
Future Generation Computer Systems 00 (2024) 1–10

FGCS

Quantum annealing solution for the unrelated parallel machine scheduling
with priorities and delay of task switching on machines

F. Ortsa, A.M. Puertasb, G. Ortegac, E.M. Garzónc

aInstitute of Data Science and Digital Technologies, University of Vilnius, Lithuania
bDepartment of Chemistry and Physics, University of Almerı́a, Spain

cInformatics Department, University of Almerı́a, ceiA3, Spain

Abstract

Quantum computing has emerged in recent years as an alternative to classical computing, which could improve the latter in solving some types
of problems. One of the quantum programming models, Adiabatic Quantum Computing, has been successfully used to solve problems such as
graph partitioning, traffic routing, and task scheduling. In this paper, the focus is on the scheduling of the problem of unrelated parallel machines,
where the processing time of tasks on any of the available processing elements is known. Moreover, the proposed model is extended in two
relevant aspects for this kind of problem: the existence of some degree of priority of tasks, and the introduction of a delay or penalty every
time a processing unit or machine changes the type of task that executes. In all cases, the problem is expressed as Quadratic Unconstrained
Binary Optimisation, which can be subsequently solved using quantum annealers. The quantum nonlinear programming framework discussed in
this work consists of three steps: quadratic approximation of cost function, a binary representation of parameter space, and solving the resulting
Quadratic Unconstrained Binary Optimisation on the quantum annealer platform D-Wave. One of the novelties in tackling this problem is the
compaction of the model bearing in mind the repetitions of each task, to allow solving larger scheduling problems with the quantum resources
available in the experimentation platform. An estimation of the number of qubits required in relation to the scheduling parameters is analysed.
The models have been implemented on the D-Wave platform and validated with respect to other traditional methods. Furthermore, the proposed
extensions to consider priorities and to switch the delay of tasks have been analysed using a case study.

© 2011 Published by Elsevier Ltd.

Keywords: Quantum Computing, Adiabatic Quantum Computing, Quantum annealing, Quadratic Unconstrained Binary Optimisation,
Combinatorial Optimization, Scheduling on unrelated parallel machines problem,

1. Introduction

Quantum computing takes advantage of the Quantum Me-
chanics effects to process information. Quantum hardware im-
plements such principles to solve general computational prob-
lems. There are two ways of performing computational opera-
tions on a quantum computer. The most well-known is the ap-
proach based on a quantum circuit model of computation. This
approach provides both a framework for formulating quantum
algorithms and an architecture for the physical construction of
quantum computers. This model of computation might provide
a complete design of quantum computing in the long run, but
nowadays is severely limited by the small number of qubits that
make up real quantum platforms and by the errors introduced
by each quantum gate.

The other alternative to quantum processing is Adiabatic
Quantum Computing (AQC), and currently, it can provide enough

resources to solve particular applications of practical interest.
It relies on the adiabatic theorem and is focused on the solution
of combinatorial optimization problems. Although the goal of
AQC is particular, it is of great interest since many of these
problems are NP-complete and they are a challenge for con-
ventional computation when the input problem grows. More-
over, these problems are involved in a wide set of applications
as illustrated in [1]. AQC can solve such problems efficiently
because their solution can be expressed as the ground state of
an Ising Hamiltonian, which evolves in polynomial time [2].
The Ising Hamiltonian is used to model quadratic unconstrained
binary optimization (QUBO). So, the QUBO problem is for-
mulated to find the minimum of a quadratic polynomial with
unitary variables. Strictly, the physical realization of AQC is
unreachable since the non-ideals conditions avoid the adiabatic
evolution of the quantum hardware. Thus, Quantum Annealing
(QA) is based on the AQC principles but in a flexible sense [3].

1



/ Future Generation Computer Systems 00 (2024) 1–10 2

Currently, the Ising solvers are realized with quantum annealer,
such as the D-Wave platform [4]. Thus, the translation of com-
binatorial optimization problems in QUBO models is the key to
their QA solution.

Scheduling is one of the active areas of discrete optimiza-
tion that plays a crucial role in the manufacturing and service
industries. Scheduling theory has been a focus of interest by
researchers in management science, industrial engineering, and
operations research. Many classical approaches to solve the
different types of scheduling problems can be found in the lit-
erature, just to name a few [5, 6, 7]. In recent years, quantum
computing has been postulated as an alternative and several au-
thors have studied the behavior of these problems on quantum
platforms. In [8] authors formulate the uncapacitated task al-
location problem as a QUBO model. The work by Carugno et
al. [9] studies the application of quantum annealing to solve the
job-shop scheduling problem and compares the solution quality
with various classical solvers. In the present work, we focused
our attention on the unrelated parallel machine scheduling prob-
lem (UPM).

The aim of this work is to show how to solve scheduling
problems with additional constraints on current quantum an-
nealers as an illustration of the potential of QA to solve large
combinatorial optimization problems of practical interest. The
contribution is twofold, on one hand, the definition of the spe-
cific QUBO model on a practical context and, on the other
hand, the implementation/evaluation of the real and accessible
annealer using the Ocean library and platforms of D-Wave. The
UPM problem consists on finding the optimal scheduling of a
set of tasks among the available (heterogeneous) processing el-
ements if the processing time of any procedure executed on any
of the available processing elements is a priori known. The goal
is to minimize the maximum completion time of tasks without
additional constraints. In our previous work [10], this problem
was expressed with a QUBO formulation, which allowed the
use of the D-Wave quantum annealer to solve it. This trans-
formation was done by the quadratic approximation of the cost
function, binary encoding of the integer variables, and solving
the problem using a quantum annealer.

