Manuscript

Click here to download Manuscript template.tex

Click here to view linked References

O J oy Ul W

OO OO OO UT OOl U U1 Ul OO OOl B DD DAEDSEDNMNWWWWWWWWWWNDNDNDNDNDNDNDNNDNNNNNRERERERRRRRRERE
G WN P OWO-JOHUDd WNEFEFOWOWJIHUDdWNREFEFOWOJOUPd WNEFEOWOJIOU P> WNDE OWOOWWTJOo U WwNE O

Noname manuscript No.
(will be inserted by the editor)

Improving the Energy-Efficiency of SMACOF for
Multidimensional Scaling on Modern Architectures

F. Orts - E. Filatovas - G. Ortega -
O. Kurasova - E.M. Garzén

Received: date / Accepted: date

Abstract The reduction of the dimensionality is of great interest in the con-
text of big data processing. Multidimensional scaling methods (MDS) are tech-
niques for dimensionality reduction, where data from a high-dimensional space
are mapped into a lower-dimensional space. Such methods consume relevant
computational resources therefore intensive research has been developed to
accelerate them. In this work, two efficient parallel versions of the well-known
and precise SMACOF algorithm to solve MDS problems have been develo-
ped and evaluated on multicore and GPU. To help the user of SMACOF,
we provide these parallel versions and a complementary Python code based
on a heuristic approach to explore the optimal configuration of the parallel
SMACOF algorithm on the available platforms in terms of energy efficiency
(GFLOPs/watt). Three platforms, 64 and 12 CPU-cores and a GPU device,
have been considered for the experimental evaluation.

Keywords Dimensionality Reduction - Multidimensional Scaling - Energy
efficiency - SMACOF algorithm

This work has been partially supported by the Spanish Ministry of Science throughout
projects TIN2015-66680 and CAPAP-H5 network TIN2014-53522, by J. Andalucia through
projects P12-TIC-301 and P11-TIC7176, and by the European Regional Development Fund
(ERDF).

F. Orts, G. Ortega and E.M. Garzén

Group of Supercomputation-Algorithms, Dpt. of Informatics, Univ. of Almeria, ceiA3, 04120,
Almeria, Spain

E-mail: francisco.orts@ual.es, gloriaortega@ual.es, gmartin@Qual.es

E. Filatovas

Faculty of Fundamental Science, Vilnius Gediminas Technical University, Saulétekio avn.
11, L'T-10223 Vilnius, Lithuania

E-mail: ernest.filatov@gmail.com

O. Kurasova

Inst. of Data Science and Digital Technologies, Vilnius Univ., Akademijos str. 4, LT-08663,
Vilnius, Lithuania

E-mail: olga.kurasova@mii.vu.lt

*

O J oy Ul W

OO OO OO UT OOl U U1 Ul OO OOl B DD DAEDSEDNMNWWWWWWWWWWNDNDNDNDNDNDNDNNDNNNNNRERERERRRRRRERE
G WN P OWO-JOHUDd WNEFEFOWOWJIHUDdWNREFEFOWOJOUPd WNEFEOWOJIOU P> WNDE OWOOWWTJOo U WwNE O

2 F. Orts et al.

1 Introduction

Real-world data, such as speech signals, images, biomedical, financial, tele-
communication and other data usually have a high dimensionality as each
data instance (point) is characterized by a set of features. The dimensionality
of such data, as well as the amount of data to be processed, is constantly in-
creasing therefore the requirement of processing these data within a reasonable
time frame still remains an open problem. Dimensionality reduction methods
which aim to map high dimensional data into a lower dimensional space play
extremely important role when exploring large datasets. Among such methods
Multidimensional Scaling (MDS) remains one of the most popular [5,9].

One of the dimensionality reduction applications is a graphical visualiza-
tion of the structure of the high-dimensional data in 2D or 3D space for easier
data understanding. Some applications in this line can be found in [13,18,22].
Moreover, MDS has proven to be useful as a technique to evaluate criteria
of objects classification [15] or discover criteria which initially had not been
taken into account [4], serving as a psychological model that allows to discover
human patterns [16].

A well-known algorithm for MDS is called SMACOF (Scaling by Majorizing
a COmplicated Function) [8]. The experimental investigation has demonstra-
ted that SMACOF is most accurate algorithm comparing to others [17]. It
should be noted that the SMACOF algorithm is the most expensive, as its
complexity is O(m?), where m is the number of observations. Several different
approaches have been developed to reduce computational complexity of the
MDS techniques. In [23], the complexity was reduced to O(m+/m) by develo-
ping iterative MDS spring model. In [32], authors reduced the complexity to
O(mlogm) by dividing the original matrix into sub-matrices and then combin-
ing the sub-solutions to obtain a final solution. The improved versions of MDS
reduce complexity insignificantly, however, optimization accuracy suffers [17].
Consequently, SMACOF version of MDS is usually chosen as it ensures the suf-
ficient accuracy that is essential in many dimensional cases. In short, the MDS
techniques remain in high time complexity order therefore parallel strategies
should be considered to accelerate the computation of the MDS procedure [24].

