.
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Figure 5. Characterization of the biomass of A. carterae averaged for values 

measured in the last day of the two sub-cultures in each experimental set. a) 

Percentage biomass dry weight for saponifiable fatty acids and distribution of the 

three main Fatty Acid (FA) classes (saturated (SFA), monounsaturated (MUFA) and 

polyunsaturated (PUFA)) with respect to total saponifiable FAs. These values have 

been averaged per set as the variability between sub-cultures was low. b) Percentage 

biomass dry weight for pigments. c) Equivalent saponin mass per cell (ESP). d) 

Percentage biomass dry weight for total saponifiable FAs, total pigments and 

amphidinols (APDs). Data are averages of two determinations per sample and vertical 

bars are standard deviations. Data with different letters between sets for each species 

are statistically different at the 95% confidence interval based on Fisher’s least 
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significant difference. SET8 was carried out with fresh medium and sets RM1 and 

RM2 correspond to two consecutive semi-continuous cultures carried out with 

recycled medium. I and II refer to two consecutive sub-cultures within each set.

3.5. Bioactivity of cell extracts 

The hemolytic activity of the cell extracts was used as a proxy for the APD 

levels in cells. Fig. 5c shows the average equivalent saponin potency (ESP) throughout 

the six sub-cultures. The maximum value of 2000 pg·cell-1 corresponds to RM1-II, 

followed by RM2-II, with no significant differences between the values for SET8 and 

RM2. The mass fraction of the APDs in the cells followed the same trend, ranging from 

0.65% to 1.1% (d.w.) for the whole culture time (Fig. 5d). The biomass harvested from 

RM2 also exhibited strong antiproliferative activity (≤80% survival percentage; strong 

cytotoxic effect) against the four tumor cell lines used. This is consistent with the 

hemolytic activity observed due to the presence of APDs.

Although no haemolytic activities were detected in the supernatants (1 mg of 

extract was used in these determinations), before being discharged into the environment, 

the supernatant of RM2-II must be tested for the presence of APDs and/or other 

cytotoxic substances at trace concentrations. As such, antiproliferative activities were 

determined using methanolic extracts of lyophilized samples of cell-free supernatant 

from RM2-II. Antiproliferative activities were also very high, with no selectivity 

between cancer cells, exhibiting 79.7%, 78.4%, 90% and 74.7% growth inhibition for 

HT29, A549, MDA-MB-231 and PSN1 cell lines, respectively. As such, APDs may be 

released by cells into the supernatants, as reported previously for A. carterae [57]. 

4. Discussion

4.1. Acclimatisation study on a laboratory scale
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The acclimatisation of inocula to specific conditions different to those in which 

they have been growing (e.g. modified culture medium compositions) is mandatory to 

obtain robust culture results. Acclimatisation is a time-dependent and species-specific 

process. In addition, the impact of conditions imposed on growth dynamics depends on 

the magnitude and direction of the shifts performed (e.g. type of illumination, nutrient 

source and concentration, etc.) [61].

Although RM culture from stationary growth phases might result in the 

accumulation of inhibitory substances [13], this was not the case here, as shown by the 

positive effect of the recycled medium on culture performance (see Data in Table 1). In 

this regard, parameters such as FV/FM and SS clearly indicated healthy dinoflagellate cells 

in all sub-cultures, as previously reported for dinoflagellates [55]. The spent medium 

could therefore be used at least four times for sub-culturing A. carterae without any 

evident deleterious effects. This observation is consistent with previous results obtained 

in the same RW-PBR, where repeated sub-cultures were carried out by replacing different 

percentages of culture broth with fresh medium without any adverse effect [3]. A. carterae 

has not been reported to produce autoinhibitory compounds. Indeed, the stimulatory 

effect disappeared when RM was passed through a C18 column.

