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ABSTRACT 

Ontologies can be used in the construction of OLAP (On-Line Analytical Processing) 
systems. In such a context, ontologies are mainly used either to enrich cube dimensions or 
to define ontology based-dimensions. On the one hand, if dimensions are enriched using 
large ontologies, like WordNet, details that are beyond the scope of the dimension may be 
added to it. Even, dimensions may be obscured because of the massive incorpora- tion of 
related attributes. On the other hand, if ontologies are used to define a dimension, it is 
possible that a simplified version of the ontology is needed to define the dimension, 
especially when the used ontology is too complex for the dimension that is being defined. 
These problems may be solved using one of the existing mechanisms to define ontology 
views. Therefore, concepts that are not needed for the domain ontology are kept out of the 
view. However, this view must be closed so that, no ontology component has references 
to components that are not included in the view. In this work, two basic approaches are 
proposed: enlargement and reduction closure. 
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1. INTRODUCTION 
Ontologies are applied in a wide range of application fields such as knowledge 
management, natural language processing, e-commerce, intelligent information 
integration, information retrieval, Semantic Web, and so on. Another emerging 
application area is data warehousing, in particular, in the construction of 
Multidimensional information systems, also known as OLAP (On-Line Analytical 
Processing) systems (Thomsen, 2002). In such a context, ontologies may be used for 
several purposes, as to address semantic heterogeneity (Priebe & Pernul, 2003; Niemi et 
al., 2007). But in this paper, the two applications of ontologies in OLAP systems we are 
interested in are the use of ontologies to enrich cube dimensions (Mazón, Trujillo, 
Serrano & Piattini, 2006; Mazón & Trujillo, 2006; Pardillo & Mazón, 2011; Neumayr, 
Schütz, & Schrefl, 2013), and the definition of ontology based-dimensions (Romero & 
Abelló, 2007a, 2007b, 2010).  
 

With respect to the first use, dimension enrichment may be carried out obtaining from 
existing ontologies new relationships (adding new aggregation levels), or obtaining 
another semantic relationships (e.g. the whole-part relationship), so that new hierarchies 
may be added to the dimensions. In (Mazón, Trujillo, Serrano & Piattini, 2006; Mazón & 
Trujillo, 2006), the use of WordNet (Miller et al, 1990) for enriching data warehouse 
dimensions is proposed, based on the semantic relationships defined between WordNet 
concepts. Therefore, if a Product dimension is used in our OLAP system, using the 
semantic relationships defined on WordNet, the subtype, type, and class of a product can 
be obtained. (For example, if we have a product named as Chardonnay, we can obtain that 
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it is White wine, Wine, and an Alcoholic beverage.) But, if dimensions are enriched with 
every semantic relationship available in WordNet, details that are beyond the scope of the 
dimension may be added to it. Even, dimensions may be obscured because of the massive 
incorporation of related attributes.  

With respect to the other use of ontologies in data warehousing, the definition of 
dimensions using existing ontologies, it makes easier dealing with integration and 
interoperability issues when data warehouses share some dimensions. However, it is 
possible that these ontologies we are using to define the dimensions include concepts that 
are not needed for the dimensions. 

Therefore, on the one hand, dimension enrichment using existing ontologies may lead 
to obtain dimensions that include attributes that have not to be included in the dimension; 
on the other hand, the definition of dimensions using ontologies may force that an OLAP 
tool has dimensions that that incorporate concepts that are not needed. One way or 
another, these problems may be solved using one of the existing mechanisms to define 
ontology views (Magkanaraki et al., 2004; Rajugan et al, 2005; Uceda-Sosa et al., 2004; 
Volz et al., 2003; Noy et al., 2004; Seidenberg & Rector, 2006) Therefore, concepts that 
are not needed for the domain ontology are kept out of the view. However, this view must 
be closed. The closure property is a well-known property of schemas in object databases, 
so that no class of a schema has references to classes that are not included in the schema 
(Rundensteiner, 1992; Lacroix & Delobel, 1998; Torres & Samos, 2001). Analogously, 
an ontology will be closed if every component of the ontology does not have references to 
components that are not included in the ontology. 