During the last decade the High Performance Computing (HPC) has
greatly improved and has been widely-applied for MDS techniques. In [29],
authors proposed a MDS parallel implementation and explored it under MPI
and other libraries. In [12], Fester et al. proposed a CUDA implementation of
MDS algorithm based on the high throughput multidimensional scaling (HiT-
MDS). In [28], authors suggested a new efficient parallel GPU algorithm for
MDS based on virtual particle dynamics [10] and experimentally compared it
with multicore CPU version. In [17], the multi-level MDS Glimmer algorithm
was developed for GPU by dividing the input data into hierarchical levels and
executing the algorithm recursively. It must be noted that currently Glimmer
is the most well-known and widely-used GPU tool for MDS. Another CUDA-
based technique to get MDS approximation is CFMDS [27] that implements
both single-level and multi-level approaches. In [26], authors proposed a corre-

O J oy Ul W

OO OO OO UT OOl U U1 Ul OO OOl B DD DAEDSEDNMNWWWWWWWWWWNDNDNDNDNDNDNDNNDNNNNNRERERERRRRRRERE
G WN P OWO-JOHUDd WNEFEFOWOWJIHUDdWNREFEFOWOJOUPd WNEFEOWOJIOU P> WNDE OWOOWWTJOo U WwNE O

Improving the Energy-Efficiency of SMACOF for MDS on Modern Architectures 3

lation clustering framework which uses MDS for layout and GPU-acceleration
to speedup visual feedback. In [25], GPU version of MDS was developed to
improve content-based image retrieval (CBIR) systems. Summarizing, the re-
search on this HPC field is being carried out actively, it remains relevant as
the new GPU architecture and heterogeneous platforms constantly appear,
and should be effectively exploited for solving dimensionality reduction pro-
blems of different complexities.

Currently, the target of HPC includes the optimization of energy consump-
tion. The ratio of the computational speed to the electrical power (GFLOP-
s/watt) is usually defined as a parameter that is a suitable indicator of the
energy efficiency [19]. The increase of this parameter means that the system
achieves better performance (GFLOPs) with less electrical power (watts) and,
as consequence, less energy is consumed. Therefore, for the optimal parallel
executions of SMACOF, the ratio should be maximized.

In this paper, parallel versions of the SMACOF algorithm on multicore
and GPU are developed and evaluated on prototypes of modern architectures.
As the parallel SMACOF algorithm can be executed on different alternative
platforms, the kind of platform and its resources that optimize the runtime
and/or energy efficiency need to be to determined. Bearing in mind that the
parallel performance depends on the problem sizes, the users of parallel SMA-
COF need support to configure it. For this purpose, a benchmarking process
to find the optimal solutions has been developed. It is based on a heuristic
approach which combines two concepts: the analysis of the first iterations of
SMACOF representative computation and functional models of performance
and power consumption of homogeneous parallel platforms. The benchmarking
process has been evaluated using different platforms (multicore and GPU) and
various sizes of the problem. Moreover, the energy efficiency of SMACOF has
been experimentally evaluated on two different multicore platforms and a GPU
device.

The paper is organized as follows. In Section 2, the descriptions of the Mul-
tidimensional Scaling and the SMACOPF algorithm are provided. Section 3 de-
scribes the proposed multicore and GPU parallel implementations of the SMA-
COF algorithm. In Section 4, the algorithm for tuning the energy efficiency
of SMACOF is presented. Experimental evaluations of the parallel implemen-
tations on three platforms are discussed in Section 5. Finally, conclusions are
drawn in Section 6.

2 SMACOF algorithm for MDS

Multidimensional Scaling is a technique for the analysis of similarity or dissimi-
larity data on a set of objects (items). It aims at finding points Y7, Y5, ..., Y, =
Y in the low-dimensional space R®, s < n, such that the distances between
them are as close as possible to the distances between the original points
X1,Xs,...,X,;, = X in the space R". This is achieved by minimizing the

O J oy Ul W

OO OO OO UT OOl U U1 Ul OO OOl B DD DAEDSEDNMNWWWWWWWWWWNDNDNDNDNDNDNDNNDNNNNNRERERERRRRRRERE
G WN P OWO-JOHUDd WNEFEFOWOWJIHUDdWNREFEFOWOJOUPd WNEFEOWOJIOU P> WNDE OWOOWWTJOo U WwNE O

4 F. Orts et al.

Algorithm 1 SMACOF(m, s, A, kmax, €, Y)

Require:
m: number of items;
s: dimension of low-dimensional space;
A: m X m matrix of dissimilarities of observed data on the high-dimensional space (n);
kmaz: maximum number of iterations;
e: threshold for the stress variance

Ensure:

Y': set of finding points in the low-dimensional space stored in a m X s matrix

: Initial Solution randomly generated, Y°

Compute Euclidean distances, D = [d(Y?, Y].O)] > O(m?2s)

k=0, error=1

if (k < kmaxz) and (error > ¢) then
Compute Guttman transform matrix, B¥ = B*(A, DF—1) (Alg. 2) > O(m?)
Compute Guttman transform, Y* = 1/m - BF . yk—1 > O(m?s)
Update distances D* = [d(Y}",Y})] > O(m?s)
Compute EIIt/IDS (Eq. 1)
error = |E§/JDS — Eﬁ[Dls
k=k+1

: return Y

—
2w X NP OE Wy

[y

stress function:

Enps = Z (5ij - d(Yi,Yj))z (1)

i<j

Here d(-,-) (9) is the distance between two points in the low-dimensional space
(multi-dimensional space).