The decrease in FL1,2,3 indicates a lower pigment content in cells compared to 

CTRL. This reduction was proportional to the percentage of RM used, and the values did 

not stabilize even after four sub-cultures. As spent medium had a TOC concentration of 

around 55 mg·L-1, the initial TOC concentration available to cells for the cultures ranged 

from 0.34 to 1.38 ng cell-1, corresponding to 25% and 100% RM, respectively. This 

carbon availability may have stimulated mixotrophic growth of A. carterae, as usually 

occurs with photoautotrophic dinoflagellates [42] and microalgae [13] in the presence of 

TOC. With some exceptions, mixotrophically grown microalgae produce much lower 
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levels of chlorophylls compared to photoautotrophic conditions as less energy is needed 

from light [62] and the organic compounds taken up are usually the final products of 

photosynthesis [63]. The reduction of Chl-a cell quota could be caused, although not 

exclusively, by mixotrophic growth, as has also been reported for other dinoflagellate and 

non-dinoflagellate microalgae grown [64,65,66]. Secondary carotenoid production is 

barely affected at low irradiances [67].

Culture of non-dinoflagellate microalgae with recycled medium presents a wealth 

of cell responses [9,26,35,68,69], which mainly depend on the species [13,27], the 

number of times the medium is reused and replenished [13]. In some cases, decreased 

growth due to accumulation of inhibitors in the culture can be overcome by performing 

the cultures under optimal conditions [32]. However, a positive effect of the recycled 

medium on cell growth was generally observed. The release of growth stimulant 

substances and mixotrophy based on DOM generated by the cells may explain this 

[13,34,40,62]. Despite this, however, the information reported in the literature regarding 

medium recycling in dinoflagellates cultures is scarce and not significant. For example, 

in laboratory experiments with A. carterae, Dixon and Syrett [30] did not observe any 

effect of recycled f/2 medium on cell growth, although they reported that this medium 

needed to be supplemented with nutrients before reinoculation. These authors recycled 

100% of the spent medium, which might explain the lack of growth improvement. In 

other cases, the recycled medium contains algogenic organic material (AOM) that 

inhibits growth [18]. 

The results in Fig. 1 clearly show a marked increase in Pcell and μmax in the RM 

sub-cultures. The effect on pigments (analyzed using the FL1,2,3 values in Table 1) 

appears to indicate the mixotrophic metabolism of TOC as the most likely cause, as 

seen in other dinoflagellates [69]. To determine whether DOM was responsible for the 
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growth promotion observed in Fig. 2, the recirculated medium was passed through a 

C18 column prior to culture to remove the dissolved DOM [18]. As can be seen in Fig. 

2, most of the growth-promoting species present in the supernatant appear to be retained 

on the C18 column as most of the stimulant effect disappears. 

The study of acclimatisation in flasks based on the long-term reuse of spent 

medium was successfully accomplished without any quantifiable cell damage or 

metabolic inhibition. This strategy allowed us to envisage that complete reuse of the 

spent medium in the RW-PBR was feasible with A. carterae, at least for four sub-

cultures.

4.2. Influence of medium recycling on culture performance in the RW-PBR

Fig. 3a shows a long-term, stable and robust culture of A. carterae in a 

traditional RW-PBR. The recycled medium supplemented with inorganic nutrients (sets 

RM1 and RM2) did not affect Nmax, but increased both Pcell and Pb compared with the 

semi-continuous culture performed with fresh medium (SET8) (Table 2). Nevertheless, 

the average Nmax was more than twice the maximum obtained with this species by 

Dixon and Syrett using nutrient-supplemented recycled medium [30]. Moreover, the Pb 

and Nmax values were around threefold higher than those for another A. carterae strain 

cultured in a pilot-scale bubble column [57]. As observed in the small-scale 

acclimatisation study, there were no growth lag phases in the RW-PBR, and culture 

evolutions were very similar between sets, which could be a consequence of 

replenishing consumed nutrients [15,16,18]. The FV/FM values, which were in the range 

of values typically found for healthy A. carterae cells in the three sets [55], confirmed 

the absence of inhibition or toxicity [26,31]. In addition, the variation pattern for α, and 

thus for κ, was very similar throughout the whole culture period. As expected, α began 

to decrease a few days after the beginning of each batch, when nutrients clearly began to 
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limit growth (Fig. 3c). This is because the absorption cross-sections of microalgae 

strongly decrease upon nitrogen limitation of growth by modifying the pigment 

packaging in cells and/or the abundance of accessory light-harvesting pigments [70]. 