In order to achieve the ontology closure property, in this work we propose two basic 
approaches, named as enlargement closure and reduction closure. 

Enlargement closure recursively includes each component that is referenced by 
ontology components, so that the original ontology is enlarged with the referenced 
components. The main drawback of the enlargement closure is that the systematic 
inclusion of referenced components in non-closed ontologies may lead, in certain 
situations, to obscure the ontology that was originally specified by the ontology definer. 

In contrast to enlargement closure, reduction closure is based on the assumption that 
the ontology definer is interested only in the components that he or she has selected, and 
no one else. If the ontology includes some components with external references, in order 
to guarantee the ontology closure, but without adding more components, ontology 
components that have external references are replaced with views that hide those 
references. Once all the components with external references have been replaced with 
views, the effect of this replacement must be propagated over the ontology (e.g., updating 
references or generating the needed intermediate views). For such a purpose, a set of rules 
to be applied and an algorithm to reach ontology closure under the reduction approach 
have been defined, making easier the definition of ontology views.  

The remainder of this paper is organized as follows. Section 2 describes the concepts 
of enlargement and reduction closure. Section 3 describes how closure concepts can be 
applied to OWL ontologies. In Section 4, a tool we have developed to apply the proposed 
closure approaches is briefly described. In Section 5, the related work is described. 
Finally, we conclude the paper in Section 6. 

2. ONTOLOGY CLOSURE 
Ontology closure is inspired in a well-known property of databases named as schema 
closure, which is mainly studied in the context of object databases (Rundensteiner, 1992; 
Lacroix & Delobel, 1998; Torres & Samos, 2001). In the ontology context, ontology 
closure states that no component of an ontology includes references to other components 
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that are not included in the ontology. A closed ontology can be defined in this way: Let C 
be the set of components of an ontology and R the set of inheritance relationships defined 
in it. Uses(Ci) can be defined as the set of components used by the properties of Ci. 

 
Definition 1 (Closed ontology). An ontology O = (C, R) is closed if, and 

onlyif,C=Uses(Ci)∪C,∀Ci ∈C.  
 
To reach ontology closure, in this paper two approaches are proposed: enlargement 

closure and reduction closure. These approaches are studied in the next subsections, but 
before dealing with them, an example is introduced. This example will be used along the 
paper to illustrate each of the proposed approaches. The example is an excerpt of a 
tourism ontology taken from (Knublauch, 2014). In our ontology, destinations (travels) 
are modelled. Destinations have activities, and these activities have a contact person. 
Destinations are specialized in beaches, rural areas and urban areas. Activities are 
specialized in sports, relaxation and adventures. Finally, destinations include 
recommendations with their respective ratings. Figure 1 illustrates the tourism ontology.  

 
Figure 1: Tourism ontology 

Once the example has been introduced, the proposed closure approaches are described. 

2.1. ENLARGEMENT CLOSURE 
Enlargement closure is based on an algorithm proposed in (Rundensteiner, 1992) to 
include in a view schema of an object database every class referenced by a class of the 
view schema. In the ontology context, each component (e.g., classes or properties) 
referenced by another component of the ontology must also be included in the ontology. 

This kind of closure is based on the idea that the user wants an ontology with the 
components that he or she has selected and, if it is necessary, other components can also 
be included into it in order to achieve the ontology closure. Below, the enlargement 
closure algorithm is shown. 

