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Abstract
Current quantum computers have a limited number of resources and are heavily 
affected by internal and external noise. Therefore, small, noise-tolerant circuits are 
of great interest. With regard to circuit size, it is especially important to reduce the 
number of required qubits. Concerning to fault-tolerance, circuits entirely built with 
Clifford+T gates allow the use of error correction codes. However, the T-gate has 
an excessive cost, so circuits with a high number of T-gates should be avoided. This 
work focuses on optimising in such terms an operation that is widely used in larger 
circuits and algorithms: the calculation of the absolute-value of two’s complement 
encoded integers. The proposed circuit halves the number of required T gates with 
respect to the best circuit currently available in the literature. Moreover, our circuit 
requires at least 2 qubits less than the other circuits for such an operation.

Keywords Reversible gate · Quantum circuit · T-count · Absolute-value · Quantum 
computing

1 Introduction

Quantum computing [1] is a new computational paradigm that explicitly uses quan-
tum phenomena such as superposition, interference and entanglement to achieve 
speed-ups over what is possible with classical computers in certain tasks. For 
instance, the famous algorithm for integer factorization introduced by Peter Shor [2] 
is exponentially faster than the best classical algorithm for the same task that we 
have at our disposal. Another provable speed-up is the one provided by Grover’s 
algorithm for black-box search problems [3], achieving a quadratic speed-up over 
any algorithm that only uses classical resources.
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There are several realizations of quantum computing, but the most popular one — 
and the one currently implemented in most quantum computers — is the quantum cir-
cuit model [1]. This model is analogous to the (classical) digital circuit model, but it 
uses quantum bits (or qubits) instead of bits, quantum gates (or unitary transformations) 
instead of digital gates and, in addition, it needs explicit measurements to obtain results.

Quantum algorithms, including Shor’s factoring method and Grover’s search algo-
rithm, usually depend on circuits that implement arithmetical primitives such as modu-
lar addition, multiplication and exponentiation, or, for instance, sign and absolute value 
computations in two’s complement [4]. In principle, these operations can be directly 
adapted from their classical counterparts with linear overhead, but reducing the size 
and depth of quantum circuits is extremely important to mitigate the effects of noise 
and imperfect gate realization.

For these reason, a very active line of research in the quantum computing field [5–8] 
is devoted to producing quantum circuits for arithmetical primitives that optimize some 
important metrics [9–11] such as number of gates, T-count, number of two-qubit gates, 
ancillary qubits and garbage outputs.

In this paper, we follow this line of research in the particular case of the absolute 
value computation for integer numbers in two’s complement representation. Comput-
ing the absolute value of such numbers is an essential operation in quantum algorithms 
with applications in fields as diverse as audio signal processing, protein structure pre-
diction, or stock market indicators [12–14]. In terms of relevance, the calculation of 
the absolute value can account for from 10% of these algorithms to more than 30% , as 
in the case of quantum audio signal inversion, addition, or delay operations [12]. The 
availability of efficient circuits for the absolute value computation, as well as for the 
rest of the operations involved in these algorithms, will increase their overall efficiency.

In this work, two fundamental objectives are pursued. The first is to achieve a 
circuit built exclusively from Clifford+T gates to achieve a fault-tolerant implemen-
tation. As a second objective, a cost-effective implementation is sought to reduce 
costs compared to currently available circuits. Combining these two objectives is not 
trivial, as will be explained in the next section. However, the obtained results will 
show that the proposed circuit manages to achieve both objectives.

The rest of the paper is organized as follows. Section 2 introduces the basic con-
cepts about quantum circuits, gates, and metrics necessary for the understanding of 
this work, as well as the methodology used for its development. Section 3 presents 
the proposed circuit in detail, indicating all the necessary steps for its reconstruction. 
Section 4 presents the obtained results, as well as a comparison between the pro-
posed circuit and the most relevant circuits available in the state-of-the-art. Finally, 
the last section presents the conclusions.

