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Abstract. In this paper we consider singular quasilinear elliptic equa-
tions with quadratic gradient and a singular term with a variable expo-
nent −∆u+

|∇u|2

uγ(x)
= f in Ω,

u = 0 on ∂Ω.

Here Ω is an open bounded set of RN , γ(x) is a positive continuous
function and f is positive function that belongs to a certain Lebesgue
space.

We show, among other results, that there exists a solution in the
natural energy space H1

0 (Ω) to this problem when γ(x) is strictly less
than 2 in a strip around the boundary; while there is no solution in
the energy space when there exists Γ ⊂ ∂Ω with |Γ|N−1 > 0 such that
γ(x) > 2 on Γ.

Moreover, since we work by approximation we can analyze the be-
havior of the approximated solutions un in the case in which there is no
solution in H1

0 (Ω).

1 Introduction

In the framework of quasilinear elliptic equations with quadratic growth
in the gradient, here we are concerned with the existence of solutions for the
following boundary value problem:

(1.1)

−∆u+
|∇u|2

uγ(x)
= f in Ω,

u = 0 on ∂Ω,

where Ω is an open, bounded subset of RN (N ≥ 3), 0 ≤ f ∈ Lq(Ω) with
q ≥ N

2 satisfying

(1.2) mω(f)
def
= ess inf {f(x) : x ∈ ω} > 0, ∀ω ⊂⊂ Ωδ
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where Ωδ := {x ∈ Ω : dist(x, ∂Ω) < δ}, for δ > 0 fixed, and γ(x) ∈ C1(Ω) is
a positive function.

If the lower order term is nonsingular, namely

(1.3)

{
−∆u+ g(x, u)|∇u|2 = f in Ω,

u = 0 on ∂Ω,

with g a Carathéodory function in Ω × [0,∞), problem (??) has been ex-
haustively studied in [?, ?, ?] with data f in suitable Lebesgue spaces.

In the case in which the lower order term is singular, there are several
papers that deal with existence and nonexistence of solutions when γ is a
positive constant, namely with the model problem

(1.4)

−∆u+
|∇u|2

uγ
= f in Ω,

u = 0 on ∂Ω.

First, existence of solutions for (??) was proved in [?, ?, ?] for 0 < γ ≤ 1
and the uniqueness of solution for 0 < γ < 1 in [?]. We also quote the
paper [?]. Specifically, the existence of positive solutions of (??) is proved
in [?] for γ ≤ 1 provided 0 6≡ f ∈ Lq(Ω) (q > 2N

N+2) with f ≥ 0. In [?]
it is proved the existence of solution if γ < 2 when a strong condition on
f is assumed (see [?] for the parabolic case). More precisely, it is imposed
condition (??) in the whole Ω. Moreover nonexistence is proved if γ > 2 or
if γ = 2 and λ1(f) > 1, where λ1(f) denotes the first positive eigenvalue
of the laplacian operator −∆ with zero Dirichlet boundary conditions and
weight f ∈ Lq(Ω), (q > N/2). In [?] the author prove the same result as in
[?] avoiding, in the case 0 < γ < 1, the assumption that f must be strictly
positive in compact subsets of Ω (see also [?]). Later, in [?] it is proved the
nonexistence of solution assuming only that γ ≥ 2.

In the present paper, we deal with a variable exponent and we analyze how
the behavior of γ(x) influences the existence and nonexistence of solutions.
We may have a region inside Ω where γ(x) < 2 and another region where
γ(x) ≥ 2.

The main goal here is to explain that what matters for existence of solu-
tions is the behaviour of γ(x) near the boundary.

The idea to prove the existence result consists in approximating the sin-
gular term s−γ(x) continuously, such that the non singular approximated
problems fall into the framework in [?] and therefore they have finite energy
solution un, for every n ∈ N. We will prove that, for γ(x) < 2 near the
boundary, the approximating solutions un converge to a positive solution of
(??). As f ∈ Lq(Ω) with q ≥ N

2 it is easy to prove ([?]) that exist a priori

estimates of the solutions un in H1
0 (Ω). Observe, that due to singularity of

the lower order term, the approximated lower order term blow up as un(x)
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is converging to zero. This is the reason why it is not possible to apply
the ideas of [?, ?, ?] to show the strong convergence of ∇un in L2(Ω) (and
thus the strong convergence of the approximated solutions un in H1

0 (Ω) to
a solution of (??)). The keypoint to overcome this difficulty consists in
proving that un are uniformly away from zero in every compact set inside
Ω. We show here that γ(x) must be less than 2 only near the boundary for
obtaining this kind of estimate. This principle allows us to prove that the
sequence of approximating solutions converges locally to a solution of (??).

In order to prove our nonexistence result we follow the ideas in [?] adapted
for Sobolev functions vanishing only in a part of the boundary.

Our main results are the following (it is assumed that ∂Ω is Lipschitz and
we denote by ne the exterior normal vector to ∂Ω, see the comments before
the statement of the main results).

Theorem 1.1 (Existence). Let f ∈ Lq(Ω) with q ≥ N
2 satisfying (??) and

γ(x) < 2 on ∂Ω or γ(x) ≤ 2 on ∂Ω with
∂γ(x)

∂ne
> 0, then there exists

u ∈ H1
0 (Ω) ∩ L∞(Ω) a solution to problem (??).

Theorem 1.2 (Nonexistence). If there exists Γ ⊂ ∂Ω with |Γ|N−1 > 0 such

that γ(x) > 2 on Γ or γ(x) = 2 on Γ with
∂γ(x)

∂ne
≤ 0 there then (??) admits

no solution u ∈ H1
0 (Ω) ∩ L∞(Ω).