In this work, the objective is to solve the UPM with two ad-
ditional constraints on the real annealers. Such constraints of
the problem focus on: the existence of some degree of priority
in the type of task, and the incorporation of a delay/penalty ev-
ery time a processing unit/machine changes the type of task that
is executed. Both extensions are of great practical interest in the
application fields of these scheduling problems. This way, the
main contributions of this work are the following:

1. The UPM scheduling problem with the two mentioned
constraints in terms of task priorities and the switching
delays have been defined and expressed with a QUBO
model.

2. The reduction of the number of required qubits on quan-
tum annealers, if repetitions of tasks can be considered
in the UPM scheduling, i.e. the tasks can be grouped
by similar or same runtimes on the same processing el-
ement. The number of qubits for the UPM scheduling

problem with and without task repetition has been ana-
lyzed to prove the large resource savings that can be ob-
tained by exploiting repetitions in the model expression.
This approach allows us to solve very large scheduling
problems with the resources supplied by the current D-
Wave annealers.

3. The UPM scheduling problem with both constraints has
been developed with the programming tools supplied with
the D-Wave quantum annealer, the Ocean library. To
show the correct impact of the constraints in the solution
computed by the proposed model on the annealer, the re-
sults computed for the UPM scheduling with constraints
have been analysed in comparison with the obtained ones
without constraints for a representative example of the
problem.

These contributions illustrate how to express the constraints
in the methodology to solve combinatorial optimization prob-
lems on innovative quantum annealers and their potential for
solving problems of large dimensions.

The paper has been organized as follows. Section 2 is de-
voted to describing the quantum annealing computational model.
Section 3 introduces the scheduling problems addressed in this
work with their QUBO formulations. First, the UPM schedul-
ing and next the constraints focused on the priority of tasks,
Subsection 3.3, and the delays due to the switches between
kinds of tasks on machines, Subsection 3.4. Section 4 shows
how the QUBO formulations for the UPM scheduling problem
and the extensions are solved on the D-wave annealer. In Sec-
tion 5 the number of qubits required by the proposed models
is quantified in relation to the parameters of scheduling. On
the D-Wave platform, the proposed models are validated and
the extensions have been analysed by a case study. Finally, in
Section 6 the main conclusions are drawn.

2. Quantum annealing computing

The adiabatic theorem assures that if we start at a state of
minimum energy of a simple Hamiltonian and it evolves slowly,
it will always remain in the state of lowest energy, the ground
state. So, the idea of quantum adiabatic computing is to select a
ground state of a simple Hamiltonian, H0, and make the system
evolve during a time T to the state of minimum energy of the
Hamiltonian of the problem Hp. So, we can define a Hamilto-
nian as a function of time to model its temporal evolution:

H(t) = (1 −
t
T

)H0 +
t
T

Hp (1)

In practice, it is difficult to guarantee the adiabatic conditions,
and quantum annealing is used as a heuristic approach which
combines the adiabatic theorem and the Ising model [11] to
build solvers of combinatorial optimization problems. It con-
sists of:

1. H0 = −
∑n

i=1 σ
x
i is defined as initial Hamiltonian where n

is the number of qubits and σx
i is the Pauli x operator on

the ith qubit.

2



/ Future Generation Computer Systems 00 (2024) 1–10 3

2. Hp is defined as the target Ising Hamiltonian,
3. The system evolves from H0 to Hp without adiabatic con-

ditions being fully guaranteed,
4. The final state is measured to compute a possible mini-

mum,
5. The process is repeated several times to compute various

approximations of minima.

We recall that the Ising Hamiltonian defines a model of fer-
romagnetism in statistical mechanics with unitary discrete vari-
ables since they represent magnetic spins that can be in one of
two states. Therefore, QA is useful to solve combinatorial opti-
mization problems with unitary variables. Moreover, the Ising
model can be translated to the QUBO model, which unifies a
rich variety of combinatorial optimization problems [12].

Currently, D-Wave Systems Inc. has developed quantum
hardware based on QA with a large number of qubits. This tech-
nology still suffers from limitations such as resource scarcity
and control errors, among others. However, a wide set of prac-
tical optimization applications are being currently adapted to
this technology since potentially it offers a huge computational
power for solving large combinatorial optimization problems
which are NP-complete.

The next sections are focused on the application of the QA
methodology for solving UPM scheduling. Therefore, we de-
velop the steps related to the previous methodology: (1) quadratic
approximation of cost function of a compact model, (2) binary
representation of the discrete variables, and (3) solving and test-
ing the resulting QUBO model on the D-wave annealer.

3. Unrelated parallel machine scheduling problem using quan-
tum annealing

3.1. Definition of the unrelated parallel machine scheduling
problem

The problem of distributing N tasks of J different types
in M processing units has been already described in the liter-
ature [13]; thus here we only give a short account. Briefly, the
optimal distribution that minimizes the total time to execute all
tasks is sought, namely:

Find: n j,α

to minimize max {Tα} (2)
with Tα =

∑
j n j,αt j,α α = 1, . . . ,M

subject to
∑
α n j,α = x j j = 1, . . . , J

Here
{
n j,α

}
is the number of tasks of type j assigned to the Pro-

cessing Unit (PU) named α, Tα is the time required by PU α to
complete all its tasks and

{
t j,α

}
is the runtime matrix of a task

of type j in every PU α. The J restrictions (last line) indicate
that all jobs of type j, x j, must be assigned. Hereinafter, they
are referred to as the main constraint of UPM scheduling.