Growth was not light-limited since the average irradiance available for the cells (Iav) 

was always higher than the photosynthesis saturation value for this species (56 µE·m-2·s-

1) [57].

Nitrate consumption is species-specific when using recycled medium [31,39]. 

Indeed, it is well documented that dinoflagellates can accumulate large amounts of 

nitrogen inside the cells, thus allowing growth to continue even when N is depleted in 

the medium [71]. In addition to the nitrate accumulated in cells, they can use the 

proteins released in the medium as N-source to compensate the low nitrate availability 

and continue growing in a mixotrophic mode (Fig. 4e). This has also been observed 

with Arthrospira platensis [72]. However, proteins did not fit the cell N-requirements 

for biomass generation as they decreased by a maximum of 4 mg·L-1 and biomass 

increased by 0.3 g·L-1 in RM2-II. In mixotrophic growth, when nitrogen sources in the 

medium are depleted, photosynthetic microalgae can utilize internal cell substances, 

such as chlorophylls, as nitrogen sources for cell division [72].

The presence of DOM in the recycled medium seemed to stimulate mixotrophy 

in cells and thus improve the culture performance, as has been observed with other 

microalgae and dinoflagellates [40,74]. Acclimatisation to mixotrophic growth occurred 

during four sub-cultures, as SCRTOC increased to a maximum in RM2. It is well 

documented that the presence of organic carbon in the medium stimulates mixotrophy 

[40,44], which in turn increases growth rates and biomass productivities [10,40]. As 

HSs were clearly the majority species in the DOM, it is feasible that they are chiefly 

responsible for the stimulating effects. HSs are a source of both organic carbon and 
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nitrogen. Although the source of HSs in microalgae cultures remains unclear, 

decomposition of cell debris may be responsible [29]. Amphidinium species are 

naturally found in sand sediments [74], where organic matter, including HSs, is 

abundant and photoautotrophic Amphidinium strains have been found to be mixotrophs 

[75]. HSs have also been reported to be growth stimulating compounds for many 

photoautotrophic dinoflagellates [42] as they can act as ion transporters [29] and can 

also be metabolized as organic substrates in hetero- and mixotrophic growth [25]. 

However, HSs can also inhibit growth in a species-specific manner [76]. 

The improvement in Pcell for RM1 and RM2 relative to SET8 was only 

comparable to that observed for the 25% RM experiment on a small scale (Fig. 2), 

probably because the initial cell concentrations were about 20 times higher in the RW-

PBR than in the small-scale assays (8·105 vs 4·104 cells·mL-1). This aspect shortened the 

duration of the exponential growth phase and lowered growth rates (µmax of 0.34 vs 0.53 

day-1). In addition, initial light, nutrient and TOC cell ratios were lower (0.05 ng 

C·cell-1, in other words about eightfold lower than the 25% RM value on a small scale). 

As such, the cultures in the RW-PBR were N-limited and this regulated the maximum 

cell concentration. Thus, Nmax was very similar in all sets and close to the maximum 

reported previously for this culture system [3]. Acclimatisation to the recycled medium 

resulted in a slight increase in cell volume (Table 2), which increased PBR biomass 

productivities and biomass yields relative to N and P.

To the best of our knowledge, this is the first time that a long-term (>70 days) 

culture of a dinoflagellate microalgae such as A. carterae has been performed using 

recycled medium, thus resulting in both higher cell and biomass productivities 

compared with fresh medium. Therefore, as suggested by life cycle assessments (LCAs) 

[10,14,17,20,77], important quantities of water and nutrients can be saved by recycling 
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the growth medium, thus resulting in a promising culture strategy for obtaining 

economically efficient and environmentally sustainable A. carterae biomass on a large 

scale. However, if the spent medium is to be discharged into the environment, it must be 

treated adequately to remove the DOM. This may be a general strategy for microalgae 

cultures to prevent eutrophication [10,23] or growth inhibition [18] in natural waters, 

but should be mandatory for species that release bioactive substances into the 

supernatant, as is the case for dinoflagellates.

