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Abstract Nowadays, one of the critical issues to implement quantum algo-
rithms is the required number of elementary gates, qubits and delay. Current
quantum computers and simulators are mainly prototypes and there is a lack
of computational resources. Therefore, it is necessary to optimize the quan-
tum operations to reduce the necessary number of gates and qubits. This work
presents a novel reversible circuit which is able to convert signed binary num-
bers to two’s complement of N digits in a quantum environment. The depth
of the circuit is O(log N). It is based on the fastest out-of-place carry look-
ahead addition quantum circuit currently available. This addition circuit has
been adapted to make the conversion using the minimum number of gates and
qubits, being faster than other adder circuits. A robust metric has been used
to measure the quantum cost, delay, ancilla inputs and garbage outputs of the
proposed converter. Moreover, it has been compared with others described in
the literature.

Keywords Quantum Computation · Quantum circuit · Reversible circuit ·
Two’s complement · Sign-magnitude representation to two’s complement
converter

1 Introduction

Quantum computers are based on reversible gates as they must satisfy the
principles of quantum mechanics, for example, the reversibility [26]. There is a
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wide variety of literature about building circuits in quantum computers using
reversible gates, especially circuits related to arithmetic operations. For ins-
tance, there is a special interest in getting faster arithmetic reversible gates to
be used as a module in Shor’s algorithm. There are optimized gates to com-
pute addition [6,36], subtraction [25,28,35], multiplication [4,8] and division
[11,27].

However, the optimization of arithmetic gates is not the only way to im-
prove these circuits. Sometimes, it can be done with new high-level approaches,
like using different formats to represent the information. For example, the two’s
complement is the way how classic computers represent integers to simplify the
hardware for additions and subtractions [1]. In terms of quantum computers,
adder circuits are faster than subtractor ones [35,36]. Focusing our attention
on the two’s complement, subtractions can be computed as additions.

In this work, a circuit to convert from signed binary numbers to two’s com-
plement is presented. The design of a two’s complement quantum converter
can be based on quantum gates or quantum adders that compute a + 1. Our
proposal is based on the most optimized state-of-the-art adder circuits for
quantum computers since they improve the converter circuits based on quan-
tum gates in terms of delay. The conversion from a signed binary number, a,
to two’s complement can be computed as a + 1 [13]. It can be done negating
each digit of a and using an adder to compute a+1. The best quantum adders
in terms of cost and depth are proposed in [6,36]. They are considered as the
start point to design a specific adder to compute a+ 1.

The rest of the work is presented as follows: Section 2 details popular
metrics to evaluate a quantum circuit. Section 3 describes the state-of-the-
art converter circuits. Section 4 presents the proposed circuit, and Section 5
compares the proposed circuit with respect to the state-of-the-art converter
circuits described in Section 3. Finally, Section 6 summarizes the conclusions.

2 Measures in a quantum circuit

The metric described in [22] has been adopted in this work. This metric defines
four important factors to measure a circuit in terms of efficiency:

– Number of ancilla inputs: constant inputs used to perform auxiliary ope-
rations.

– Garbage outputs: outputs which cannot be used at the end of the circuit
since it is impossible to know their values. Unless these garbage outputs
were reversibly removed (uncomputed), such outputs (qubits) may not be
be used later, which would result in a waste of resources. So, if they were
entangled with inputs of other circuits, they would produce uncertain re-
sults [26].

– Delay: the logical depth of the circuit. It is an important parameter which
is related to the efficiency of the circuit [35]. In [22], 4 is defined as the
delay unit.

– Quantum cost: number of gates.
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It is necessary to underline that not all gates have a similar size. For ins-
tance, it is unfair to consider the Pauli-X gate [41] and the Toffoli gate [38] are
similar in terms of quantum cost or delay, as the Toffoli gate involves 5 2×2
gates (2 Controlled-V gates, 1 Controlled-V + gate [9] and 2 controlled-NOT
(CNOT) gates) [26] and Pauli-X gate is one 1×1 gate. So, [22] sets the delay
according to the size of the gates. This metric has also been considered in this
work. Authors in [22] set the delay of 1×1 and 2×2 gates to 14, and the delay
of an N×N gate is calculated as its depth when it is built using 1×1 and 2×2
gates. Moreover, the quantum cost of a circuit depends on its number of gates
with delay 14. For instance, as Toffoli gate has 5 2×2 gates, it has a quantum
cost of 5 and a delay of 54 (as no operations can be done simultaneously).