There are many strategies to solve MDS problems [9]. We focus our atten-
tion on the well-known SMACOF algorithm which is based on a particular
minimization process of the stress function [8]. The theoretical background of
SMACOF is simpler and more powerful than other approaches from convex
analysis, because it guarantees monotone convergence of stress [5]. SMACOF
has demonstrated better results when optimizing stress function comparing to
other proposals in the literature [17]. The main idea is based on the majorizing
concept which consists in approximating a complex function by another one
simpler. This method iteratively finds a new function, which is located above
the original function and touches at the supporting point. At every iteration
of the algorithm, the minimum of the new function is closer of the minimum
of the complex function, in our case the stress function [5]. SMACOF can be
expressed by Alg. 1 in which the complexity order of the most relevant tasks
appeared between parenthesis.

Algorithm 1 has a high computational cost and high memory requirements
due to the large data structures involved: input matrix A (m x m), output and
auxiliary matrices (m X s) and three auxiliary matrices (m x m) to store the
similarities among the objects of the low-dimensional space. The symmetry
has not been exploited in the storage of the data structures, however, it has
been considered for the above-mentioned matrices update. Bearing in mind
this fact, the number of floating point operations of Alg. 1 is: 35/2m? +3s/2m

O J oy Ul W

O OYOYO OYOY Ul U1l U1 O U1 U1 U1 O U1 U DD DD DDDNDDWWWWWWwWwwwwNhNdNNDNDNNNdDNMdMNNNNRERRRRRRERERRE
GO WNRPFPOWOJOHUId WNEFEFOWW-JOOUDd WNEFEFOWOW-JOUDd WNREOWOWJIOUdWNREOWOO®JoUu dWwNDE O

Improving the Energy-Efficiency of SMACOF for MDS on Modern Architectures 5

Algorithm 2 Two pseudocodes to compute B* (line 5 of Alg 1): On the left,
the approach from Eq. 8.24 of [5]; on the right, the two nested loops are
collapsed in only one to later obtain a balanced parallel execution of Guttman
transform matrix.

Require: Require:
m: number of items; m: number of items;
A: [0;5], mxm matrix of dissimilarities; A: [0;5], m xm matrix of dissimilarities;
D: [d;;], Euclidean distances matrix D: [d;;], Euclidean distances matrix
Ensure: Ensure:
B: [bi;], Guttman transform matrix B: [bj;], Guttman transform matrix
1: for i =0;¢ < m;i+ 4+ do 1: for l=0;1< (m-(m+1)/2);l+ + do
2 forj=i+1;5<m;j++do 2 i=[l/(m+1)],j=1%(m+1)
3: if d;; # 0 then 3: if 7 > i then
4: bij = —0i5/dij 4: i=m—i1—1,j=m—7
5: else 5: if d;; # 0 then
6: bij =0 6: bij = _5ij/dij
7: for i = 0;4 < m;i+ + do 7 else
8: bii = — Z;’L:Lj?gi bij 8: bij =0
9: return B 9: bji = bij
10: for i = 0;¢ < m;i+ + do
11: bii = — Zﬁ17j¢i bij
12: return B

for the initialization (line 2 of Alg. 1) and (7/2s + 3/2)m? + 1/2(3s + 1)m for
the iterative process.

3 Parallel implementations of the SMACOF algorithm

The SMACOF computational cost is O(s - m?) and memory requirements are
O(m?). This feature has limited for years the applicability of SMACOF to
solve large MDS problems. The use of HPC techniques helps to overcome this
drawback. In this work, we propose two parallel versions based on the exploita-
tion of large-scale modern multicore and GPU architectures. This section is
devoted to describing these parallel implementations.

Both implementations are focused on the parallel execution of the compu-
tation of the Euclidean distances matrices (lines 2 and 7 of Alg. 1) and the
Guttman transform (lines 5 and 6 of Alg. 1). Parallel procedures are high-
lighted in bold in Alg. 1. To calculate the outputs of these procedures, we
have taken into account that we are working with symmetric matrices (B*,
D* and A). For example, to compute the symmetric matrix B* (which defines
Guttman transform) is only necessary to calculate a triangular sub-matrix
of L = (m - (m+1)/2) elements. Thus, B* can be managed as a unidimen-
sional vector of L elements which can be updated in parallel. To distribute
this computation among the processing elements, the left part of Alg. 2 has
been transformed into the right one. This way, two nested loops are collapsed
into a regular loop to compute the triangular matrix of L elements. It can be

O J oy Ul W

O OYOYO OYOY Ul U1l U1 O U1 U1 U1 O U1 U DD DD DDDNDDWWWWWWwWwwwwNhNdNNDNDNNNdDNMdMNNNNRERRRRRRERERRE
GO WNRPFPOWOJOHUId WNEFEFOWW-JOOUDd WNEFEFOWOW-JOUDd WNREOWOWJIOUdWNREOWOO®JoUu dWwNDE O

6 F. Orts et al.

easily parallelized with maintaining the load balance. This idea has also been
applied to the parallel computation of DF.