The inputs to the problem are the number of PUs, M, the
number of tasks of every type that must be assigned,

{
x j

}
, and

the runtime matrix,
{
t j,α

}
. Different strategies have been pro-

posed to solve this problem, and commercial software is avail-
able, such as AMPL [14] and CPLEX [15].

3.2. From Binary Integer Programming (BIP) to QUBO
In order to solve this problem with quantum annealing, it

has been reformulated as a quadratic unconstrained binary op-
timization (QUBO) problem following [12]. For this purpose,
let us define the function:

O0 =
∑
α

T 2
α (3)

Because the ratio Tα/max {Tα} is smaller than one for all
PUs, except for the PU with the largest runtime, max {Tα}, the
summation in O0 is dominated by this largest term, i.e. by
max {Tα}, and therefore, minimizing max {Tα} or make-span, as
required by the scheduling problem, is equivalent to minimizing
O0. Note that a higher exponent would make this equivalence
clearer, but only with powers 1 and 2 can it be formulated as a
QUBO problem.

The first, brute force, approach to the problem is to consider
that all tasks are different: n j,α becomes then a binary variable,
n j,α = 1 if task j is assigned to PU α and 0 otherwise, and
the restriction now reads

∑
α n j,α = 1 for all j, ensuring that all

tasks are run once. This restriction must be incorporated in the
function to be minimized:

O =
∑
α

T 2
α +
∑

j

P j

1 −∑
α

n j,α

2 =
=
∑
α

∑
j

n2
j,αt

2
j,α + 2

∑
k,l;k,l

nk,αnl,αtk,αtl,α

 +
+
∑

j

P j

1 −∑
α

n j,α

2 (4)

where P j are “large” constants [12], and the expression of Tα
has been substituted in the second line to get an explicit expres-
sion [2]; if P j is smaller, or comparable to T 2

α, the constraint
can be violated to minimize O, but if P j is too large, the first
term in O becomes irrelevant. This formulation corresponds to
a QUBO problem, as expected, and can be implemented in a
quantum annealer.

This approach, however, requires as many unitary variables
as elements in the matrix n j,α, i.e. tasks to be assigned times
the number of PUs, what restricts importantly the size of the
problem that can be studied. To overcome this issue, we make
use of the repetition of jobs for the same task. In this case, n j,α is
no longer a unitary variable, and therefore it is subject to the last
condition in the problem definition,

∑
α n j,α = x j. To continue

within the QUBO formulation it can be, nevertheless, expressed
using unitary variables for the digits in its binary representation
[2]:

n j,α =

B∑
k=0

n j,α,k2k (5)

3



/ Future Generation Computer Systems 00 (2024) 1–10 4

where B = int
[
log2(R + 1) + 1

]
, with R = max

{
x j

}
; variables

n j,α,k are unitary. Introducing this representation of n j,α in the
expression of O0 and the restriction yields finally for O:

O =
∑
α

T 2
α +
∑

j

P j

x j −
∑
α

n j,α

2 =
=
∑
α

∑
j

t j,α

B∑
k=0

n j,α,k2k


2

+

+
∑

j

P j

x j −
∑
α

B∑
k=0

n j,α,k2k

2 (6)

It can be easily confirmed that this expression corresponds
to a QUBO problem in the variables n j,α,k, and allows finding
the distribution of J × R tasks in M processing units using J ×
B × M unitary variables. Since B ∼ log2 R, this implies an
important reduction in computing resources with respect to the
initial formulation, given by Eq. 4.

In the next subsections, this problem is extended by in-
troducing two aspects typically found in scheduling problems,
namely, the existence of some degree of priority in the type of
tasks, and introducing a delay or penalty every time the type of
task needs to be changed in a PU. Both problems are tackled by
modifying the objective function O.

3.3. Priority tasks

Consider that in the scheduling problem defined by (3), one
type of tasks must be finished as soon as possible, although
other tasks do not depend on the outcomes of these priority
ones. In a first approach, this can be considered as two different
scheduling problems to be run sequentially: a first one for the
priority tasks and the second problem for the non-priority ones.
However, since the outcome of the priority tasks is not neces-
sary for the non-priority ones, this is inefficient, as some PU are
idle while all priority tasks are finished, waiting for the second
problem to start. This is particularly important when the num-
ber of priority tasks is low, or even smaller than M, the number
of PUs.

The definition of this new problem requires a slight mod-
ification with respect to the previous one. Let Jp < J be the
number of types of priority of tasks, while J is the total number
of tasks, including priority and non-priority ones. The problem
of the optimal distribution of tasks therefore is:

Find: n j,α

to minimize max
{
Tp,α

}
and max {Tα} (7)

with Tp,α =
∑Jp

jp=1 n jp,αt jp,α α = 1, . . . ,M

and Tα =
∑J

j=1 n j,αt j,α α = 1, . . . ,M
subject to

∑
α n j,α = x j j = 1, . . . , J

where Tp,α is the time spent by PU α to perform only the pri-
ority tasks, whose maximum needs to be minimized. Note that

for clarity, we have used sub-index p for the summation of Tp,α,
which implies only the priority tasks, i.e. jp runs from 1 to
JP. The restriction in the last line applies for both priority and
non-priority tasks, and therefore it is not modified by the new
considerations.