 
Function EnlargementClosure (O): NeededComponents 
1. Temp = C = GetComponents(O); NeededComponents = Æ 
2. while Temp ¹  Æ 
3.  C

i
 = GetAndRemoveNext(Temp) 

4.  if C
i
Î C and C

i
Î NeededComponents then 
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5.  NeededComponents = NeededComponents È C
i
 

6.  end if 
7.  for all C

k
ÎUses(C

i
) 

8.  if C
k
Î C and C

k
Î Temp and C

k
Î NeededComponents then 

9.  Temp = Temp È C
k
 

10.  end if 
11.  end for 
12. end while 
13. return NeededComponents  

 
This algorithm takes as input the set of components O selected to make up the view 

ontology. The algorithm returns in NeededComponents the components that are 
needed to close the ontology. 

The ontology O only consists of the set of ontology components C specified by the 
ontology definer. This set is obtained by the function GetComponents that is not 
described here. The set of components C that make up the ontology O is copied to an 
auxiliary variable Temp which will be used to check the ontology closure. 

The algorithm processes the components of Temp one by one pulling out from this set 
by a function GetAndRemoveNext, that is not described here. If the component that is 
being processed does not belong to the set of ontology components or to the set of needed 
components (i.e. NeededComponents), it is added to the set of needed components. 
Checking whether NeededComponents is empty we can know if the ontology is 
closed. 

Next, the components used by the current component are added to Temp if they have 
not been already added; this is checked at this way: a component does not have to be 
added to Temp if it is a component of O (it was already included in Temp at the beginning 
of the algorithm), if it is a component that is already in Temp (it is a component that is not 
still processed) or if it belongs to NeededComponents (it is an external reference 
added by another component). 

2.2. REDUCTION CLOSURE 
Enlargement closure may add some components to view ontologies because all the 
referenced components are also included into the ontology, as well as all the components 
referenced by them, and so on. However, under certain situations the ontology definer 
may not want to include into the view ontology all the referenced components, or some of 
them. However, since ontology closure must be fulfilled, but no additional components 
are wanted, components with external references must be replaced with another 
components, which do no not include the external references. This is the premise which 
reduction closure is based on, that is, to replace components that have external references 
in order to remove such references. Thus, ontology closure is also fulfilled and no 
components are added to the ontology. 

Summarizing, reduction closure assumes that the user wants to include only the 
components that he or she has selected and no one else. In order to remove the references 
to non-included components, new view classes have to be defined to replace them. 
Components with external references cannot be directly modified because, if we modify 
them instead of defining new ones, we would produce collateral effects in other 
ontologies where those components are included or used (e.g. other view ontologies). 
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Reduction closure is carried out by an algorithm that takes as input the set of 
components S selected to make up the ontology. If the ontology is not closed, the 
algorithm returns the set S incorporating the needed modifications, so that the closure of 
the ontology is reached. 

 
Procedure ReductionClosure (S) 
1. List = FindComponentsWithExternalReferences (S) 
2. if List ¹ NIL 
3.  List = PropagateChanges (S, List) 
4. UpdateOntology (S, List) 
5. end if  

 
The algorithm works as follows. First, the function FindComponentsWith-

ExternalReferences is called to obtain the set of components that have external 
references (step 1). If the ontology is closed, this function returns an empty list. However, 
if the ontology is not closed, this function returns the list of nodes corresponding to 
classes with external references. 

Once the existence of external references has been checked, if the ontology is not 
closed, then a non-empty list is returned and the function PropagateChanges is 
called (steps 2 and 3). If there exists any class affected by the replacement of classes 
having external references to view classes, this function includes new nodes to the list. 
The function updates the list propagating the modifications following the rules depicted 
in Figure 2, generating a new node for each affected class, and updating existing nodes. 
After propagating the changes, the list contains a node for each class that must be 
replaced with a new view class, so that the ontology does not have external references. 
All the needed information to define the new components is stored in the nodes. 

Finally, when the list is built, new views must be defined. Then, the ontology is 
updated replacing with new view classes those classes that have external references as 
well as the affected ones. This process is carried out by the function UpdateOntology 
(step 4), which follows the rules described in Figure 2. 