The multicore version has been implemented using C, OpenMP [6] and
MKL library [3]. The parallel computations of B¥ and D* consider the sym-
metry of these matrices. Therefore, Alg. 2 on the right is taken as reference
for the parallel computation of B¥. The [-loop of such algorithm is distributed
among the cores and when it has finished a synchronization point is included
to ensure that the non-diagonal elements of B* are computed before starting
the parallel i-loop. Moreover, the MKL library (concretely the cblas-dgemm
routine) is in charge of computing in parallel the matrix-matrix product linked
to the Guttman transform (line 6 of the Alg. 1).

In the GPU version, three kernels have been coded using C and CUDA to
compute in parallel D (lines 2 and 7 of Alg. 1) and B* (line 5 of Alg. 1).
The Euclidean distances require one kernel, and the Guttman transform re-
quires two, as it is explained below. To compute the distances matrix, every
thread updates two symmetric elements of D¥ matrix. Moreover, shuffle in-
structions have been used for the reductions involved in the computation of
DF elements. These instructions, available from Kepler NVIDIA architecture,
essentially allow threads in the same warp to share information. They can im-
prove the reduction processes [2]. In our experiments, shuffle instructions have
demonstrated to improve the performance compared to the reductions based
on shared memory. We have observed that the advantage of shuffle instruc-
tions versus the shared memory version increases with s. Specifically, we have
evaluated the performance for sizes of problem from m = 10000 to m = 40000
with s = 64 and the shuffle version has obtained the same or better perfor-
mance (up 30%) than shared memory version in the computation of D* matrix
(lines 2 and 7 of Alg. 1).

The CUDA version of Alg. 2 to compute B* on GPU consists of two kernels.
In the first kernel, each thread starts by calculating a non-diagonal element of
BF. Next, its symmetric element is copied without requiring any synchroniza-
tion. When this kernel finishes, the second one computes the diagonal elements
from the non-diagonal ones. For Y*, cublasDgemm routine from the cuBLAS
library [1] has been used to accelerate matrix-matrix product on GPU (line 6
of Alg. 1).

4 Tuning the Energy Efficiency of the SMACOF algorithm

In this work, two parallel implementations have been developed to accelerate
the SMACOF algorithm. When solving real-world problems, it is reasonable to
run the most energy efficient parallel SMACOF version on a particular subset
of resources of available computational platforms.

The idea consists in an initial benchmarking that identifies, for every avail-
able platform, the optimal selection of resources for a size of problem of in-
terest. Then, the user can choose the optimal platform for the subsequent
execution of the SMACOF algorithm. According to the developed parallel

O J oy Ul W

OO OO OO UT OOl U U1 Ul OO OOl B DD DAEDSEDNMNWWWWWWWWWWNDNDNDNDNDNDNDNNDNNNNNRERERERRRRRRERE
G WN P OWO-JOHUDd WNEFEFOWOWJIHUDdWNREFEFOWOJOUPd WNEFEOWOJIOU P> WNDE OWOOWWTJOo U WwNE O

Improving the Energy-Efficiency of SMACOF for MDS on Modern Architectures 7

versions, multicore processors and GPUs are considered as target platforms in
this work.

The Energy-Efficiency (EE) is usually defined as the ratio of the computa-
tional speed to the electrical power, that is GFLOPs/watt [19]. Therefore, for
the optimal parallel executions of SMACOF, the ratio should be maximized.

The optimization of the EE of parallel applications on modern platforms
can be viewed as a problem of scheduling parallel machines with costs [30].
The parallel SMACOF versions can be executed on one of the alternative
platforms, for example the different multicore or GPUs architectures. Every
platform is denoted by F* € F, k =1,..., f where F is the set of f available
parallel platforms. Every platform F* consists in a set of parallel machines
MEFFE = {MFYE | where ¢ is the number of available machines of the
platform k. The correspondmg energy efficiency depends on the number of
machines involved in the computation and the particular input size.

Then, the solution of the scheduling problem corresponds to the subset of
platforms F*o C F with their optimal configurations defined by the machines
number 7y that optimizes EE (rk < ¢y,). We propose a heuristic approach for
solving this problem. It is based on a functional model of EE for modern plat-
forms (multicore and GPUs) and the definition of the significant computation
in the SMACOF algorithm.

The functional performance models were introduced by Lastovetsky [7,33].
The processor performance depends on the problem size and can be empirically
estimated by a benchmarking process. In this way, the modeling performance
depends on the combination of the architecture and the application. In similar
lines other authors have been focussed on the benchmarking and they have
proposed the concepts of application signature and Small-Scale Executions [11,
31]. If the parallel application is iterative, then a subset of iterations can define
the significant portion of the application and can be used in the benchmarking
[20,21].