Following the same strategy as in the previous section, we
assume that the maximum Tpα dominates the summation Op =∑

T 2
p,α. Thus, to minimize both Op and Oo, as required by the

problem definition above, with the restrictions, the following
function is defined:

O′ = A
∑
α

T 2
p,α +

∑
α

T 2
α +
∑

j

P j

x j −
∑
α

n j,α

2 =
= A

∑
α

∑
jp

n jp,αt jp,α


2

+
∑
α

∑
j

n j,αt j,α

2 +
+
∑

j

P j

x j −
∑
α

n j,α

2 (8)

where the first summation corresponds to priority tasks and the
second one to all tasks. The constant A is introduced as a mea-
sure of the priority of the tasks and should be compared to the
ratio of the maximum execution times of all tasks to all priority
tasks. If A is much smaller than this ratio, tasks are not pri-
oritised, and the algorithm searches for a distribution that mini-
mizes the total execution time. In the opposite case, if A is much
larger than the ratio of maximum runtimes, the solution to the
problem guarantees that all priority tasks are finished as soon
as possible, even if this implies a larger total execution time.
In any case, to guarantee that all jobs of type j are assigned,
A max

{
T 2
α

}
must be smaller than P j.

In equation (8), n j,α must be substituted by its binary rep-
resentation as given by Eqn. (5) to make a QUBO problem
suitable for implementation.

Finally, let us mention that although only two levels of pri-
oritisation are considered in the definition of the problem and
in the objective function O′, the problem can be readily ex-
tended to incorporate many more levels. For this purpose, other
terms should be added to O′ with different prefactors – the tasks
considered in the summation with higher constants would have
higher priority.

3.4. Delay due to task switching on processing units
The second modification to the original scheduling problem

is the consideration of a delay time whenever the type of task
performed on a PU is changed. This is motivated by the exis-
tence of a switching time due to the preparation of the infras-
tructure for the new task. This can have several forms, such as
physical modifications in production chains or assembly lines,
or the upload of configuration files and memory allocation in
the computation of complex calculations, to give just two ex-
amples.

Ideally, the total delay in the execution of PU α can be cal-
culated exactly if the number of types of tasks is known. How-
ever, this requires calculating how many n j,α are greater than

4



/ Future Generation Computer Systems 00 (2024) 1–10 5

zero, but this cannot be formulated as a QUBO problem. Alter-
natively, since the number of switches is minimized when the
number of tasks of the same type, n j,α is maximized for every
PU, we define the problem of seeking the optimal distribution
of tasks with delay due to switching as follows:

Find: n j,α

to minimize max {Tα} (9)
and maximmize n j,α ∀α, j

with Tα =
∑

j n j,αt j,α α = 1, . . . ,M
subject to

∑
α n j,α = x j j = 1, . . . , J

The new condition of maximizing n j,α for all j and α is cast
into a QUBO problem following the same strategy as in the
original problem, i.e. maximizing the summation of n2

j,α. Thus,
the following function is defined:

O′′ =
∑
α

T 2
α − ∆

2
∑
α

∑
j

n2
j,α +

+
∑

j

P j

x j −
∑
α

n j,α

2 =
=
∑
α

∑
j

n j,αt j,α

2 − ∆2
∑
j,α

n2
j,α +

+
∑

j

P j

x j −
∑
α

n j,α

2 (10)

where ∆ stands for the delay time in every switching (which
has been taken identically for all cases). Note that the second
term in the r.h.s. is negative, because it should be maximized
and not minimized. For every value of α, the summation in j is
dominated by the maximum n j,α, i.e. by the higher number of
tasks of the same type, and the summation in α is dominated by
the PU that repeats more tasks. Therefore, by minimizing this
term, PUs are forced to perform as many tasks as possible of
the same type, reducing the number of changes.

It is also interesting to note that the prefactor of this term is
given by the delay, ∆. Thus, if ∆ ≪ t j,α for all j and α, this term
is negligible compared with the first one, and task switching
does not contribute to the final optimal distribution. On the
other hand, if ∆ ≫ t j,α, this contribution is dominant, and the
optimal distribution will sacrifice the minimisation of the global
runtime of tasks to avoid task switching. Different from P j or
A, in previous equations, ∆ is not a parameter that has to be set
to guarantee the performance of the QUBO approximation to
the problem.

Finally, let us note that n j,α should be coded in its binary
representation to convert the minimisation of O′′ in a QUBO
problem. Also, it is straightforward to include a dependency of
the delay times on the type of tasks, ∆ j, introducing it inside the
summation.

4. D-Wave implementation

The described problem has been formulated for execution
on current quantum annealers through D-Wave Leap [16, 17,
18]. The code has been written in Python. Since the entire prob-
lem and its different variants has been formulated in QUBO for-
mat, a direct implementation using BQM is trivial to perform.
However, since we want to study how resources are consumed
as a function of the size and other parameters of each problem
instance, for the sake of clarity we have made an implementa-
tion using CQM to measure more conveniently as a function of
the inputs.

The natural inputs to the problem are the number of PUs
to be handled (M), the number of different types of tasks to
be executed (J), the number of repetitions of each type of task
(R), the priority of each type of task (p1, p2, ..., pJ) and the time
needed to switch task types on a machine, which we will simply
call delay (∆). It is also necessary to specify the time that each
type of task takes to execute on each machine, information that
can be expressed as a matrix, where each row is related to a
type of task, and it is composed of the time that the PU needs
to execute a task of that type (tj,α). The program accepts this
information through a text file. Figure 1 shows an example of
what a program input file should look like. The time units used
are not specified, but it is mandatory that all times indicated
use the same unit. Based on Section 3, it is assumed that there
are no dependencies between tasks and that each PU can only
execute a single task at a time.

Figure 1: Example of an input file for a problem with 2 PUs, 3 different type of
tasks, and 5 repetitions. In this example it is stated that there is no delay caused
by switching between task types, and that all tasks have the same priority. Since
tasks of the same type share execution times, the time is only shown once for
each type of task.