2  Background

2.1  Quantum circuits, gates, and metrics

Quantum circuits are built using qubits and quantum gates that modify the state of 
the qubits. In classical circuits, there are only two logic gates that allow working 



1 3

Efficient design of a quantum absolute‑value circuit using…

on a bit: the NOT gate and the identity gate [15]. At the two-digit level, there are 
not many more gates available. However, there are infinite quantum gates that allow 
working on one qubit (and therefore also infinite possibilities for cases with two or 
more qubits) [16]. Fortunately, there are sets of quantum gates that allow to approxi-
mate the infinite possible quantum gates. One of these groups, but not the only one, 
is the so-called Clifford+T group. The Clifford group, generated by the H, S, and 
CNOT gates, has a wide variety of applications thanks to its feature of being able to 
convert any Pauli operation into another Pauli operation. Nevertheless, it is not uni-
versal on its own, but it needs the T gate to form the Clifford+T group and, become 
a universal set [1, 16].

One of the goals of this work is to get a circuit implemented exclusively using 
Clifford+T gates. However, being a universal group is not the only reason for its 
choice. Current quantum computers are very sensitive to internal and external noise. 
It has been shown that building circuits using only Clifford+T gates will make such 
circuits fault-tolerant thanks to the use of error correcting codes [17, 18]. Never-
theless, there is an associated problem. The cost of the T gate is much higher than 
that of the Clifford gates, up to 100 times higher. The T-gate is so expensive that 
a current trend in the quantum circuit literature is to measure the cost of quantum 
circuits in terms of the T-gate. This metric - the number of T-gates in a circuit - is 
called T-count. In this work, we have focused not only on building the circuit using 
Clifford+T gates, but also on reducing the T-count to make the circuit as efficient as 
possible.

The proposed circuit will be built using only four gates: the CNOT gate, the Tof-
foli gate, the Temporary logical-AND gate, and the uncomputation gate of the Tem-
porary logical-AND operation. Of this list of gates, only the CNOT gate is a direct 
member of the Clifford+T group. However, since the Clifford+T group is universal, 
the remaining gates can be approximated using only gates from this group. The most 
efficient implementation of the Toffoli gate in terms of T-count is the one proposed 
by Amy et al. [19] (Fig. 1a). It has a T-count of 7. However, the Temporary logical-
AND gate, proposed by Gidney [11], has a T-count of only 4 (Fig. 1b). The Tempo-
rary logical-AND gate is similar to the Toffoli gate, but with a disadvantage: it can 
only act on a target qubit prepared in the state ( 1√

2

(�0⟩ + e
i�

4 �1⟩) . In other words, the 

Toffoli gate can be applied on any qubit, while the Temporary logical-AND gate can 
only be applied on a pre-prepared auxiliary qubit. Another important difference 
between the two gates is that to reverse a Toffoli operation, another Toffoli gate must 
be applied, thus doubling the T-count. Nevertheless, the uncomputation gate of the 
Temporary logical-AND gate can be used at no extra cost in terms of T-count thanks 
to the “measure and fixup” approach shown in Fig. 1c [11].

2.2  State‑of‑the‑art in quantum circuit design for arithmetic operations

The importance of quantum circuits that implement arithmetic operations is 
due to the need for these operations in larger circuits and quantum algorithms 
of proven efficiency. An example already mentioned is Shor’s algorithm, which 



 F. Orts et al.

1 3

requires adders for its implementation. It is precisely because of this algorithm 
that addition is the arithmetic operation that receives more interest from the sci-
entific community [20]. As a consequence, there are a huge amount of adders 
for quantum computing published in the literature [5, 20, 21]. In general, such 
adders can be classified into two main types: ripple-carry adders, and carry-ahead 
adders. The former are characterized by requiring fewer resources than the latter, 
while the latter are faster at the cost of requiring more resources. Carry-ahead 
adders use these extra resources to calculate the carry bits before the sum, thus 
reducing the total time of the operation. For instance, in the case of adding two 
N bit numbers, such an adder will calculate the n-th carry (with n < N ) before 
the partial n − 1-th sum finishes. Therefore, carries can be added to these par-
tial sums without waiting for the previous partial sum to finish. Apart from their 
methodology, the designs are usually focused on optimizing one or more met-
rics: the quantum cost, the T-count, etc. Likewise, there are designs focused on 
achieving implementations that meet certain circumstantial conditions, such as 
only Clifford+T type gates are used in their construction [5, 21].