The models to estimate EE have to combine performance and power. Previ-
ous works have proposed functional models for the EE estimation on iterative
applications [14]. If it is focused on a particular execution of the application
with F' floating point operations on one homogeneous platform k, and it is
assumed a perfect load balance among 7 actives machines, then the following
model of EE as function of rj is reasonable:

F _ F
TP re) - (TR 4 TCk (i) (Ply, + rip¥ ()

EE(ry) = (2)

where T%(r)) and P*(r),) are the runtime and power consumption on rj ma-
chines respectively, 7C"(ry) represents the runtime penalties due to the con-
tention among the actives machines on the k platform, PF, represents the
idle power consumption when no process is actively using any machine and
p¥(ry,) is the contribution to the power of every machine.

According to this model 7%(ry), one minimum for a number of active
machines is obtained since 7C"(ry,) is an increasing function and P¥(r;) is

O J oy Ul W

OO OO OO UT OOl U U1 Ul OO OOl B DD DAEDSEDNMNWWWWWWWWWWNDNDNDNDNDNDNDNNDNNNNNRERERERRRRRRERE
G WN P OWO-JOHUDd WNEFEFOWOWJIHUDdWNREFEFOWOJOUPd WNEFEOWOJIOU P> WNDE OWOOWWTJOo U WwNE O

8 F. Orts et al.

also an increasing function for rj. Therefore, EE(r)) achieves a maximum for
7y machines.

Then, from the point of view of the SMACOF usage, to optimize EE, it
should be identified 77 on the set of available platforms for the sizes prob-
lem and choose the platform k, which optimizes EE, i.e. achieves EE(ry).
Modern computers provide two different platforms, multicore processors and
GPUs and the number of kinds of platforms can increase if clusters of het-
erogeneous nodes with several kinds of multicore and GPUs platforms are
available. We have defined a heuristic to decide what is the best platform
to run their particular instances of the parallel SMACOF. Our proposal is
organized in two stages, first the identification of the optimal configuration
of every platform and second the selection of optimal platforms and config-
urations. Previous considerations about the EE model help us to define an
efficient benchmarking exploration to find the optimal configurations on ev-
ery platform. Therefore, selective search described in Algorithm 3 can be used
to find the optimal platforms and their configurations in the benchmarking
process.

As above mentioned, the benchmarking is usually based on the execution
of a significant core of the application. SMACOF consists in an iterative pro-
cedure to compute the Guttman transforms. The computational cost of every
iteration is the same, therefore a subset of iterations can be considered as the
SMACOF significant core to compute the profiling in a efficient way. SMA-
COF can be configured using the information provided by this preprocess
based on exploration of several resources selection on particular combinations
of platforms and data sizes.

5 Experimental Evaluation

In this section, the SMACOF algorithm to solve MDS problems is evaluated in
terms of runtime and energy efficiency on three computational architectures:

F1 : Bullion S8: 4 Intel Xeon E7 8860v3 (16 x 4 CPU-cores);

Fy : Bullx R421-E4 Intel Xeon E5 2620v2 (12 CPU-cores and 64 GB RAM);

F3 : NVIDIA K80 (composed by two Kepler GK210 GPUs) connected to the
host Bullx R421-E4 Intel Xeon E5 2620v2.

F1, Fo and F3 run Ubuntu 16.04 LTS and F3 runs CUDA Toolkit 8. The
programs have been compiled using gcc 5.4.0 and nvee 8.0.44 with optimization
flags O3 for GPU architecture 3.5. For the acquisition of energy measurement
data, we have collected this information from various hardware counters. For
Intel, we have used the Running Average Power Limit (RAPL) interface and,
for NVIDIA, the NVIDIA Management Library (NVML).

For the evaluation of SMACOF, test problems of different sizes defined by
values of m, n and s have been considered (see Table 1). For this experimen-
tal investigation, randomly generated input data were used. The number of
evaluated iterations of the SMACOF algorithm has been 100.

O J oy Ul W

O OYOYO OYOY Ul U1l U1 O U1 U1 U1 O U1 U DD DD DDDNDDWWWWWWwWwwwwNhNdNNDNDNNNdDNMdMNNNNRERRRRRRERERRE
GO WNRPFPOWOJOHUId WNEFEFOWW-JOOUDd WNEFEFOWOW-JOUDd WNREOWOWJIOUdWNREOWOO®JoUu dWwNDE O

Improving the Energy-Efficiency of SMACOF for MDS on Modern Architectures 9

Algorithm 3 Heuristic for computing the set of optimal platforms {k,}, with
their configurations {7 }, which optimize the EE of the SMACOF

Require:

F = {fk}£:1 with FF = {MF}7F > Set of platforms
Parallel versions of SMACOF (m, s, A, kmaz, €, Y) to execute on the f available plat-
forms;
m (items), s (output dimensions); > Particular data size
sampling.