The program also accepts as input arguments, this time via
console, the name of the mentioned text file, and the time limit
imposed to finish the executions (make-span). Following the
nomenclature used in the previous section, the following pa-
rameters have been considered to represent the problem in the
code:

• J: is the number of different types of tasks.

• j: is a specific type of tasks (1, 2, ..., J).

• R: is the repetitions of the all types of tasks, R = x j ∀ j.

• p: is the priority of each type of task (p1, p2, ..., pJ).
5



/ Future Generation Computer Systems 00 (2024) 1–10 6

• A: is a constant to measure the task priority.

• M: is the number of PUs.

• α: is a specific PU (1, 2, ...,M).

• tj,α: is the processing duration that PU α needs for one
task of type j.

• ∆: is the delay when switching task types on PUs.

• V: estimation of maximum possible completion time (make-
span).

For simplicity, it is assumed that all tasks have the same
number of repetitions R, and that the delay ∆ is always the same
for all tasks and PUs. However, it would be straightforward to
modify the code to be able to indicate the number of repetitions
or the delay for each type of task individually (assuming, for
the delay, that its duration is associated with the type of task).
These variables have also been used to work with the outputs of
the program:

• O: is a positive integer variable that defines the comple-
tion time (make-span).

• B: is the number of necessary binary digits to represent
the number of repetitions (Eq. 5).

•
{
nj,α,k
}
: is the matrix of the distribution of tasks, where

n j,α,k represents the k-th digit in the binary representation
of n j,α, which stands for the number of tasks of type j that
are assigned to PU α.

According to Eq. 4 and Eq. 6, the goal is still to minimise
the time in which the problem is solved, O. Although we have
used two variables for the make-span, O and V , the difference
between the two is that O will contain the best result proposed
by the quantum annealers, while V is an input parameter indi-
cating the desired maximum limit for the make-span. Of course,
it is possible that the problem cannot be solved in the proposed
time. If O is greater than V , the software will display a message
warning that it has not been possible to solve the problem in the
requested time.

According to the model described in the previous section,
a constraint needs to be established to ensure that each task is
executed only R times: ∑

α

n j,α = R (11)

where R will be 1 if we use the model set out in Eq. 4, or any
other natural number if we work with the model in Eq. 6.

The solution given by the quantum annealer is not limited
to the time O, but also includes the complete scheme by which
this time has been achieved. This scheme is returned via the ar-
ray n =

{
nj,α,k
}
, described above. Although the array n contains

all the necessary information to properly distribute the tasks in
the machines, its reading is neither comfortable nor easy to in-
terpret for the human eye (with the aggravating factor of log-
arithmic notation). For this reason, the output of the software

Figure 2: Example of an output file for the problem shown in Figure 1. At the
top, each row of the table corresponds to an executed task. The first column
assigns a unique id to each task for the sake of clarity. The following groups of
three columns correspond to each PU. For each task/PU, the type of task, the
start time, and its duration are indicated. If the duration is 0, it is understood
that the task has not been executed on that PU. At the bottom of the figure, the
output graph for the problem is shown. Each colour corresponds to a type of
executed task, every bar is related to every PU or machine and the horizontal
axis represents the time units for the execution.

6



/ Future Generation Computer Systems 00 (2024) 1–10 7

does not show this information directly but converts it into a
more visual format that is easier to interpret. For this purpose,
we have relied on some works available in the literature to rep-
resent the results. In particular, we have relied on the work of
Ku et al. [19], and on the implementations available in the D-
Wave repository (especially those focused on scheduling prob-
lems) [20]. Such implementations include useful routines to
transform the output of the problem into a more user-friendly
format. The adaptation of these data processing routines to
the UPM scheduling problem is simply a matter of Python pro-
gramming skills. Examples of the output in text and graphical
format can be seen in Fig 2.

5. Evaluation

The evaluation of the software has been split up into sev-
eral parts. First, the possible problem sizes to be addressed are
studied using first the model described by Eq. 4 and second by
Eq. 6. The size of each problem depends on the number of
tasks and the number of PUs for the case of Eq. 4, and on the
number of different tasks, the maximum number of repetitions,
and the number of PUs for the case of Eq. 6. Second, the ac-
curacy of the computed solution on the quantum annealer for
UPM scheduling has been analysed. Finally, the impact of the
extensions introduced in the model is studied by the analysis of
a case study.

5.1. Resource assessment

The D-Wave device on which the software has been tested
has 5000 qubits. According to the CQM model, when all tasks
are different, N = J, then J ×M binary variables and an integer
variable to the make-span are involved in the model described
in Eq. 4. Ideally, the variable-qubit correspondence is direct.
This approach allows us to solve any problem with J different
tasks without repetition and M PUs as long as J × M < 5000.
That is, if we set a number of PUs M, the number of possible
tasks will be a maximum of 4999/M, and if we set a number of
different tasks, J, the maximum number of PUs we can include
in the planning will be 4999/J. However, in practice, some ex-
tra qubits are needed for topology reasons, so it is not possible
to use the 5000 qubits in the way described. Table 1 shows the
maximum possible values of each variable as a function of the
value of the other.