4.3. Influence of medium recycling on the supernatant composition in the RW-PBR

Relatively large amounts of SOM accumulate in the RM cultures. In sets RM1 

and RM2, for example, the maximum TOC concentrations were around 100 mg·L-1, 

which is similar to the value of 70 mg·L-1 typically reported for microalgae [22,23,26]. 

The evolution of TOC with culture time is also typical of DOM in microalgae cultures, 

with similar trends being observed for the genera Tetraselmis [40], Anabaena, 

Microcystis and Scenedesmus [78]. The SARs for TOC, proteins and, although to a 

lesser extent, HSs decreased with time as ARs tended to stabilize in stationary phases, 

as is the case for other microalgae [79]. Relatively large amounts of HSs accumulated in 

a sub-culture-related fashion (Fig. 4c). This is probably related to the benthic nature of 

A. carterae [74]. Although the maximum HSs concentrations determined in this work 

are twice the concentration that inhibited the growth of Alexandrium tamarense [29], no 

negative effect was observed with A. carterae.

Proteins and very minor quantities of carbohydrates accumulated to a lesser 

extent. This contrasts with the typical behavior of planktonic phototrophs 

[22,26,27,[26]51], for which CH can represent 23-80% of the TOC in the supernatant 

[28]. CH excretion may be related to P-limitation (high N:P ratio) [80], although this is 
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not the case in the present study (N:P = 5). In contrast, the DOM composition in the 

supernatant was closer to that typically found for aquatic systems [81].

The presence of N-sources in the medium is necessary for carbon assimilation 

by microalgae cells [82], and if nitrogen limits growth (high C:N in the medium), DOM 

starts to be generated [32]. Thus, it was expected that TOC and, especially, HSs would 

start to accumulate in the medium, usually at high ARs and SARs in sets RM1 and RM2 

(Figs. 3c and 4a,b) once nitrogen started to limit growth. At the onset of the cultures, 

when C:N is low, protein release into the medium is stimulated, as was seen previously 

in other microalgae [28,79]. Cells released higher amounts of proteins in sets RM1 and 

RM2 compared with SET8 (Figs. 3c and 4a), in which the TOC concentration is lower. 

In particular, in RM2-II, when nitrate is consumed more rapidly, protein release is the 

highest for all cultures (highest SAR) (Fig. 4f). 

4.4. Influence of medium recycling on the composition of A. carterae biomass obtained 

in the RW-PBR

4.4.1. Biomass elemental composition

The elemental composition was affected by the recycled medium. Thus, the high 

carbon concentration in the spent medium stimulated C consumption (800 fmol·cell-

1·day-1) and accumulation in the biomass at the expense of N and P (increasing C:N and 

C:P ratios from SET8 to RM2) (Table 3). This C accumulation also increased the N and 

P biomass yields, as more biomass is produced per mol of these elements (Table 2). 

Nitrate-N in the supernatants was exhausted before phosphates even though nitrates 

were apparently in excess in the medium (N:P = 5). Nutritional modes, culture 

conditions and phylogenetic differences are sources of variability for microalgae 

biomass elemental compositions, and significant variations in these ratios from the 
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Redfield ratio (C:N:P = 160:16:1) [73] have been reported for dinoflagellates (C:P=36-

166, C:N= 5-11.3 and N:P=5.5-23) [83]. In the present study, the only difference 

between sets was the use of a recycled medium with a relatively high organic load. This, 

apparently, induces a stronger mixotrophic growth, which has been observed to induce 

C:N imbalance in the biomass compared to pure photoautotrophic growth in microalgae 

[72].

4.4.2. Saponifiable fatty acids

The FA profile of the A. carterae biomass is in line with data previously 

reported previously for the same species grown photoautotrophically [84,85]. Medium 

recycling is sometimes used as a strategy to increase FA production in microalgae as it 

contains a wide variety of organic compounds that promote FA synthesis [12]. 