In order to obtain the classes that must be replaced, we propose a set of rules to decide 
whether a component has to be replaced with a view component to update its references 
or not. If these rules are applied, the set of components to be modified is obtained.  

 
Obtaining the classes to be modified 
The rules described below show the set of components that are affected by the 

replacement of classes having external references. These rules consider the five cases that 
may occur, which are illustrated in Figure 2. In the figure, modified classes are marked 
with an asterisk (*), and the dotted arrow points to affected classes. 

• If A is modified and B is referenced by A, B does not need to be modified because of 
the modification of A (Figure 2.a).  

• If A has a reference to B, and B is modified, A must be modified (Figure 2.b).  
• If A and B are mutually referenced, and at least, one of them has to be modified, 

both components have to be adapted (Figure 2.c).  
• If A must be modified and B specializes A, B must be modified after modifying A 

(Figure 2.d).  
• If A generalizes B, and B must be modified, A does not need to be modified because 

of the modification of B (Figure 2.e).  
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Figure 2: Cases for propagating modifications of components of an ontology 
(Components marked with an asterisk represent modified components) 

Following these indications, a list of nodes can be built where nodes symbolize classes to 
be modified, either because of having external references, or to propagate the 
modifications. The node structure is depicted in Figure 3.a. Each node contains the name 
of the class to be modified (OldClassName) and the name of the class that is going to 
replace it (NewClassName -this name may be generated automatically adding a 
numerical suffix indicating the number of classes defined from its base class). In addition, 
the node includes the list of classes included in the ontology that are referenced by the 
class (ReferencesTo), the list of external references that must be deleted 
(ToBeDropped), and the list of references that must be updated (ToBeUpdated). 
Adding the list of external references (ToBeDropped) in each node makes easier the 
later definition of the class that will replace the class corresponding to that node in order 
to hide the external references. The list ReferencesTo is used to check whether a class 
has references to classes that have been replaced with new classes, and therefore, must 
update its references. 

 
  
Figure 3: a) Node structure corresponding to classes to be modified; b) Node list 
corresponding to classes with external references; c) Resulting node list after applying the 
five rules; d) Final node list, where references to new classes have been updated to make 
easier the definition of view classes 

3. CLOSING OWL ONTOLOGIES 
Basically, an OWL ontology consists of a set of class and property definitions that model 
ontology concepts (W3C, 2012). OWL treats properties as first class citizens, so that they 
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are defined apart from classes. Properties specify their domain and their range. The 
domain of a property limits the individuals to which the property can be applied to. The 
range of a property limits the individuals that the property may have as its value. 
Therefore, in order to obtain a closed OWL ontology, we could think that an external 
reference is a property whose range references to a class that is not included in the OWL 
ontology. However, given that OWL and other ontology languages (Brickley & Guha, 
2014; Connolly et al., 2001) allow the definition of properties apart from classes, the 
definition of inheritance relationships between properties, and the definition of other 
relationships between classes (e.g. equivalence, disjointness, and so on), the closure 
problem demands a special consideration in OWL ontologies. Next, a method to solve the 
closure problem on OWL ontologies is proposed that can also be applied to other 
ontology languages that consider properties as first class citizens. Such a method is based 
on the ontology closure method proposed in this paper, but it is adapted to the OWL 
features aforementioned.  

First, an ontology will be represented as a set of triplets, inspired in the RDF model 
(Gandon & Schreiber, 2014), as the next figure illustrates. Figure 4.a shows an abstract 
ontology that consists of four classes (C1, C2, C3, C4). Figure 4.b shows the ontology 
represented by means of triplets. From now on, we will call O-triplets to such a 
representation. Attributes used on the triplets of O-triplets of Figure 4.b are 
domain to represent that a class is domain of a property, range to indicate that a class 
is range of a property, and subclassOf to show that a class is subclass of another. 
Other attributes that are not in the figure could be equivalentClass to state that a 
class is equivalent to another one, disjointWith to state that a class is disjoint with 
another one, subpropertyOf to state that a property is subproperty of another 
property, and so on. A similar approach can be found in (Noy et al., 2004), where concept 
definitions are introduced. Concept definitions are set of RDF triplets so that the class 
properties are expressed by means of RDF triplets. 