Ensure:

{ko, rzo} optimize the EE on the f available platforms
1: Evaluate the number of FLOAT operations of SMACOF(m, s, A, kmaz, ¢, Y)

2: for k< 1 to f do

3: Execute Parallel SMACOF (m, s, A, kmaz, €, Y) on ry = ¢, machines and evaluate
its EE denoted by £€F

4: for i < ¢ — sampling to sampling do

5: . Execute Parallel SMACOF (m, s, A, kmax, €, Y) on ri = ¢ machines and evaluate
88 ux

6: if ££4ur < £€F then

7 ry =i+ sampling

8: Break i-loop

9: else

10: ek = ggAue

11: Select the platforms {ko} with their optimal configurations {r7 } which maximize EE
12: return {ko, 7} }

Table 1 Test problems using several number of items (m), dimensions of multi-dimensional
space (n), and dimensions of low-dimensional space (s).

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11
m 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000
100 200 300 400 500 600 700 800 900 1000 1100
s 2 3 4 5 6 7 8 9 10 11 12

3

Table 2 Runtime, power and energy efficiency of the set of test problems (Table 1) on F3
(GPU) platform.

F3 T1 T2 T3 T4 T5 T6 7 T8 T9 710 T11

Time (s) 2.8 4.9 5.1 5.9 6.5 11.0 18.8 28.7 423 64.9 91.5
Power (Watts) 38.7 98.6 105.2 108.0 112.6 113.6 112.8 110.1 112.3 111.5 110.3
EE (GFLOPs/ 13.8 24.7 75.1 150.0 255.1 257.2 240.7 241.7 228.7 205.9 196.6
Watt)

Figure 1 shows, the runtime, power and energy efficiency of the set of
test problems on F; and Fp (multicore) platforms and Table 2 shows similar
parameters on F3 (GPU) platform with the same test cases. Execution times of
the multicore versions (plotted on the top of Fig. 1) are according with runtime
models described in Section 4. The runtime decreases with the values of 7
and 7y, therefore the best performance is achieved for the maximum number
of cores. The experimental power measurements are plotted in the middle
of Fig. 1. It is remarkable that the temporal evolution of the power partially
depends on unpredictable factors for programmers. To overcome this drawback
it has been necessary to collect the measurements after an activity period on

O J oy Ul W

O OYOYO OYOY Ul U1l U1 O U1 U1 U1 O U1 U DD DD DDDNDDWWWWWWwWwwwwNhNdNNDNDNNNdDNMdMNNNNRERRRRRRERERRE
GO WNRPFPOWOJOHUId WNEFEFOWW-JOOUDd WNEFEFOWOW-JOUDd WNREOWOWJIOUdWNREOWOO®JoUu dWwNDE O

10 F. Orts et al.

Fig. 1 Runtime (top), power (middle) and energy efficiency (bottom) of the set of test
problems (Table 1) on Fi and F» platforms.

Fi Fa
800 800
~T1 -T2 -T3 ~-T4 ~T5 ~T6
=600 5600
p ~T7 ~T8 -T9 ~T10~Ti1l -
£ 400
€
& 200
o —
1 8 15 22 29 36 43 50 57 64 1 2 3 4 5 6 7 8 9 10 11 12
I I

500
- 450
400
=350
5 300
2250
o 200

150

1 8 15 22 29 36 43 50 57 64 12 3 4 5 6 7 8 9 10 11 12
r r

5 Fa
200

[
0 O
o O

PN
S o

N
o

EE (GFLOPs/ Watt)
EE (GFLOPs/ Watt)
5
o

o

1 8 15 22 29 36 43 50 57 64 12 3 4 5 6 7 8 9 1011 12

the processor to minimize their variance due to changes in the temperature.
This instability can be observed in the power plot for both platforms, but we
can conclude that power consumption trend increases as the number of cores
and the size of the problem.

Focusing our attention on the energy efficiency (plotted on the bottom
of Fig. 1) it increases as the number of cores. The highest values of 1 and
ro optimize the energy efficiency for the plateau in the plot. Therefore, the
optimal value of 7 in both platforms is in a wide interval, for instance 32-64
(10-12) for Fy (F2).

To choose the optimal platform, we could compare the three platforms
in terms of performance. This way, the best option for T'11 is Fj, since the
execution times are 46.6s, 96.2s and 91.5s on F; with r{ = 64 , F» with r§ = 12
and F3 respectively. This selection is the same for all test cases. If we focus
on the energy efficiency, the best option is the GPU when the problem size is
enough high since it consumes less power than F; and achieves a reasonable
performance. Then, to optimize the energy efficiency, the best option is the
use of the GPU platform for the test cases T4 — T11. For instance for T11,
the energy efficiencies on the different platforms are 85.5, 176.1 and 196.6

O J oy Ul W

OO OO OO UT OOl U U1 Ul OO OOl B DD DAEDSEDNMNWWWWWWWWWWNDNDNDNDNDNDNDNNDNNNNNRERERERRRRRRERE
G WN P OWO-JOHUDd WNEFEFOWOWJIHUDdWNREFEFOWOJOUPd WNEFEOWOJIOU P> WNDE OWOOWWTJOo U WwNE O

Improving the Energy-Efficiency of SMACOF for MDS on Modern Architectures 11

Table 3 Sampling of EE for T'11 test according to the benchmarking proposed in Alg. 3
for multicore platforms F; and Fa.