Although addition is the operation that receives most interest from the research 
community, the rest of the arithmetic operations are also necessary for various quan-
tum algorithms. In the case of multiplication, there are several different works in 
the literature that have progressively optimized resources in terms of quantum gates, 
noise tolerance, or delay cost [22–27]. In the case of division, there are currently 
also several published works that, as with multiplication, have progressively opti-
mized the use of the scarce resources currently available for quantum computers 
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Fig. 1  Symbol and implementation of (a) the Toffoli gate proposed by Amy et  al. [19], (b) the Tem-
porary logical-AND gate proposed by Gidney [11], and (c) the uncomputation gate of the Temporary 
logical-AND gate
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[6, 28–32]. The need for these two operations is justified by the fact that they are 
involved in quantum algorithms focused on maximization of objective functions, 
quantum image processing, or the evaluation of transcendental functions [33–35].

Subtraction is also represented in the literature [36–38]. However, it is often 
performed using adders and two’s complement representation (as in classical digi-
tal electronics) [20]. Given the aforementioned high interest that adders receive in 
quantum computing, which implies a high availability of this type of circuits, it is 
not surprising that the second option (using adders and two’s complement represen-
tation to perform the subtraction) is the most widespread one [20]. Closely related 
to the latter are circuits called converters, which allow converting a signed binary 
number into two’s complement. This operation can be performed using adders or 
subtractors. However, using a circuit specifically designed for this operation reduces 
costs and improves speed and noise tolerance [39–41].

Regarding the operation that is the focus of this paper, the computation of the 
absolute-value of a number, there are no circuits available in the literature at the 
time of writing or at least the authors have not been able to find any. The absolute-
value is involved, as already mentioned, in existing quantum circuits and algorithms. 
However, in such works, conditional adders and certain extra operations are used 
to perform the computation of the absolute value. This methodology is explained 
in detail in the next subsection. In this work, a circuit specifically dedicated to this 
operation is proposed to make it more efficient compared to how it is currently per-
formed in the mentioned works.

2.3  Methodology to compute the absolute‑value of a number

The absolute-value of a two’s complement number can be obtained by reversing its 
sign or leaving it as it is if the number is negative or positive, respectively. This pro-
cess is called taking the two’s complement, and it is widely used in classical digital 
design [42]. This process begins by identifying the sign of the number, contained 
in its most-significant digit. If this digit is 0, the number is positive. Otherwise, the 
number is negative. It can be observed in Table 1 that the absolute value of a num-
ber is equal to the number itself in the case of positive numbers. Then, no operations 
are necessary if the number is positive. However, actions are required in the case 
of negative numbers. For such cases, all digits of the number must be inverted, and 
number 1 must be added to the value obtained after the inversions. For instance, 
Table 1 shows that the value −5 is represented as 1011. By inverting its digits, the 
value 0100 is obtained. Adding 0100 + 1 produces the result 0101, which corre-
sponds to the value 5, the absolute value of −5.

It is also possible to obtain the absolute value of negative numbers represented 
in two’s complement using a simple trick. This trick consists of going through the 
digits of the number starting from the least-significant one, that is, from right to left. 
Once the first 1 is found, the successive digits (following the direction of displace-
ment to the left) must be inverted, leaving the first 1 and the 0 to its right (if any) 
invariant. Following the previous example, the absolute-value of 1011 ( −5 ) will be 
obtained by finding the least significant digit at 1, which in this case coincides with 
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the least significant digit of the number. Next, the digits to the left of that digit are 
inverted, obtaining the value 0101. Despite being a valuable trick for people, this 
second methodology is not used in digital electronics because it involves a greater 
number of operations to separate the subset of bits to be inverted from the bits that 
must remain invariant. [42, 43]. Therefore we have focused on using the first meth-
odology, which involves inverting all the digits using the sign of the number itself, 
as well as performing an addition. The first operation can be easily performed using 
CNOT gates, while the second can be computed using adder circuits, which are the 
most abundant arithmetic circuits in quantum computing [5, 20, 21].