 
Figure 4: a) An abstract ontology; b) The same ontology represented by means of triplets 
(O-triplets) 

In this model (O-triplets), an ontology is not closed in any of the following 
situations: 

• A property has a reference to a property that is not included in the ontology (e.g. a 
property defined as inverse of a property that is not included in the ontology).  

• A property has a reference to a class that is not included in the ontology (e.g. the 
range or the domain of a property is not included in the ontology).  

• A class has a a reference to a class that is not included in the ontology (e.g. a class is 
equivalent to another class).  
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Applying closure to OWL ontologies basically deals with verifying whether 
rdf:about and rdf:resource attributes reference to components that are not 
included in the ontology. For enlargement closure, we only need to add every component 
referenced by the attributes rdf:about and rdf:resource. However, for reduction 
closure, it is not so easy, because the method proposed in the previous section for generic 
ontologies cannot be directly applied to OWL ontologies, as we will see next.  

As we have described in Section 2.2, reduction closure allows obtaining closed 
ontologies, so that components that have external references are replaced with views that 
drop external references. This replacement may cause that other components that have 
(direct or indirect) references to replaced components must be updated. To reach OWL 
closure, as in the generic model described in Section 2, first we need to define the rules 
that determine which ontology components may be affected by the modification of a 
component. Next, a node list will be created, so that each node corresponds to a 
component to be modified. Each node will store the information needed to address the 
definition of the view component required to reach reduction closure. However, unlike 
the generic model, the rules for propagating changes, the building of the node list, and the 
information stored in each node, are slightly different to the ones proposed for the generic 
model. Finally, once the node list is built, components with external references, as well as 
components affected by change propagations, will be replaced with views so that a closed 
view ontology will be obtained.  

3.1. OBTAINING THE COMPONENTS TO BE MODIFIED 
In order to determine which are the components affected by the modification or 
elimination of an ontology component, the following set of rules have to be applied. This 
set uses a model for the ontology, named as O-model, that makes easier obtaining 
affected components. Such a model is built from the model O-triplets, described at 
the beginning of this section, following the issues shown below. This model is necessary 
because on the one hand, OWL considers properties a first class citizens; on the other 
hand, view properties may be defined from properties (Volz et al., 2003). Therefore, if a 
property is replaced with a view property in an ontology, the class which this property 
was applied to is also affected, and the remainder of properties of that class, as well as the 
remainder of ontology components directly or indirectly related with them. 

• For each node of O-triplets, a node is built in O-model.  
• If two nodes N1 and N2 of O-triplets are connected by means of a range 

relationship from N1 to N2, an arc from N1 to N2 must be built in O-model.  

• If two nodes N1 and N2 of O-triplets are connected by means of a domain 
relationship from N1 a N2, a mutual arc between N1 and N2 must be built in 
O-model.  

• If two nodes N1 and N2 of O-triplets are connected by means of an 
inheritance relationship (subclassOf or subpropertyOf) from N1 to N2, an 
arc from N1 to N2 must be built in O-model.  

• If two nodes N1 and N2 of O-triplets are connected with another type or 
relationship (disjointWith, inverseOf, ...) from N1 to N2, a mutual 
arc between N1 and N2 must be built in O-model.  
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If these considerations are applied to the ontology expressed in O-triplets of the 
Figure 4.b, the graph of the next figure is obtained. In this graph, the rules proposed in 
Section 2.2.2 to obtain the components to be modified can be applied to. 
  