Fi1 Fa
r1 64 61 ro 12 9
EE (GFLOPs/Watt) 85.5 85.0 EE (GFLOPs/Watt) 176.1 155.8

GFLOPs/watt for Fy, F5 and F3, respectively. The best platform for 71 —T'3
is the multicore F5 which consumes less power than Fj.

These results support the benchmarking process explained in Section 4 to
explore in an automatic way the selection of the optimal parallel platform
and its best resource selection. This procedure has been developed in Python.
We have chosen sampling = 3 to obtain relevant differences between succes-
sive experimental evaluations on both platforms. The results support the idea
of starting the benchmarking process by the highest numbers of CPU-cores
available on every platform to find the optimal r} is efficient. To illustrate the
behaviour of the benchmarking (Alg. 3) for multicore platforms, we focus on
the T'11 test. Table 3 shows the EE obtained when a set of ten iterations of
SMACOF are executed on platforms F; and F5. Only two samples for the
benchmarking exploration are required for 711 since r{ = 64 and r§ = 12 are
identified by the preprocess. So, we can conclude that the proposed benchmar-

king can execute an efficient exploration to optimize the energy efficiency of
parallel SMACOF.

6 Conclusions

This work has analyzed an approach to optimize the energy efficiency
(GFLOPs/watt) of the SMACOF algorithm, a well-known and precise method
to solve MDS problems. Two parallel versions of SMACOF, multicore and
GPU, have been developed and evaluated. To help the user of SMACOF para-
llel codes, we provide these versions and a complementary Python code based
on a heuristic approach to explore the optimum configuration of the available
platforms.

An experimental evaluation has been carried out on three platforms based
on architectures with 64CPU-cores, 12CPU-cores and a GPU device. The re-
sults show 64-cores processor is the best platform to optimize the runtime of
SMACOF; the 12-cores processor is the best option to improve the energy
efficiency for the smallest test problems and, for the largest test problems, the
optimal energy efficiency is achieved on the GPU.

In currently known parallel versions of SMACOF only the runtime
is considered, and neither the energy consumption nor adaptive capabil-
ity to the platform and problem-size are optimized. Therefore, our SMA-
COF implementation is of great interest for developing energy efficiency
aware applications based on MDS problems. Our implemented versions of
the SMACOF algorithm are freely available through the following website:

O J oy Ul W

OO OO OO UT OOl U U1 Ul OO OOl B DD DAEDSEDNMNWWWWWWWWWWNDNDNDNDNDNDNDNNDNNNNNRERERERRRRRRERE
G WN P OWO-JOHUDd WNEFEFOWOWJIHUDdWNREFEFOWOJOUPd WNEFEOWOJIOU P> WNDE OWOOWWTJOo U WwNE O

12

F. Orts et al.

https://github.com/2forts/SMACOF. As future work, we consider to imple-
ment a distributed parallel version of SMACOF and to analyze and develop
other methods for solving MDS problems.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. cuBLAS library (2017). URL http://docs.nvidia.com/cuda/cublas/index.html
. CUDA Pro Tip: Do The Kepler Shuffle (2017). URL https://devblogs.nvidia.com/

parallelforall/cuda-pro-tip-kepler-shuffle/

. Intel Math Kernel Library (Documentation) (2017). URL https://software.intel.

com/en-us/mkl/documentation

. Bilsky, W., Borg, 1., Wetzels, P.. Assessing conflict tactics in close relationships: A

reanlysis of a research instrument. Facet theory: Analysis and design p. 3946 (1994)

. Borg, I., Groenen, P.J.: Modern multidimensional scaling: Theory and applications.

Springer Science & Business Media (2005)

. Chapman, B., Jost, G., Pas, R.v.d.: Using OpenMP: Portable Shared Memory Parallel

Programming (Scientific and Engineering Computation). The MIT Press (2007)

. Clarke, D., Ilic, A., Lastovetsky, A., Rychkov, V., Sousa, L., Zhong, Z.: Design and

Optimization of Scientific Applications for Highly Heterogeneous and Hierarchical HPC
Platforms Using Functional Computation Performance Models, pp. 235-260. John Wiley
& Sons, Inc. (2014)

. De Leeuw, J.: Applications of convex analysis to multidimensional scaling. Recent

Developments in Statistics pp. 133-145 (1977)

. Dzemyda, G., Kurasova, O., Zilinskas, J.: Multidimensional Data Visualization: Meth-

ods and Applications, vol. 75. Springer Science & Business Media (2013)

Dzwinel, W., Blasiak, J.: Method of particles in visual clustering of multi-dimensional
and large data sets. Future Generation Computer Systems 15(3), 365-379 (1999)
Escobar, R., Boppana, R.V.: Performance prediction of parallel applications based on
small-scale executions. In: 2016 IEEE 23rd HiPC, pp. 362-371 (2016)

Fester, T., Schreiber, F., Strickert, M.: CUDA-based Multi-core Implementation of
MDS-based Bioinformatics Algorithms”. In: I. Grosse, S. Neumann, S. Posch,
F. Schreiber, P.F. Stadler (eds.) GCB, LNI, vol. 157, pp. 67-79. GI (2009)