It is relevant to underline that different physical realizations have been ex-
plored to develop quantum circuits. At those levels of abstraction, the evalua-
tion metrics can also focus on other parameters. For instance, in linear optics,
there is a special interest in optimizing the number of controlled-unitary gates
since the CNOT gate can only be probabilistically implemented. There are
several works focused on optimizing the number of needed CNOT gates to
implement the Toffoli gate as it is one of the most used. In [14], authors intro-
duced a new implementation of the Toffoli gate using only two CNOT gates
and one generalized controlled-PHASE gate. Another version of the Toffoli
gate was presented in [15], with an optimized controlled-PHASE gate. This
last version has only three two-qubits gates. It is the best option in terms of
the number of two-qubits gates.

For the sake of clarity, the symbols of the used gates are shown in Figs. 1, 2,
3 and 4. According to [22], the Pauli-X and the CNOT gates have a quantum
cost of 1 and a delay of 14. As it was mentioned in the previous paragraph,
according to [22] the Toffoli gate has a quantum cost of 5 (three two-qubits
gates according to [15]) and a delay of 54. The Peres gate is built with two
Controlled-V + gates, a Controlled-V gate, and a CNOT gate. Therefore, it
has a quantum cost of 4 and a delay of 44.

A Ā

Fig. 1 Symbol of the Pauli-X gate.

B A    B

A A

Fig. 2 Symbol of the CNOT gate.

C AB    C

B B

A A

Fig. 3 Symbol of the Toffoli gate.

B A    B

A A

C AB    C

Fig. 4 Symbol of the Peres gate.
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3 Methodology to design two’s complement converters

The two’s complement of an N -digit number is its complement with respect
to 2N . The range of numbers in a two’s complement system is −(2N−1) ≤
a ≤ (2N−1 − 1) [13]. For instance, Table 1 shows the conversion of a number
a from signed binary to two’s complement when N = 4. Converting a num-
ber a from signed binary to two’s complement is as follows. If a >= 0, no
conversion is necessary because both representations, signed binary and two’s
complement, of a are equal. However, if a < 0, the conversion is necessary. It
can be calculated as the inversion of all the digits of a and then to compute
a+ 1.

There are two approaches to convert signed binary numbers to two’s com-
plement of N digits in a quantum environment. One of them consists of de-
signing a specific circuit for such purpose and the another one is considering
available addition circuits for the conversion.

Signed binary number Two’s complement
0111 7
0110 6
0101 5
0100 4
0011 3
0010 2
0001 1
0000 0
1111 −1
1110 −2
1101 −3
1100 −4
1011 −5
1010 −6
1001 −7
1000 −8

Table 1 Signed and Two’s complement representation of binary numbers with N = 4.

There are several proposals in the literature which follow the approach
based on designing a specific circuit. In [30], authors mathematically propose
a new gate, called SSMT gate, to compute the conversion of a 4-digit number.
In [2], a quantum gate called TCG is proposed. In a similar way than the
previous SSMT gate, it performs the conversion of a 4-digit number (N = 4).
The TCG gate is also used (and optimized) in [3], and it achieves the best
quantum cost (25) for the case N = 4. However, it is not possible to join several
TCG gates to compute the two’s complement of any number with more than
4 digits. The reason is that the TCG gate does not handle either input or
output carries. Besides, it only computes the truth table for the 4-digit case.

Other approaches in the literature are based on using existing addition
circuits. This strategy is more widely used because this kind of circuits are
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more efficient in terms of delay than the specific converter circuits. As it has
been mentioned, the conversion can be computed as the inversion of all the
digits of a and then a+ 1, so it is only necessary to invert each digit of a with
N Pauli-X gates and then to use an existing addition circuit to compute a+1.
There are several papers about quantum addition circuits of two integers [5,6,
19,31–33], which is one of the most important basic operations. The two most
efficient addition circuits are [6,36], with a delay of O(log N).