3  Proposed implementation

In this section we present our proposed quantum absolute-value circuit. The circuit 
has no garbage outputs, and it involves less qubits and T gates than the circuits in the 
state-of-the-art. The circuit computes the absolute-value of a integer number B rep-
resented using two’s complement. The digits of B are stored in a register of qubits 
�BN−1⟩...�B1

⟩�B
0
⟩ , being N the number of digits of B. Extra qubits are involved in 

the operation. At the end of the circuit, the qubits that initially contain B will con-
tain ∣ B ∣ with the exception of the one that contains the sign ( BN−1 , it maintains its 
value). The extra qubits, initialized to the specific states that will be detailed in this 
section, are unchanged after the computation of the circuit.

Table 1  All possible two’s 
complement number using 4 
digits

Decimal values are shown for the sake of clarity

Original number Absolute-value

Two’s comple-
ment

Decimal Two’s comple-
ment

Decimal

0000 0 0000 0
0001 1 0001 1
0010 2 0010 2
0011 3 0011 3
0100 4 0100 4
0101 5 0101 5
0110 6 0110 6
0111 7 0111 7
1000 −8 1000 8
1001 −7 0111 7
1010 −6 0110 6
1011 −5 0101 5
1100 −4 0100 4
1101 −3 0011 3
1110 −2 0010 2
1111 −1 0001 1
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The proposed circuit is based on the methodology of the conditional adder pre-
sented by Coreas and Thapliyal [26]. Figure 2 shows an example of the conditional 
adder. The circuit of Coreas and Thapliyal performs the addition of two numbers A 
and B if the control qubit (Ctrl in Fig. 2) is set to 1. Otherwise, the circuit just returns 
the original numbers A and B. This conditional adder, with some minor changes, can 
be used to compute the absolute-value of a number. It has been explained that the 
absolute-value of a number B can be obtained keeping B unchanged if it is positive, 
or flipping its digits and adding 1 to it otherwise. If the digit that contains the sign of 
B is used as control qubit, that is, Ctrl = BN−1 , and A is set to 1, the circuit will com-
pute the addition B + 1 if B < 0 . However, B is required to previously flip its digits 
if it is negative. Such flips can be performed using N − 1 CNOT gates, setting BN−1 
as the control qubit and Bi(0 ≤ i < N − 1) as the target ones. The adaptation of the 
conditional adder to perform the absolute-value of a number B is shown in Fig. 3, 
for the N = 7 case.

The circuit shown in Fig. 3 is fully functional. However, it is possible to subject it 
to several optimizations and to obtain a more efficient circuit in terms of operations, 
T-count, and required number of qubits. In the circuit shown in Fig.  3, there are 
several qubits with constant values (those that contain A = 1 ). Some operations can 
be simplified as the qubits that contain values Aj (∀j > 0) are set to 0. At the begin-
ning of the conditional addition, there are N − 2 CNOT gates performing the opera-
tions 0⊕ Bi (0 < i < N − 1) , being 0 the control qubit and Bi the target one. The 
result of such operations will be always Bi , so these CNOT gates can be removed. 
Those qubits, the ones that contains the 0 values acting as control qubits, also per-
form the operations Ai ⊕ Ai+1 (0 < i < N − 2) . These operations are now irrelevant, 
so the N − 3 involved CNOT gates can be removed. All these CNOT operations are 
uncomputed at the end of the circuit, so the CNOT gates dedicated to the uncom-
putation can also be removed from the circuit. Then, a total of 4N − 10 CNOT 
gates can be saved. On the other hand, several extra simplifications can be applied 
since A