Filatovas, E., Podkopaev, D., Kurasova, O.: A visualization technique for accessing so-
lution pool in interactive methods of multiobjective optimization. International Journal
of Computers Communications and Control 10, 508-519 (2015)

Garzén, E.M., Moreno, J.J., Martinez, J.A.: An approach to optimise the energy ef-
ficiency of iterative computation on integrated GPU-CPU systems. The Journal of
Supercomputing 73(1), 114-125 (2017)

Goldberger, J., Gordon, S., Greenspan, H.: An efficient image similarity measure based
on approximations of kl-divergence between two gaussian mixtures. In: ICCV, pp. 487—
493. IEEE Computer Society (2003)

Hout, M.C., Goldinger, S.D., Brady, K.J.: MM-MDS: A Multidimensional scaling
database with similarity ratings for 240 object categories from the massive memory
picture database. PLOS ONE 9(11), 1-11 (2014)

Ingram, S., Munzner, T.; Olano, M.: Glimmer: Multilevel MDS on the GPU. IEEE
Trans. Vis. Comput. Graph. 15(2), 249-261 (2009)

Kurasova, O., Petkus, T., Filatovas, E.: Visualization of pareto front points when solving
multi-objective optimization problems. Information Technology And Control 42(4),
353-361 (2013)

Leng, J., et al.: GPUWattch: Enabling Energy Optimizations in GPGPUs. SIGARCH
Comput. Archit. News 41(3), 487-498 (2013)

Martinez, J.A., Almeida, F., Garzén, E.M., Acosta, A., Blanco, V.: Adaptive load bal-
ancing of iterative computation on heterogeneous nondedicated systems. The Journal
of Supercomputing 58(3), 385-393 (2011). DOI 10.1007/s11227-011-0595-3

Martinez, J.A., Garzon, E.M., Plaza, A., Garcia, I.: Automatic tuning of iterative com-
putation on heterogeneous multiprocessors with ADITHE. The Journal of Supercom-
puting 58(2), 151-159 (2011)

O J oy Ul W

OO OO OO UT OOl U U1 Ul OO OOl B DD DAEDSEDNMNWWWWWWWWWWNDNDNDNDNDNDNDNNDNNNNNRERERERRRRRRERE
G WN P OWO-JOHUDd WNEFEFOWOWJIHUDdWNREFEFOWOJOUPd WNEFEOWOJIOU P> WNDE OWOOWWTJOo U WwNE O

Improving the Energy-Efficiency of SMACOF for MDS on Modern Architectures 13

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Medvedev, V., Kurasova, O., Bernataviciené, J., Treigys, P., Marcinkevicius, V., Dze-
myda, G.: A new web-based solution for modelling data mining processes. Simulation
Modelling Practice and Theory 76, 34-46 (2017)

Morrison, A., Ross, G., Chalmers, M.: Fast multidimensional scaling through sampling,
springs and interpolation. Information Visualization 2(1), 68-77 (2003)

Orts, F., Filatovas, E., Ortega, G., Kurasova, O., Garzén, E.M.: HPC Tool for Multi-
dimensional Scaling. In: Proceedings of the 17th International Conference on Compu-
tational and Mathematical Methods in Science and Engineering, vol. 5, pp. 1611-1614.
J. Vigo-Aguiar (2017)

Osipyan, H., Morton, A., Marchand-Maillet, S.: Fast interactive information retrieval
with sampling-based MDS on GPU architectures. In: Information Retrieval Facility
Conference, pp. 96-107. Springer (2014)

Papenhausen, E., Wang, B., Ha, S., Zelenyuk, A., Imre, D., Mueller, K.: GPU-
accelerated incremental correlation clustering of large data with visual feedback. In:
Proceedings of the 2013 TEEE International Conference on Big Data, 6-9 October 2013,
Santa Clara, CA, USA, pp. 63-70 (2013)

Park, S., Shin, S.Y., Hwang, K.B.: CFMDS: CUDA-based fast multidimensional scaling
for genome-scale data. BMC Bioinformatics 13(17), S23 (2012)

Pawliczek, P., Dzwinel, W., Yuen, D.A.: Visual exploration of data by using multidi-
mensional scaling on multicore CPU, GPU, and MPI cluster. Concurr Comput 26(3),
662-682 (2014)

Qiu, J., Bae, S.H.: Performance of windows multicore systems on threading and mpi.
Concurrency and Computation: Practice and Experience 24(1), 14-28 (2012)

Shmoys, D.B., Tardos, E.: An approximation algorithm for the generalized assignment
problem. Math. Program. 62(3), 461-474 (1993)

Wong, A., Rexachs, D., Luque, E.: Parallel application signature for performance anal-
ysis and prediction. IEEE Transactions on Parallel and Distributed Systems 26(7),
2009-2019 (2015)

Yang, T., Liu, J., McMillan, L., Wang, W.: A fast approximation to multidimensional
scaling. In: IEEE workshop on Computation Intensive Methods for Computer Vision
(2006)

Zhong, 7., Rychkov, V., Lastovetsky, A.: Data partitioning on multicore and Multi-
GPU platforms using functional performance models. IEEE Transactions on Computers
64(9), 2506-2518 (2014)