The circuit proposed in this work is based on the circuit presented in [36].
However, instead of using this circuit in a direct way to compute a+ 1, it has
been adapted and improved to compute the conversion from signed numbers
to two’s complement. The details of the proposed circuit are presented in the
next section.

4 Proposed Two’s Complement Converter

As it has been mentioned in the previous section, the proposal circuit is an
adaptation of a reversible out-of-place carry look-ahead adder presented in [36].
The objective is to perform a + 1 (assuming that a is a negative number in
signed binary format). The mentioned adder performs the operation between
two numbers, so if we consider a and b = 1, it is only necessary to apply a
Pauli-X gate to each digit of a at the beginning and the conversion could be
done. However, taking into account that b is always 1, several improvements
can be done in order to reduce the original circuit.

The converter improves the delay performing gi and pi in parallel when
possible (being gi = aibi and pi = ai + bi, according to the notation given
by [17]) and removing or simplifying the operations related to b, since b = 1.
It uses N ancilla qubits (Zgi) to allocate the sum Si+1. It also needs extra
ancilla qubits (Zpi) to store propagated carry values, which are restored to 0
at the end of the circuit to avoid garbage outputs. Since b = 1, the qubits used
to represent b in [36] are deleted except the least significant one.

The first change to apply with respect to [36] is to include several Pauli-
X gates to transform a into a. The second change consists of removing the
first Toffoli gate (quantum cost 5 according to [26], three two-qubits gates
according to [15]) and replacing it with a CNOT gate (quantum cost 1). This
can be done as the Toffoli gate computes a0b0⊕Zg0, which is always a0⊕Zg0
if b0 = 1. Thirdly, the (N − 1) Peres gates (quantum cost 5) can be removed
from the circuit. The i-Peres gate computes ai ⊕ bi in its second qubit, which
is always ai if bi = 0. Also, the i-Peres gate computes aibi ⊕ Zgi in its third
qubit, which is always Zgi if bi = 0. The Peres gates have a quantum cost of
5, so this step reduces the quantum cost in 5 for each removed gate, that is,
5(N − 1). Moreover, [36] applies Toffoli gates at locations Zgi, bi and Zgi+1

for i = 2 to N/2. All these Toffoli gates except the first one can be removed
since, for the case b = 1, Zgi = 0 when i > 2. This reduces the quantum cost
in (N/2 − 1) × 5 and the delay in 54 (the remaining gates can be computed
in parallel).
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As above mentioned, the inputs of b can be removed except the first one,
since the other values are always 0. The b0 digit can be converted into an
ancilla input of value 0 inverted with a Pauli gate at the same time that the
digits of a. By this way, the number of qubits is reduced by N − 1. All the
CNOT gates applied at the end to restore the qubits of b can be deleted (except
the one which acts over the new ancilla qubit), so a reduction of N −1 CNOT
gates is applied. However, as the ai-inputs have been inverted, a new inversion
is required at the end of the circuit to evade garbage outputs. This adds 14
to the global delay, but this operation would be also necessary for the original
circuit if it worked with two’s complement. The remaining gates on which bi
acts as a control qubit are modified so that the new control qubit was ai.

This way, the idea is to design a reversible look-ahead adder to compute
the particular addition ā+ 1. The recurrence relation of a general look-ahead
adder to accelerate the computation of the carries is well-known [17]. It can
be simplified for our particular adder and the addition can be computed as
follows:

S0 = a0 ⊕ 1
S1 = a1 ⊕ a0
· · ·
Sn = aN ⊕ a0 a1 . . . aN−1

(1)

where the term Ci = a0 a1 . . . ai−1 represents the carry to compute Si =
ai ⊕ Ci.

The proposed circuit to compute a+ 1 for an example of N = 8 is shown
in Fig. 5. The design of such circuit can be explained with the following eight
steps.

– Step 1: The first step is to transform a into a and also to specify b. The
input b is supplied by an auxiliary qubit (b0 = 1), instead of the N qubits
of [36]. These operations can be done using Pauli-X gates and deleting the
N − 1 qubits of b. It consists of 9 Pauli-X gates (quantum cost 1× 9 = 9),
and it has a delay of 14.