0
 is always 1. This qubit only acts as a target qubit in two Toffoli gates. Such 
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Fig. 2  Conditional adder proposed by Muñoz-Coreas and Thapliyal [26]. If Ctrl = 1 , the circuit performs 
the addition between two integer numbers A and B (in this example, A has 8 digits and B 6 digits). Oth-
erwise, it returns A and B without any changes. Therefore, qubits labelled as S will contain B if Ctrl = 0 , 
and the addition of A and B if Ctrl = 1
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Toffoli gates can be replaced by two CNOT gates. Moreover, the qubit A
0
 is no 

longer needed. Taking into account all the simplifications listed above, the result-
ing circuit reduces the number of Toffoli gates by 2, the number of CNOT gates by 
4N − 8 , and requires one less qubit. An example of this circuit, for the N = 7 case, is 
shown in Fig. 4.

Minor changes can be applied over the circuit shown in Fig. 4. The first ancilla 
qubit is always initialized to 0 ( A

1
= 0 ). This qubit acts as a target qubit of the 

operation B
0
⊕ 0 . After the operation, the target qubit will contain B

0
 , and the 

qubit will be used as one of the control qubits in a Toffoli operation. This qubit is 
not involved in other gate until the uncomputation of the mentioned operations. 
The operation B

0
⊕ 0 (that it, the CNOT gate) can be removed, and the qubit that 

initially contains B
0
 can be used in the Toffoli gate as control qubit. Therefore, the 
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Fig. 3  First version of the proposed absolute-value circuit, for the N = 7 case. It is basically the condi-
tional adder of Coreas and Thapliyal [26] (Fig. 3), setting A = 1 and being B the number whose absolute-
value is to be obtained. The most-significant digit of B, which contains its sign, will be the control qubit 
that decides if the addition is computed. Previously to the conditional addition, the digits of B should be 
flipped if the number is negative. This can be easily performed using the control qubit and N − 1 CNOT 
gates. In short, the circuit does nothing if B is positive ( B

6
= 0 ), and inverts the digits of B and adds 1 

to it if B is negative. Here, S will contain the absolute-value of B. We keep the notation of the original 
circuit for the sake of clarity
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Fig. 4  Second version of the proposed absolute-value circuit, for the N = 7 case. Since the least signifi-
cant digit of A is always 1, several operations can be simplified. The qubit that contains 1 ( A

0
 in the 

original circuit) can also be removed
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ancilla qubit is not necessary, with an extra save of two CNOT gates. An exam-
ple of the resulting circuit, for the N = 7 case, is shown in Fig. 5. For the sake of 
clarity, this figure (and the previous ones) shows the gaps left by the gates and 
qubits that have been removed. A cleaner, more compact version of the circuit is 
shown in Fig. 6.

In the circuit of Fig. 6, there are N − 2 Toffoli gates simulating a (N − 1)-qubit 
Toffoli gate. Later, the same number of Toffoli gates are applied to uncompute 
the previous ones. Such gates acts over target qubits initialized to 0 (the uncom-
putation gates revert them into 0). These Toffoli gates can be replaced by Tempo-
rary logical-AND gates (and their corresponding uncomputation gates) without 
increasing the number of necessary qubits but halving the T-count of the circuit. 
That is, N − 2 Toffoli gates are replaced by N − 2 Temporary logical-AND gates, 
and N − 2 Toffoli gates are replaced by N − 2 uncomputation gates of the Tem-
porary logical-AND operation. These changes reduces the T-count from 14N − 28 
into 4N − 8 . On the other hand, the first Toffoli gate of the circuit performs the 
operation CtrlAN−3 ⊕ AN−2 in the original circuit, which is the equivalent to com-
pute now BN−10⊕ 0 . Then, this Toffoli gate can be removed, saving a T-count of 
7. As a consequence, the Toffoli gate that computes the most significant digit of 
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Fig. 5  Example, for the N = 7 case, of the third version of the proposed absolute-value circuit. The qubit 
A
1
 is always 0, so again several operations can be simplified and the qubit removed
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Fig. 6  Well-organised design of the third version for numbers of 7 digits. This circuit is the same circuit 
as the one shown in Fig. 5, but cleaning up the gaps and spaces between qubits and gates
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the absolute-value now has a target qubit that is initialized to 0. Therefore, this 
Toffoli gate can be replaced by a Temporary logical-AND (saving a T-count of 
3). The remaining Toffoli gates cannot be replaced as they act over qubits that 
contain dependent values. An example of the final circuit, for the N = 7 case, is 
shown in Fig. 7.