However, with an average of 15.9% (d.w.) and no significant differences between sub-

cultures, this was not the case for A. carterae. The values presented here are 55% higher 

than those reported for this species by Mansour et al. [85]. The FA classes were also 

different to the values in the work of Mansour et al., as SFAs represented an average 

19% of all FAs in their experiments while the value in this work was around 30%. This 

high SFA value occurred at the expense of a lower PUFA content (55% vs 78%). This 

difference might be caused by the different culture systems (Erlenmeyer vs RW-PBR), 

growth medium (f medium vs f/2 × 3) and intraspecies variability between two different 

strains.

Structural FAs (PUFAs) and reserve FAs (SFAs) followed an inverse evolution 

from SET8 to RM2, although the change was less than 5%. This variation could be a 

consequence of N-limited mixotrophic growth, as nitrate was already consumed before 

the stationary growth phase. Accumulation of reserve substances (mainly SFAs and 

carbohydrates) in microalgae is a typical response to growth limitation [16,86–88]. 
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However, FA profiles in dinoflagellates are less influenced by medium composition 

than in other microalgae [86]. 

EPA and DHA, the main structural FAs in the chloroplast, can be affected by 

light limitation or inhibition of the photosynthetic apparatus [89,90]. As Iav and FV/FM 

values were virtually the same between sub-cultures (Figs. 3a,b), variations in the 

cellular content of these FAs were not expected. The percentage of PA, which is the 

main SFA, increased slightly from SET8 to RM2 (Fig. 5a), probably as a result of 

mixotrophic growth. The maximum average PUFA and DHA yields of 3.98 and 2.90 

mg L-1, respectively, were very close to the best values obtained in the previous sets [3]. 

A. carterae has been postulated as a DHA source. As such, the results presented herein 

are of particular importance since this species has been shown to withstand several 

medium recycles without any measurable effect on DHA production over a very long 

culture period, thus making this strain a robust DHA source. The DHA content (5%) is 

very similar to the values obtained with Aurantiochytrium sp. In heterotrophic culture 

[91], although in A. carterae it is a high-value sub-product of APDs.

4.4.3. Pigments

Fig. 5b displays the pigment percentage by biomass dry weight for experimental 

sets 8 to RM2. The pigments identified, with Chl-a as majority and Peridinin (Per) as 

the main carotenoid, are consistent with the pigment profile for Dinophyta [92]. Per is a 

primary carotenoid present only in dinophytes, and is the majority carotenoid in A. 

carterae [93]. It is a light-harvesting carotenoid associated with Chl-a in a protein-based 

complex [94]. The Per/Chl-a ratios in this work (0.5–83) fall within the range reported 

for this species [95].

Medium recycling influenced pigment contents, with a progressive reduction 

being observed during the acclimatisation process. Thus, the majority pigments (Chl-a, 
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Per and Chl-c2) declined markedly from SET8 to RM2, with Chl-a being most affected. 

In general, mixotrophically grown microalgae present lower levels of chlorophylls 

compared to photoautotrophic conditions [31,72], whereas carotenoid production is 

hardly affected at low irradiances [67]. In addition, the intracellular concentration of N-

containing pigments (Chl-a and Chl-c) has been observed to decrease in cultures in 

batch mode in the event of a deficiency of nitrogen and phosphorus [82,96]. Under 

these circumstances, cells utilize those pigments as an alternative N-source to maintain 

cell division, especially during mixotrophic growth [72]. As mentioned above, once 

nitrates have been totally consumed, extracellular proteins may not provide sufficient 

nitrogen and cells might use chlorophylls as alternative N sources. On occasions, a 

reduction in the chlorophyll content is concomitant with a change in the structural 

arrangements of chloroplasts, thus affecting the performance of the photosynthetic 

apparatus [65] and α values [72]. FV/FM and α did not differ significantly between sets 

(Fig 2a,b), therefore the efficiency of photosystems was not appreciably affected. 

Photoprotective carotenoids are not usually reduced under mixotrophic growth [72]. 

Although Peridinine might not have been used as alternative N-source, its cell 

concentration is linked to the Chl-a content and, therefore, less of this pigment may 

have been generated [66,96].