For the case where tasks can be grouped by type, an inte-
ger variable is still dedicated to the make-span, but in this case,
the problem needs J × R × M binary variables. However, ac-
cording to Eq. 6, the number of repetitions is represented as
B = int[log2(R + 1) + 1], so the actual number of variables will
be J×B×M (again, a certain number of qubits must be dedicated
to allowing correct transpilation to the topology of the quantum
computer). Again, J × B × M < 5000 must be satisfied, so any
combination of J,R and M values that satisfies this expression
is feasible to be solved by the proposed software. In this case,
the introduction of B allows the number of executed tasks to
be greatly increased if they can be grouped into types. Since
the representation of the number of tasks is the one that allows

Scheduled tasks, N = J Number of PUs (M)
4 1249
8 624

16 312
32 156
64 78

128 39
256 19
512 9
1024 4
2048 2

Table 1: Maximum number of different tasks and PUs using 5000 qubits and
the model defined in Eq. 4.

expressing larger numbers occupying fewer qubits, R (B) is the
variable that can grow the most so that if the problem contains
few PUs and types of tasks, it can be solved involving millions
of tasks, since in this case N = J × R. This is in contrast to the
data shown in Table 1. Table 2 shows an example with 16 PUs
(M = 16) and 7 types of tasks (J = 7) for several values of R. It
can be seen how more than 4.8E+12 repetitions can be allowed
for each task type. That is, more than N = 3.3E + 13 tasks can
be scheduled in total. This is much higher than the 300 tasks
we could solve with 7 PUs using the former formulation.

5.2. Validation of results

To test the accuracy of the software, it has been used to
solve more than 50 scheduling random problems by varying J,
M, and R and keeping the number of executed tasks as small as
possible. To perform this, a Python script was developed to gen-
erate input files with the corresponding configurations quickly
and easily. This script accepts as input per command J, M, R,
the maximum time that a task can last (we will denote t), and
optionally the name of the output file. The name of the output
file is, by default, instance J R M.txt. The file will be in the
format specified by Figure 1, but naturally adapted to the spe-
cific parameters. The time for each type of task on each PU will
be a random value between 1 and t, both values included.

Once the test files have been obtained, the optimal time for
the planning of the problems they represent has been calculated
using AMPL [14] and CPLEX [15]. The optimal value of each
problem has been established as the maximum make-span for
the execution of that problem with the proposed software with
the aim of verifying whether it is capable of finding a sched-
ule in that time. A maximum execution time in D-Wave of 10
seconds has been set. In all tested cases, the software was able
to find a valid schedule at the optimal time. As a simple test,
times shorter than the optimal time have also been tested. In
such cases, the software has correctly indicated that it is not
possible to find a task/PU configuration that solves the problem
in the given time.

Additionally, a case study is analysed to illustrate the im-
pact of the priorities and the switching delay in the computed
scheduling. So, the scheduling of seven types of tasks, J = 7,
with two hundred and fifty repetitions, R = 250, on fifteen PUs,

7



/ Future Generation Computer Systems 00 (2024) 1–10 8

R B Variables (qubits) Scheduled tasks, N
4 3 336 28
8 4 448 56
16 5 560 112
32 6 672 224
64 7 784 448

128 8 896 896
256 9 1008 1792
512 10 1120 3584

5.72E+5 20 2240 4.00E+6
5.86E+8 30 3360 4.10E+9
6.00E+11 40 4480 4.20E+12
1.20E+12 41 4592 8.40E+12
2.40E+12 42 4704 1.68E+13
4.80E+12 43 4816 3.36E+13

Table 2: Number of variables (qubits) used varying the repetitions R for an example with M = 16 and J = 7. In the quantum device, R is expressed as B =
int[log2(R + 1) + 1] so, for clarity of display, B is also shown. Furthermore, column ‘Scheduled tasks’ identifies the total number of executed tasks, calculated by
multiplying the number of task types by the number of repetitions (J × R).

M = 15, is considered. So the number of total tasks to be
scheduled is N = 1750. Therefore, the proposed QUBO mod-
els require at least 850 qubits of the D-Wave platform. The
execution times of every kind of task on every PU, are defined
in the following matrix

{
tα, j
}



800 10359 27900 15689 23711 107272 38424
5296 27628 5800 15005 18294 152253 43881
5098 7200 27082 28413 22429 126957 35278
4800 22090 21537 17275 24599 112874 35849
5942 26295 12315 21808 19492 102791 38899
6000 12171 23337 20775 23087 110362 15600
2630 13222 14550 10400 19931 172546 38835
3101 28517 24094 10885 24600 171713 44200
2391 16068 17410 16494 24460 118324 41683
3762 18997 10141 23692 20731 110300 37766
2016 19772 23306 15768 18917 111734 15500
5847 13227 5800 21090 23924 112981 15400
4356 22400 25877 15833 24683 100522 41829
4640 13805 2240 2930 4450 12050 7650
4243 12184 2240 2930 4450 12050 7650


where every row α is related to every PU with 1 ≤ α ≤ 15
and every column to every kind of task 1 ≤ j ≤ 7 and the
values represent the runtimes of every kind of task on every PU
in a unit of time. Notice that this matrix is the transpose of the
matrix used in the models above defined.

It is relevant to underline that in this case the execution
times have been defined according to a pattern. The values of
each column, j, of the matrix

{
tα, j
}

are of similar order of mag-
nitude, i.e. every kind of task is characterized by its workload
and its execution time is of the same order of magnitude for
most PUs. Furthermore, the wide range of values of tα, j shows
the heterogeneity of the types of tasks and the capacity of the
PUs to complete the workload, which is an additional challenge
to find optimal scheduling.