In Figure 5, we show an example of how the components to be modified can be obtained. 
The example defines a view ontology from the ontology of Figure 4.a, but without 
including the class C3 and its two properties. In this example, the components that have 
been selected to be included in the ontology are those depicted in Figure 6.a. In the figure 
we can see that the property P2C2 has an external reference. If we apply to this model the 
rules for change propagation of Section 2.2.2, the class C2 and the property P1C2 will be 
affected. Besides, the subclass of C2 (C4), as well as its property (P1C4), will be 
affected. Finally, given that the class C1 has a property that has as range the class C2, 
then the class C1, and its properties, will be also affected by the changes. Therefore, all of 
these components must be replaced with views as illustrates Figure 6.b, which illustrates 
the ontology closed following the reduction approach. 

 
Figure 5: Adapted model of the ontology that makes easier to obtain which are the 
affected components (O-model) 

 
Figure 6: a) Components selected to make up a view ontology; b) View ontology closed 
following the reduction approach 

As we see in Figure 6.b, the components with external references and the affected 
components have been replaced with views, which are represented using shaded ellipses. 
In the figure we also see that the names of the view components have also been modified. 
These new names represent that the view components are not the same that their base 
components. However, the only part of the component name that has to be modified is the 
base URI of the document where the definition of the view is done, but not the fragment 
part of the component URI. That is, base components and view components can have the 
same fragment part in their respective URIs but different base URI. 
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3.2. AN ILLUSTRATIVE EXAMPLE TO OBTAIN A CLOSED OWL 
ONTOLOGY 
In order to illustrate how reduction closure can be achieved in an OWL ontology, let us 
suppose that we want to define a view ontology from the extended tourism ontology that 
we have already used in this work. This view was already defined using the generic 
model in Section 2.4. The view does not include the concepts Contact, 
Acommodation, and their details.  

If reduction closure is the followed approach, first of all, the ontology must be 
represented in the triplets model proposed previously. Figure 7 illustrates the ontology 
expressed in O-triplets. In the figure, we can see that the ontology is not closed 
because properties hasContact and hasAccommodation has as range a class that 
has not been included in the view. 

 
  
Figure 7: View ontology definition expressed in triplets 

Second, the ontology expressed in O-triplets must be expressed in O-model, so 
that the following graph is obtained. Next, the rules for propagating changes are applied 
to this graph, and we obtain that given that hasAccommodation and hasContact 
have external references, Destination and Activity will be affected, as well as 
their respective subclasses and properties hasActivity, isOfferedAt and 
hasPart.  

 
  
Figure 8: Ontology adapted model for applying the proposed closure algorithms 

Following the reduction closure algorithm, the result of applying the rules for change 
propagation is a node list, which contains a node for each component with external 
references and a node for each component to be modified. In Section 2.2.2, a node 
structure for applying reduction closure to the generic ontology model was proposed. For 
OWL ontologies, the node structure differs slightly, because a new field 
(ClassOrProperty) has been added to the node to indicate whether it corresponds to 
a class or a property, so the node structure illustrated in Figure 9.a is obtained. This field 
will be used later by the view definition mechanism to define a view property or a view 
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class. Figure 9.b illustrates the list initialized with the nodes that have external references 
(hasContact and hasAccommodation). Figure 9.c illustrates the resulting node list 
where the components referenced by each node and the list of updates is stored in the 
nodes. For example, the node corresponding to the class Sports shows that this class 
has an external reference to Activity. Given that the class Activity will be 
replaced with a view class Activity1, as is depicted in the node corresponding to the 
class Activity, the reference to the class Activity has to be updated to 
Activity1. Analogously, the node corresponding to the property hasPart shows 
that this property has a reference to Destination that must be updated to 
Destination’. 

 
  
Figure 9: a) Node structure corresponding to components to be modified; b) Node list 
corresponding to components with external references; c) Final node list where 
propagations have been applied and references to new components have been updated to 
make easier the definition of view components 

Once we have obtained the list of components to be modified, the ontology components 
corresponding to each node of the list must be replaced by view components so that the 
ontology is closed. 