The described evolution can be summarised as follows:

• Original version (Fig. 2): the circuit proposed by Muñoz-Coreas and Thapliyal.
• Version 1 (Fig. 3): the original version, simply making A = 1 and being B the 

two’s complement number whose absolute value is to be calculated. It is neces-
sary to extract the most significant digit from this number, which contains the 
sign, and to use it as a control qubit of the addition (Ctrl).

• Version 2 (Fig.  4): to eliminate qubit A
0
 , knowing that it is always set to �1⟩ . 

It only acts as a control qubit in some Toffoli gates, so these Toffoli gates can 
become CNOT gates dependent on the other control qubit.

• Version 3 (Fig. 5 and  6): to remove qubit A
1
 knowing that it is always set to �0⟩ . 

This qubit acts as the target qubit of a CNOT gate, and then acts as the control 
qubit in a Toffoli gate. The control qubit of the CNOT gate replaces A

1
 as the 

control qubit in the Toffoli gate.
• Version 4 (Fig. 7): Qubits initialized to �0⟩ are replaced by qubits initialized in 

the state ( 1√
2

(�0⟩ + e
i�

4 �1⟩) . Toffoli gates that had an auxiliary qubit in state �0⟩ as 
a target qubit are replaced by temporary logical-AND gates. Toffoli gates that 
reverted to the replaced Toffoli gates are in turn replaced by uncomputation gates 
of the temporary logical-AND gate.

3.1  Steps of design methodology

1. To prepare N qubits to represent B.
2. To prepare N − 1 ancilla qubits in the state 1√

2

(�0⟩ + e
i�

4 �1⟩).
3. For i = 0 to N − 2 , a CNOT gate is applied to perform the operation BN−1 ⊕ Bi . 

This operation flips the digits of B only if B < 0.
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Fig. 7  Final version of the proposed circuits, for the N = 7 case. Several Toffoli gates have been replaced 
by Temporary logical-AND operations, halving the cost of the circuit shown in Fig. 6
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4. A Temporary logical-AND is applied to perform the operation B
0
B
1
 . The result 

of the operation is temporarily stored in an ancilla qubit a
0
.

5. For i = 2 to N − 2 , a temporary logical-AND is applied to perform the operation 
ai−2Bi . The result of the operation is temporarily stored in an ancilla qubit ai−1.

6. A Temporary logical-AND gate is used to compute BN−1aN−3 . The result is saved 
in an ancilla qubit aN−2 , and it is the most significant digit of the absolute-value 
(excluding the sign, which is always assumed to be positive).

7. For i = N − 2 to 2, an uncomputation gate of the Temporary logical-AND opera-
tion is applied to uncompute the operation ai−2Bi , that is, to uncompute ai−1 . Then, 
a Toffoli gate must be applied to compute ai−2BN−1 ⊕ Bi . The target qubit will 
contain the i-digit of the absolute-value.

8. An uncomputation gate of the Temporary logical-AND operation is applied to 
revert the product B

0
B
1
 (that is, a

0
 ). Then, a Toffoli gate computing B

6
B
0
⊕ B

1
 , 

and a CNOT gate performing B
6
⊕ B

0
 , are applied to compute the least-significant 

digits of the result.