To study the impact of the priority of tasks on the computed

solution, a set of types of tasks with maximal priority is defined,
jp = 1, 2, 3, 4 and the results plotted in Fig. 3 are analysed. Ev-
ery bar of Fig. 3 represents the execution time on every machine
or PU to complete its scheduled tasks. Two colours define the
bars to show the time spent on prioritized tasks, in red, and not
prioritized, in green. Fig. 3 on the left shows the computed
scheduling without a definition of priorities, that is, when the
model of Eq. 8 is used with A = 0. As shown in the figure, the
prioritized tasks are not considered and the main goal is to min-
imize the global make-span, almost 1500000 units of time in
this case. However, the prioritized tasks finish at the same time
that the rest of the tasks, since the priority is not considered in
the model. When the model of Eq. 8 is used and the prioritized
tasks are set jp = 1, 2, 3, 4 with A = 4 then the scheduling is dif-
ferent, as shown in Fig. 3 (b). The value selected for A has been
chosen to be large enough to give weight to the priorities. It may
be tempting in the first instance to choose a tremendously large
value to ensure the condition, but this may cause the model to
not work properly [3]. Instead, values that are large enough to
ensure the condition but keep the results in the same order of
values should be used. In this particular case, the value chosen
is close to the total time achieved in case (a) after being mul-
tiplied by the corresponding time value. Although each case
should be evaluated independently, in our experiments it has
worked well for us to use a value A of the same order as the time
achieved without applying the priorities. Fig. 3 illustrates how
the prioritized tasks are planned first and all of them finish after
900000 units of time, as a counterpart the global make-span in-
creases, since it is not the main goal of our problem. However,
the exploitation of all PUs is balanced since all of them process
during a similar time, even when the priority is considered. So,
the application of the proposed model reduces the time for the
execution of the tasks with priority and distributes the available
PUs in a balanced way.

To illustrate how the switching delays affect the computed
scheduling, the results of Fig. 4 are analysed. On the top, the
optimal solution of the case study when the model of Eq. 10

8



/ Future Generation Computer Systems 00 (2024) 1–10 9

0

500000

1000000

1500000

2000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t1 t2 t3 t4 t5 t6 t7

tM

M

tM

M

(a) (b)

0

500000

1000000

1500000

2000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

j=

Figure 3: Scheduling of tasks with/without priority, in red/green colours, when the model of Eq. 8 executed on the D-Wave platform has the value A = 0 (Fig. (a));
and A = 4 (Fig. (b)).

without any switching delay on PUs is shown, that is ∆ = 0.
Every PU attends different kinds of tasks represented in dif-
ferent colours, and the make-span is optimized since it corre-
sponds to the validated cases described at the beginning of this
subsection. However, when the switching delay is considered
this solution is not optimal, as illustrated in the pairs of figures
4 (b)-(c) and 4 (d)-(e). These figures represent the times spent
by every PU on every task and also the switching time is plot-
ted in brown colour. Every switching introduces a delay in the
activity of the PUs, even to start the computation of the first
attended task. So, all PUs include a delay even without switch-
ing of tasks, and in general as more switching more delay. In
this regard, it is necessary to emphasize that not all task-type
switches can be appreciated in the graphs of Fig. 4. Since the
time for a new task type may be so short that it falls below the
accuracy of the graph scale. Fig. 4 (b) and (d) plot the task exe-
cution time and the switching delay for the optimal scheduling
of Fig. 4 (a) obtained with the simplest model without switch-
ing delays. In Fig. 4 (b) and (d) every task switch introduces
a delay of 30% and 40% of the runtime without delay, respec-
tively. The time to complete the whole set of tasks is more than
2600000 and 3000000 units of time respectively for mentioned
delays. Fig. 4 (c) and (e) show the computed task scheduling
with the model of Eq. 10 for switching delays of 30% and 40%
respectively. In this case, as expected, the number of switching
of scheduled tasks decreases as the switching delay increases.
Moreover, the time to complete the whole set of tasks is reduced
to 2200000 and 2400000 units of time respectively. So, the use
of the proposed model that considers the switching delay allows
reducing the make-span in percentages of 18% and 25% respec-
tively. Therefore, the model of Eq. 10 allows the makespan to
be reduced when task-switching delays are appreciable.

6. Conclusions

The scheduling of heterogeneous tasks on unrelated parallel
machines has been solved using quantum annealing. The pro-
posed solution has been centred on the scheduling of unrelated
parallel machines, where a classification of tasks is defined ac-
cording to their processing time on the available processing el-
ements. These processing times are different and known in ad-
vance. Two relevant aspects of the scheduling have been intro-
duced: the existence of some degree of priority in the type of
task, and the introduction of a delay every time a processing
unit changes the type of task that executes. The three versions
of the problem have been defined as QUBO models and de-
veloped with the programming tools supplied with the D-Wave
quantum annealer. To reduce the number of required qubits,
the number of repetitions of every type of task is coded with bi-
nary variables. This way, large-scale scheduling problems can
be addressed with real quantum annealers. The results obtained
have been compared with classical methods such as CPLEX
and AMPL to show the effectivity of the quantum algorithm.
A case study has been analysed to illustrate how the schedul-
ing solutions with priorities and switching delays computed on
quantum annealer achieve the goals of the problem in each case.
It should be noted that the methodology used in this work can be
applied to other combinatorial optimization problems and the
results obtained show the great potential of quantum annealers
to solve this kind of optimization problem.

Acknowledgements

This work has been supported by the projects: PID2021-
123278OB-I00 and PID2021-127836NB-I00 (funded by MCIN
/AEI/10.13039/501 100011033/FEDER “A way to make Eu-
rope”); P20 00748 and UAL2020-TIC-A2101 (funded by Junta
de Andalucı́a and the European Regional Development Fund,
ERDF).