4. IMPLEMENTATION 
We have developed a Java tool to implement the approaches proposed in this work for 
ontology closure. Our tool is based on a toolkit developed by IBM for ontology-driven 
development named IODT (Integrated Ontology Development Toolkit). This toolkit 
includes an Ontology Definition Metamodel (EODM), EODM workbench, and an OWL 
Ontology Repository, named Minerva, a high-performance OWL ontology storage, 
inference, and query system based on relational database management systems. EODM is 
derived from the OMG’s Ontology Definition Metamodel (ODM) and implemented in 
Eclipse Modeling Framework (EMF).  
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The tool we have developed loads an OWL ontology, which will be stored in the OWL 
ontology repository. Next, the tool applies the closure approach selected by the user, and 
returns the results in an OWL ontology.  

Next, we show how our tool can be used to apply reduction closure to the view 
ontology defined at the end of the previous section. The view was defined from the 
tourism ontology of Figure 1 we are following along this work, including activities, 
destinations and their subclasses, so that details related to contacts and accommodations 
are not included in the view. Figure 10 shows the components of the base ontology loaded 
in our tool. In the figure we can see some classes of the base ontology that are not going to 
be included in the view, like Accommodation. In the figure we can also see that in the 
base ontology, the properties of Activity are isOfferedAt and hasContact.  

 
  
Figure 10: Tourism ontology loaded in our closure tool 

Figure 11 shows the effect of applying reduction closure to the defined ontology. This 
figure shows that components with external references, and affected components, have 
been replaced with views. For example, in the figure we can see that Activity has 
been replaced with Activity1, which does not have the property hasContact.  
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Figure 11: Resulting ontology after applying reduction closure in our tool 

5. RELATED WORK 
During the last years, several proposals have been developed to define view ontologies. 
Basically, most of them are mainly focused on the definition process of view classes and 
view properties in different languages, like OWL, RDF-S, and so on), or for generic 
ontology models. However, to the best of our knowledge, only a few proposals study the 
closure problem.  

In (Uceda-Sosa et al., 2004), a language to define views on OWL components is 
proposed. The language is named as CLOVE and it extends OWL constraints so views 
may be defined. In CLOVE, a view specifies the objects it may be applied to, and the 
expressions that describe the view content. Views are considered as first-class citizens. 
CLOVE allows the definition of relationships between views (e.g. is-a). Views may be 
activated or in-activated by ontology owners, so that closure problems may emerge when 
users inactivate a view that is being referenced by another ontology component. In the 
paper, no mention is done about ontology closure. 

In (Volz et al., 2003), a mechanism to define views for RDF-S ontologies is 
introduced. In the paper, a set-based operations to define object-preserving views using 
RQL query language (Karvounarakis et al., 2002) is proposed. View classes are placed in 
the class hierarchy when are defined as selection, difference, union or intersection views. 
The semantics of view definitions is used for such a purpose. If operations are combined, 
placement is not carried out automatically. In (Volz, 2003), this work is extended to 
define external ontologies (i.e., our view ontologies) in the sense of the well-known 
ANSI/SPARC three level architecture for databases, grouping view and base ontology 
components into new ontologies. However, the closure problem is not discussed. 

In (Rajugan et al, 2005), an abstract view model for ontologies is proposed. The model 
is defined in UML using stereotypes to define conceptual views, and using OCL to 
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specify view constraints. Ontology concepts are modelled as UML classes. Attributes and 
relationships are modelled as UML attributes and relationships, respectively. In the 
proposed model, views may be defined using set operators (union, intersection, cartesian 
product, join, and so on), and selection-projection operators. Nevertheless, ontology 
closure is not treated in that work. 

In (Magkanaraki et al., 2004), RVL (RDF View Language) is introduced. RVL is 
based on RQL and it follows the RDF-S approach to consider properties as first-class 
citizens. RVL allows the creation of new classes and properties, as well as it allows the 
importation of existing components of another ontology. Views may be defined with 
object-preserving and object-generating semantics. Ontology closure is carried out by 
means of a restriction that states that the references of an ontology component (e.g. the 
range and the domain of a property) must always be defined. Thus, the creation of a view 
component is accompanied with the definition of its domain and range components.  