4  Results

The number of necessary gates to build the proposed circuit can be easily checked 
by going through the steps described in Sect. 3.1:

• No gates are needed in steps 1 and 2.
• Step 3 involves N − 1 CNOT gates.
• Step 4 needs one Temporary logical-AND gate.
• Step 5 computes N − 3 Temporary logical-AND gates.
• Step 6 involves one Temporary logical-AND gate.
• Step 7 computes N − 3 uncomputation gates of the Temporary logical-AND 

gate. N − 3 Toffoli gates are also applied.
• Step 8 involves one uncomputation gate of the Temporary logical-AND opera-

tion. A Toffoli gate and a CNOT gate are also applied.

Overall, the proposed circuit needs N CNOT gates, N − 2 Toffoli gates, N − 1 Tem-
porary logical-AND gates, and N − 2 uncomputation gates of the Temporary logi-
cal-AND operation. The original circuit, the conditional-adder of Muñoz-Coreas and 
Thapliyal [26], involves 5N − 11 CNOT gates, and 3N − 1 Toffoli gates (extra costs 
are added to compute the absolute-value operation using this circuit, as it is shown 
in Fig. 3). The proposed circuit reduces the number of CNOT gates in 4N − 11 with 
respect to the original circuit, and the number of Toffoli gates in 2N + 1 . The saved 
Toffoli gates are replaced by N − 1 extra Temporary logical-AND gates, and N − 2 
uncomputation gates (of the Temporary logical-AND gate). This will have a very 
positive impact on the T-count, as explained below.

The T-count of the proposed circuit can be obtained from the number of Tof-
foli and Temporary logical-AND gates it involves. The remaining gates (CNOT 
and uncomputation gates) do not contain any T gates. Therefore, the circuit has a 
T-count of 11N − 18 . On the other hand, it is trivially obtained through steps 1 and 
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2 of Sect. 3.1 that the circuit involves 2N − 1 qubits. Table 2 shows a comparison 
in terms of T-count and number of qubits between the proposed circuit and the best 
conditional-adders (acting as absolute-value circuits) in the literature. Since there 
are no specific circuits in the literature for the absolute value of two’s comple-
ment integers, the comparison only includes such conditional-adders. Our proposal 
halves the T-count with respect the best circuit in the state-of-the-art: from 21N − 7 
to 11N − 18 . Given the high cost of the T gate, this reduction represents a signifi-
cant saving. In terms of qubits, our proposal also manages to reduce their number. 
It needs two fewer qubits than the circuit of Muñoz-Coreas and Thapliyal [26], four 
fewer qubits than the circuits of Markov and Saeedi [44] and Jayashree et al [45], 
and half as many qubits as circuit of Lin et al. [46].

5  Conclusions

We have presented a circuit to perform the absolute-value of signed integer numbers 
(in two’s complement representation) of any size in quantum computers. The pro-
posed circuit is optimized in terms of number of operations, T-count, and number of 
qubits. The circuit is based in the methodology of a conditional-adder. Its design has 
been described in detail, showing each necessary step, quantum gate, and qubit. It 
has been built using exclusively Clifford+T gates.

Finally, a comparison has been made in terms of T-count and number of qubits 
between the proposed circuit and the most important circuits available in the lit-
erature. In this comparison, it can be seen that our circuit improves on the others 
in terms of number of qubits and, what is more, halves the T-count with respect to 
these circuits.
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Table 2  Comparison, in terms 
of T-count and number of 
qubits, between the proposed 
circuit and the best designs in 
the literature

Such designs are conditional adders adapted for the computation of 
the absolute value. This adaptation implies extra costs in terms of 
operations that, however, do not affect either the T-count or the num-
ber of qubits

Circuit T-count Number of qubits

Lin et al. [46] 56N 4N + 2

Jayashree et al. [45] 28N + 7 2N + 3

Markov and Saeedi [44] 28N + 7 2N + 3

Muñoz-Coreas and Thapliyal [26] 21N − 7 2N + 1

Proposed circuit 11N − 18 2N − 1
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