9



/ Future Generation Computer Systems 00 (2024) 1–10 10

Authors would also like to thank Professor Dr. Elı́as F.
Combarro, from the Informatics Department of the University
of Oviedo, Spain, because this work has been possible thanks
to the contents of his interesting lectures about Quantum Com-
puting at Almerı́a University.

References

[1] G. Kochenberger, J.-K. Hao, F. Glover, M. Lewis, Z. Lü, H. Wang,
Y. Wang, The unconstrained binary quadratic programming problem: A
survey, J. Comb. Optim. 28 (1) (2014) 58–81.

[2] A. Lucas, Ising formulations of many np problems, Frontiers in physics
(2014) 5.

[3] E. Combaro, S. González-Castillo, A Practical Guide to Quantum Ma-
chine Learning and Quantum Optimization: Hands-on Approach to Mod-
ern Quantum Algorithms, Packt Publishing, 2023.

[4] E. K. Grant, T. S. Humble, Adiabatic quantum computing and quantum
annealing (07 2020).

[5] J. Gehrke, K. Jansen, S. Kraft, J. Schikowski, A PTAS for scheduling
unrelated machines of few different types, in: SOFSEM 2016: Theory
and Practice of Computer Science, Springer, 2016, pp. 45–55.

[6] V. Sels, J. Coelho, A. Dias, M. Vanhoucke, Hybrid tabu search and a
truncated branch-and-bound for the unrelated parallel machine schedul-
ing problem, Comput Oper Res 53 (2015) 107–117.

[7] T. Wang, Z. Liu, Y. Chen, Y. Xu, X. Dai, Load balancing task scheduling
based on genetic algorithm in cloud computing, in: Proceedings of the
2014 IEEE 12th International Conference on Dependable, Autonomic and
Secure Computing. DASC ’14, IEEE Computer Society, 2014, pp. 146–
152.

[8] M. Lewis, B. Alidaee, G. Kochenberger, Using XQx to model and solve
the uncapacitated task allocation problem, Oper. Res. Lett. 33 (2) (2005)
176–182.

[9] C. Carugno, M. Ferrari Dacrema, P. Cremonesi, Evaluating the job shop
scheduling problem on a D-wave quantum annealer, scientific reports
(2022) 1–11.

[10] F. Orts, A. Puertas, G. Ortega, E. Garzón, Quantum annealing to solve the
unrelated parallel machine scheduling problem, in: PPAM 2022. Lecture
Notes in Computer Science, Springer, 2023.

[11] P. L. M. Naeimeh Mohseni, T. Byrnes, Ising machines as hardware solvers
of combinatorial optimization problems, Nature Reviews Physics.

[12] F. Glover, G. Kochenberger, R. Hennig, Y. Du, Quantum bridge analytics
i: a tutorial on formulating and using qubo models, Annals of Operations
Research (2022) 1–43.

[13] F. Orts, G. Ortega, A. M. Puertas, E. M. Garzón, I. Garcı́a, On solving the
unrelated parallel machine scheduling problem: active microrheology as
a case study, The Journal of Supercomputing 76 (2020) 8494–8509.

[14] R. Fourer, D. M. Gay, B. W. Kernighan, AMPL. A modeling language for
mathematical programming, Thomson, 2003.

[15] C. Bliek1ú, P. Bonami, A. Lodi, Solving mixed-integer quadratic pro-
gramming problems with IBM-CPLEX: a progress report, in: Proceed-
ings of the twenty-sixth RAMP symposium, 2014, pp. 16–17.

[16] A. S. Koshikawa, M. Ohzeki, T. Kadowaki, K. Tanaka, Benchmark test of
black-box optimization using D-Wave quantum annealer, Journal of the
Physical Society of Japan 90 (6) (2021) 064001.

[17] F. Phillipson, H. S. Bhatia, Portfolio optimisation using the D-Wave quan-
tum annealer, in: International Conference on Computational Science,
Springer, 2021, pp. 45–59.

[18] D. Willsch, M. Willsch, C. D. Gonzalez Calaza, F. Jin, H. De Raedt,
M. Svensson, K. Michielsen, Benchmarking advantage and D-Wave
2000Q quantum annealers with exact cover problems, Quantum Infor-
mation Processing 21 (4) (2022) 1–22.

[19] W.-Y. Ku, J. C. Beck, Mixed integer programming models for job shop
scheduling: A computational analysis, Computers & Operations Research
73 (2016) 165–173.

[20] Ocean SDK demos.
URL https://github.com/dwavesystems/demos

10



/ Future Generation Computer Systems 00 (2024) 1–10 11

tM

M M

M

M

M

(b) Planning (a), but adding a 30% 
delay for each task change.

(a) Optimal scheduling with no delay

0

500000

1000000

1500000

2000000

2500000

3000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

tM

tM

tM

tM

0

500000

1000000

1500000

2000000

2500000

3000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

500000

1000000

1500000

2000000

2500000

3000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

500000

1000000

1500000

2000000

2500000

3000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t1 t2 t3 t4 t5 t6 t7 Delay

0

500000

1000000

1500000

2000000

2500000

3000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(c) Planning obtained by considering 
in beforehand a delay of 30% for 

each change of tasks.

(d) Planning (a), but adding a 40% 
delay for each task change.

(e) Planning obtained by 
considering in beforehand a delay 
of 40% for each change of tasks.

j=

Figure 4: (a) Computed Scheduling with the model of Eq. 10 with switching delay null; (b) and (d) plot the optimal scheduling of (a) including the switching delays
of tasks of 30% and 40% of runtime for every switching respectively; (c) and (e) Computed Scheduling with the model of Eq. 10 with switching delay of 30% and
40% of runtime for every switching respectively

11