In (Noy et al., 2004), views on ontologies are defined introducing the concept of 
Traversal views to reach ontology closure. Traversal views are views where users specify 
the central concept or concepts of interest, the relationships to traverse to find other 
concepts to include in the view, and the depth or maximum distance of the traversal. In 
this work, the view boundary concept is introduced to represent those classes that have 
not been included in the view ontology but are range of properties of classes included in 
the view ontology, that is, external references. In order to reach ontology closure, classes 
belonging to the view boundary are also included in the view ontology, so that 
enlargement closure is the used approach. 

In (Seidenberg & Rector, 2006), an algorithm to obtain a subontology (i.e. view 
ontology) based on a set of classes selected by the user from an existing ontology is 
proposed. Needed classes are identified following the ontology link structure. The used 
approach is enlargement closure, so that components corresponding to external 
references are also included in the view. This work, like (Noy et al., 2004), proposes 
limiting the depth of the traversal, so that some referenced classes are in the boundary. 
That is, boundary classes are classes referenced by classes of the ontology, but that 
finally are not included in the view. However, if boundary classes are not included in the 
ontology, view components that reference them would have to be replaced with views 
because they do not represent the same concept any longer. Besides, this replacement 
would have to be propagated along the view, as we propose in this paper. 

In (Volz, 2003), a view formalism for Semantic Web is proposed. The view formalism 
provides conceptual and logical semantics, as well as an extensive set of conceptual 
operators like union, intersection, join, projection, selection, and so on. Views are 
modelled using UML with stereotypes and constraints. The approach used to close the 
ontology is the enlargement approach, which is applied to the set of components selected 
to make up the view ontology, so that referenced components are also included in the 
view. In (Wouters et al., 2002), the closure process is illustrated by means of an example. 

6. CONCLUSION 
Views are an established technology for databases. However, views have not been 
studied so deeply in ontologies, although they are also needed (e.g. personalized access to 
metadata bases in community portals, authorization and integration of heterogeneous 
data sources). In (Magkanaraki et al., 2004; Rajugan et al, 2005; Uceda-Sosa et al., 2004; 
Volz et al., 2003; Noy et al., 2004; Volz, 2003), view mechanisms for ontologies are 
proposed. However, the closure problem is not studied in all the proposals. The closure is 
a property that must be satisfied in an ontology, so that every component referenced by a 
component of the ontology must also be included in the ontology. The interest of this 
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problem grows when views may be defined on existing ontologies using any of the 
existing proposals. However, the set of components selected by the ontology definer to 
make up the view may be not closed. That is, some of the components used by some of 
the components of the view may be not included in the view ontology. Current works 
propose the use of enlargement closure, which enlarges view ontologies with the 
referenced components, so that the view ontology do not have external references.  

In this work, a new approach to achieve ontology closure is proposed. The new 
approach, named reduction closure replaces the components that have external 
references with view components that hide those references. In addition, this replacement 
must be propagated and such a propagation may entail the definition of other view 
components. Reduction closure carries out this propagation automatically, simplifying 
the definition of view ontologies.  

In this work, we have also shown how the closure concepts described in this paper 
may be applied to OWL ontologies. For such a purpose, we have introduced two 
intermediate models named O-triplets and O-model, allowing the application of 
the techniques proposed in this paper to achieve ontology closure in OWL ontologies. 
These models are needed because OWL, as well as other ontology languages, allow the 
definition of properties apart from classes, the definition of inheritance relationships 
between properties, and the definition of other relationships between classes (e.g. 
equivalence, disjointness, and so on).  

Finally, we have shown a tool we have developed for applying the closure property to 
OWL ontologies. 
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