As there are no alternative, natural non-microalgal sources of peridinin [3], A. 

carterae has been recommended as a source of Per for the production of standards [92]. 

The Per content achieved herein ranged from 0.4% to 0.94% of biomass dry weight, 

which is higher than the value (0.24%) reported by Johansen et al. (1974) for this 

species [93]. However, it falls within the ranges reported for other dinoflagellates 

[93,97]. The maximum peridinin volumetric yield (5.6 mg·L-1), which was obtained in 

RM1I, is similar to the value of 4.4 mg·L-1 obtained previously for this strain in this 
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PBR [3]. As Per is a by-product of the extraction-purification of APD processed from A. 

carterae biomass [4], the culture conditions may have not been optimal for its 

production, even though the productivities are comparable to other efficient culture 

systems whose main product is this carotenoid. Thus, productivity, based on the 

illuminated area, was 421 mg·m-2, which is similar to the value of 600 mg·m-2 obtained 

with the dinoflagellate Symbiodinium voratum cultured in a bench-scale twin-layer PBR 

(TL-PBR) located in a greenhouse [97], but lower than the optimized value of 1000 

mg·m-2·obtained with that species in an optimized TL-PBR with a 28-day culture period 

[98].

Medium recycling is, therefore, an attractive and economic strategy for 

producing this carotenoid as a high-value by-product of APD production from A. 

carterae cultures in traditional PBRs.

4.4.4. APDs 

The hemolytic activity of the cell extracts was used as a proxy for the APD 

levels in cells. Fig. 5c suggests that the process of acclimatisation to the recycled 

medium affects APDs, which increase until the RM2-I sub-culture, subsequently 

stabilizing at levels similar to those found for the control SET8 in RM2-II (Fig. 5c). The 

mean stable EPS value of around 1300 pg cell-1 is almost threefold higher than that 

reported for other strains of A. carterae [57]. These findings demonstrate that high APD 

productivities can be obtained from actively growing cells, which contrasts with 

previous reports for A. carterae [57]. The average biomass content of APDs was also 

affected by the acclimatisation process in a similar fashion to that for ESP (Figs. 5c,d). 

The maximum APD yield of 5.4 mg·L-1 was obtained for set RM2. 

Samples from the RM2-II supernatant showed essentially no cell 

antiproliferative selectivity, although concentrated supernatant extracts presented strong 
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anticancer activity against the four cell lines used. Amphidinium strains have previously 

shown intraspecies variability in their bioactive profiles, with extracts presenting 

different cytotoxic and/or other bioactivities [99,100]. These results confirm the 

potential use of the polyketide metabolites generated by A. carterae in the biomedical 

industry. 

Moreover, in view of Figs. 5c,d, stable culture in a conventional photobioreactor 

using recycled medium may represent a basis for the medium- to large-scale supply of 

these compounds under the concept of circular economy.

5. Conclusions 

A. carterae cells have been successfully acclimatised to a 100% recycled medium 

without any measurable damage or inhibition. The organic carbon load in the spent 

medium stimulated mixotrophic growth, and both cell and biomass productivities were 

higher when using 75-100% recycled medium on a small scale than for control cultures 

performed with fresh medium. On a larger scale, only biomass productivities improved, 

whilst maximum cell concentrations were limited by nitrogen availability. As a result of 

nitrogen-limited mixotrophic growth, primary pigment (Chl-a, Per and Chl-c2) cell 

contents decreased upon using the recycled medium up to the fourth sub-culture. Fatty 

acids were slightly affected and APDs showed an acclimatisation response during the 

first two sub-cultures with the recycled medium. Both biomass and supernatant extracts 

showed strong antiproliferative activities against four human tumoral cell lines. This is 

the first study to report the long-term culture of a dinoflagellate species in a traditional 

raceway photobioreactor while recycling the exhausted culture medium. The robustness 

and stability of the 77-day long culture of A. carterae under the circular economy 

concept makes this species a good candidate for the economic production of bioactive 

compounds with pharmaceutical applications.
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