– Step 2: It is the start point since its output is α0 = a0 which is involved
in the generation of all the carry-look ahead formation process. It consists
of 1 CNOT gate (quantum cost 1), and it has a delay of 14.

– Step 3: The outputs of this step are α1 = a0 a1, α2 = a2 a3, α3 =
a4 a5 and α4 = a6 a7. This way, the carry C1 is computed and also the
intermediate AND operations to compute the following carries. This stage
consists of 4 Toffoli gates (quantum cost 5× 4 = 20 according to [26], two-
qubits gates 3 × 4 = 12 gates according to [15]) and it has a delay of 54
(all the gates of this step can be computed in parallel).

– Step 4: This stage only computes two outputs, β1 = a0 a1 a2 a3 and
β2 = a4 a5 a6 a7. Therefore, C4 = β1 is ready to compute S4. It consists
of 2 Toffoli gates (quantum cost 5 × 2 = 10 according to [26], two-qubits
gates 3 × 2 = 6 according to [15]) with a delay of 54 (the 2 gates can be
computed in parallel).
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– Step 5: This step computes δ1 = a0 a1 . . . a7 and δ2 = a0 a1 . . . a5. Thus,
C6 and Cout are computed. This step involves 2 Toffoli gates (quantum
cost 5× 2 = 10 according to [26], two-qubits gates 3× 2 = 6 according to
[15]) and it has a delay of 104.

– Step 6: In this step, θ1 = a0 a1 a2, θ2 = a0 a1 . . . a4 and θ3 = a0 a1 . . . a6
are computed. Hence, C3 = θ1, C5 = θ2 and C7 = θ3 are ready to compute
the corresponding sums. Moreover, R0 = 0 is the result of uncomputing β2,
avoiding a garbage output. This step consists of 4 Toffoli gates (quantum
cost 5 × 4 = 20 according to [26], two-qubits gates 3 × 4 = 12 according
to [15]) and a delay of 54 (all the gates of this step can be computed in
parallel).

– Step 7: R1 = 0, R2 = 0 and R3 = 0 are the result of uncomputing
α2, α3 and α4, respectively. Consequently, all the auxiliary inputs have
been uncomputed. It consists of 3 Toffoli gates (quantum cost 5 × 3 = 15
according to [26], two-qubits gates 3× 3 = 9 according to [15]) and a delay
of 54 (the 3 Toffoli gates can be computed in parallel).

– Step 8: In this stage the sums can be calculated since the carries Ci have
been computed. So, the output sum is complete at this step. This step
consists of 8 CNOT gates (quantum cost 1× 8 = 8) and a delay of 14 (all
the CNOT gates can be computed in parallel).

– Step 9: The qubits of a are restored to their input values to avoid garbage
outputs. It consists of 8 Pauli-X gates (quantum cost 1 × 8 = 8) and a
delay of 14 (all the Pauli-X gates can be computed in parallel).

Therefore, the quantum cost of the converter forN = 8 is 101 (54 controlled-
unitary gates if the Toffoli gate of [15] is used) and the delay is 344. An anal-
ogous design can be carried out for a generic N value with a quantum cost of
21N − 15w(N) − 15log(N − 4) (w(N) represents the number of ones in the
binary expansion of N) and a delay of logN + logN/3 + 1.

5 Results and discussion

In this section, the state-of-the-art circuits are analyzed in order to justify
the selection of [36] as the start point to design the converter. This analysis is
based on the widely used methodology introduced in [22]. Finally, the obtained
results by the proposed converter are compared with the results of the most
efficient state-of-the-art circuits.

5.1 Revision of modern quantum adders

After papers [6,36] were published, other adders have been proposed but none
of them has improved them in terms of delay and cost. A reversible 16 digit
carry-look-ahead adder is proposed in [40]. It consists of 72 CNOT gates and
96 Toffoli gates with a total quantum cost of 552. Several works propose new
designs of ripple-carry adder circuits [20,23,39], but the delay of this kind
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Fig. 5 Design of the converter for a 8-digit number. ai are the qubits of the input number,
Zg(i) will contain Si+1 (the result) at the end, and Zp(i) are auxiliary qubits used to store
propagated carry value for intermediate digits (they are uncomputed at the end).

of adders is longer than the carry-look-ahead adder circuits [10]. A quantum
adder based on genetic algorithms is proposed in [16], which is not compara-
ble since it uses an alternative methodology. The proposal introduced in [34]
does not achieve improvements in the terms studied in Section 2, but it gives
valuable information about fault tolerant techniques in adder circuits. On the
other hand, there are several works in which additions and subtractions are
computed using the same circuit [7,12,21,24,37]. Although they are able to
compute both operations, they are less competitive than [6,36] in terms of
delay and quantum cost, due to the extra cost of performing both operations,
as it is shown in Table 7 of [24].

In [29], a new adder circuit which optimizes the number of gates and depth
is presented (see Fig. 6). It is built using Peres and CNOT gates, with a
quantum cost of 2×N×4 + (N×1), which is better than the circuit we present
even including the extra cost of 2×N necessary to the inversion and restoration
of the a inputs. However, in the proposal of [29], the garbage outputs have not
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Fig. 6 First carry-look-ahead quantum adder design proposed in [29]. ai and bi are the
input numbers, c0 is the carry input, Si are the qubits of the result, Cout is the carry
output and gi are garbage outputs with an unknown output.
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Fig. 7 Second carry-look-ahead quantum adder design proposed in [29]. ai and bi are the
input numbers, c0 is the carry input, Si are the qubits of the result, Cout is the carry output
and gi the garbage outputs with an unknown output.

been uncomputed (g outputs in Fig.6). As it was mentioned in Section 2,
these garbage outputs cannot be used later and it is a waste of resources. The
circuit has 3×N garbage outputs. Notice that uncomputation will increase the
number of gates and the depth of the circuit [26], so the numbers given in Table
3 of [29] need to be revised. On the other hand, they consider any output which
is not part of the result is garbage output, uncomputed or not. The metrics of
[22] does not consider an uncomputed output as a garbage output. According
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Fig. 8 Reversible carry look-ahead adder proposed in [18]. ai and bi are the input numbers,
c0 is the carry input, Si are the qubits of the result, Cout is the carry output and gi the
garbage outputs.

to the metrics proposed in [22], the proposal of [36] overcomes the adder of
[29]. They present another circuit which reduces the delay (Fig. 7), but it has
the same problems as the previous version.

One more reversible carry look-ahead adder is presented in [18]. It proposes
a new technique for generating carry output (see Fig. 8). This circuit uses a
new gate called Reversible Partial Adder (RPA) which has a quantum cost
of 5 (and delay 54) (Figs. 3(a) and 3(b) of [18]), and also has several Fredkin
gates, which a cost of 5 each one (and delay 54) for the 3 inputs case (Figs.
2(a) and 2(b) of [18]). Fig. 8 shows that the quantum cost of the circuit, for the
case N = 4, includes 4 CNOT gates (4×1), 4 RPA gates (4×5) and 4 Fredkin
gates (4×X), where X is the quantum cost of the 4-input Fredkin gates (their
quantum cost is not covered by [18]). Considering a quantum cost of 5 for the
4-input Fredkin gate (this is the quantum cost they describe for the 3-input
Fredkin gate), the circuit has a quantum cost of 4×1 + 4×5 + 4×5 = 44.
Adding the extra cost of 2×N to act as a converter, it has a quantum cost of
52. Moreover, the garbage outputs have not been uncomputed like in [29].

5.2 Comparison between the proposed circuit and the most efficient circuits

In this subsection, the results of a comparative analysis between the most
efficient circuits to convert signed binary numbers to two’s complement of N
digits and our proposal are discussed.

Table 2 shows the comparison in terms of quantum costs for the conversion
of numbers of N digits for [6], [36] and the proposed circuit. This table takes
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into account the necessary operations so that the adders of [6] and [36] can
make the conversion into two’s complement.

The circuit of [6] (year 2004) is less competitive than [36] (year 2013).
However, it is still better than the circuits studied in the previous subsection
in terms of delay and quantum cost. It has a quantum cost of 28N−15w(N)−
15log(N) − 6. The circuit proposed in [36] cannot have input carry, and it
has several ancilla inputs to improve the delay and quantum cost. It has no
garbage outputs. The complete circuit has 4N − 3w(N)− 3logN Toffoli gates
(the Toffoli gate has a quantum cost of 5 [26], or 3 two-qubits gates according
to [15]), N−1 Peres gates (the Peres gate has a quantum cost of 4 [36]) and 2N
CNOT gates, that is, it has a quantum cost of 26N − 15w(N)− 15log(N − 4).
It contains less gates than the circuits presented in [6]. On the other hand,
our proposed circuit improves the quantum cost of [36] thanks to the changes
explained in Section 4. Results in Table 2 shows that the proposed converter
improves in terms of quantum costs with respect to the use of general adders
to compute the two’s complement.

N [6] [36] Proposed circuit Improvement(%)
4 69 63 41 35
6 105 95 55 42
8 175 160 101 37
10 214 196 119 40
16 399 369 236 36
32 864 802 521 35
64 1869 1743 1166 33
128 3714 3460 2291 34
256 7539 7029 4676 33
512 15204 14182 9461 33

Table 2 Comparison of quantum costs for the conversion of numbers of N digits. Works [6]
and [36] include extra cost of 2×N (N to transform a into a and N to restore a and avoid
garbage outputs) to act as a converter. The improvement column shows the percentage of
improvement of our proposal with respect to [36].

Table 3 shows a comparison of the delay, number of inputs and garbage
outputs of some of the most relevant adder circuits in the literature. [36] has
a delay of logN + logN/3 + 24, whereas the circuit of [6] has a delay of
logN + logN/3+74. However, to perform a+1, the inversion of a with Pauli-
X gates and another inversion to evade garbage outputs are necessary. This
requires two extra levels of depth, so the final delays are logN + logN/3 + 44
and logN + logN/3 + 94, respectively for [36] and [6]. In Table 3, the logic
depth of the circuits includes the necessary changes to allow them to make the
conversion into two’s complement. These changes involve to negate a at the
beginning and to restore it at the end, to avoid garbage outputs. Furthermore,
Table 3 shows that the proposed converter optimizes the number of inputs of
the circuit and the answer delay. Therefore, our proposal improves converters
based not only on quantum gates, such as [3] (O(N)), but also on quantum
adders, such as [6,36], in terms of answer delay.
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Circuit Delay Normal Ancilla Garbage
4 inputs inputs outputs

[6] logN + logN/3 + 9 2N 5N/4 0
[36] logN + logN/3 + 4 2N 5N/4 0

Proposed circuit logN + logN/3 + 1 N 5N/4− 9 0

Table 3 Comparison of logic depth for N -digit numbers. Works [6] and [36] include two
extra levels (one to transform a into a and other to restore a and avoid garbage outputs) to
act as a converter.

6 Conclusions

In this paper, a reversible circuit which is capable of computing the conversion
from signed numbers to two’s complement has been presented. This converter
is an adaptation of a reversible out-of-place carry look-ahead adder presented
in [36], simplifying it to the specific operation a+ 1 (being a the number to be
converted). We have carried out a deep analysis of the existing converter and
adder circuits (current circuits that allow conversion from signed numbers to
two’s complement) to find the best ones considering a solid metric. We have
justified that [6,36] are the best adders in terms of delay and quantum cost
comparing them with the most modern circuits.

Once the best circuits have been identified, we have used them to design
our proposal and, later, to compare the obtained results by all the studied
circuits. Obtained results have shown that our proposed circuit outperforms
the existing ones in terms of delay. The circuit improves the delay of [36] since
all the Peres gates have been removed and several Toffoli gates have been
replaced or simplified. Moreover, the number of normal input qubits has been
reduced by half since the operations associated with the deleted inputs have
been simplified.

An additional advantage of our proposal is that it does not contain any
garbage output, therefore the circuit could be entangled with any other re-
versible circuit which needs to operate with two’s complement. As future work,
we are planning to implement a new carry look-ahead converter to compute
the two’s complement of a number.
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