We remark that what we will use to show existence of a solution is that
γ(x) < 2 for every x in a strip around ∂Ω inside Ω. Our hypothesis on γ(x)
in Theorem ?? guarantee this fact. Note that we can extend the existence
result to functions γ(x) such that γ(x) < 2 on A ⊂ ∂Ω and γ(x) = 2 on

∂Ω \A with
∂γ(x)

∂ne
> 0 there.

For the nonexistence part we use that there is an open set D ⊂ Ω such
that γ(x) ≥ 2 in D and |∂D ∩ ∂Ω|N−1 > 0. Remark that the conditions on
γ(x) assumed in Theorem ?? imply the existence of such set D.

The paper is organized as follows. Section 2 is devoted to describe the
approximated problems and we prove some properties that we need in the
proof of our main results. In Section 3 we prove the main results. We analyze
the behavior of the solutions to the approximated problems in Section 4.

Notations. As usual, for every s ∈ R we consider the positive and
negative parts given by s+ = max{s, 0} and s− = min{s, 0}. For any k > 0
we set Tk(s) = min(k,max(s,−k)) and Gk(s) = s − Tk(s). We denote by
|E| the Lebesgue measure of a measurable set E in RN and by |Γ|N−1 the
(N − 1)-dimensional surface measure of Γ. For 1 ≤ p ≤ +∞, ‖u‖p is the
usual norm of a function u ∈ Lp(E). We equipped the standard Sobolev

space H1
0 (E) with the usual norm ‖u‖ =

(∫
E |∇u|

2
)1/2

.
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Moreover, for any q > 1, q′ = q
q−1 will be the Hölder conjugate exponent

of q, while for any 1 < p < N , p∗ = Np
N−p is the Sobolev conjugate exponent

of p. As usual, S denotes the best Sobolev constant, i.e.,

S = sup
‖u‖

H1
0(Ω)

=1
‖u‖L2∗ (Ω).

Following [?], we set ϕλ(s) = seλs
2
, λ > 0; we will use here that for every

a, b > 0 we have

(1.5) aϕ′λ(s)− b|ϕλ(s)| ≥ a

2
,

if λ > b2

4a2 . We will also denote by ε(n) any quantity that goes to 0 as n
goes to infinity.

Acknowledgment. Research supported by MICINN Ministerio de Ciencia
e Innovación, Spain under grant MTM2012-31799 and Junta de Andalućıa
FQM-194 (first author) and FQM-116 (second author).

2 Preliminary results

Let us start giving our definition of solution to problem (??).

Definition 2.1. We say that u ∈ H1
0 (Ω) ∩ L∞(Ω) is a positive solution for

(??) if u > 0 a.e. x ∈ Ω,

|∇u|2

uγ(x)
∈ L1(Ω)

and ∫
Ω
∇u∇ϕ+

∫
Ω

|∇u|2

uγ(x)
ϕ =

∫
Ω
f(x)ϕ,

for every ϕ ∈ H1
0 (Ω) ∩ L∞(Ω) with ϕ ≥ 0.

In order to prove our results the approach is to consider the following
approximating problems. For every n ∈ N let un be the solution to

(2.1)

−∆un +
u+
n |∇un|2(

u+
n + 1

n

)γ(x)+1 (
1 + 1

n |∇un|2
) = f in Ω,

un = 0 on ∂Ω.

Now, we prove some estimates that we will need in what follows.

Proposition 2.2. There exists at least one positive solution 0 < un ∈
H1

0 (Ω)∩L∞(Ω) of the approximating problem (??). In addition, the sequence
{un} is bounded in H1

0 (Ω) and in L∞(Ω), i.e. there exists C > 0 independent
of n with

‖un‖H1
0 (Ω) ≤ C, ‖un‖L∞(Ω) ≤ C, ∀n ∈ N.
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Remark 2.3. Standard regularity arguments imply that un is Hölder con-
tinuous.

Proof. Classical results allow us to deduce that the problem (??) has a
solution un that belongs to H1

0 (Ω) (see [?]) and to L∞(Ω) (see [?]).

To prove the a priori estimate in L∞(Ω) we take ϕ = Gk(un) as test
function in (??) to obtain∫

Ω
|∇Gk(un)|2 +

∫
Ω

u+
n |∇un|2(

u+
n + 1

n

)γ(x)+1 (
1 + 1

n |∇un|2
)Gk(un)

=

∫
Ω
f(x)Gk(un).

Using the positivity of the lower order term we deduce that∫
Ω
|∇Gk(un)|2 ≤

∫
Ω
f(x)Gk(un).

Now, by Stampacchia’s method, see [?], it follows from this inequality the
existence of C > 0 such that that

‖un‖L∞(Ω) ≤ C.

Now, we prove the a priori estimate in the Sobolev space. Taking un as
test function in (??) and using Hölder and Sobolev inequalities we arrive to∫

Ω
|∇un|2 +

∫
Ω

u+
n |∇un|2(

u+
n + 1

n

)γ(x)+1 (
1 + 1

n |∇un|2
)un ≤‖f‖q‖un‖q′
≤C S‖f‖q‖un‖.

Using the positivity of the lower order term and that q′ is the conjugate
exponent of q (note that for q > N/2 we have q′ < 2∗) we conclude that the
sequence un is bounded in H1

0 (Ω). Therefore, up to a subsequence, un ⇀ u
for some u ∈ H1

0 (Ω).

On the other hand, taking u−n as a test function in (??) we obtain∫
Ω
|∇u−n |2 +

∫
Ω

u+
n |∇un|2(

u+
n + 1

n

)γ(x)+1 (
1 + 1

n |∇un|2
)u−n =

∫
Ω
fu−n

and as f is nonnegative we get∫
Ω
|∇u−n |2 =

∫
Ω
fu−n ≤ 0.

Therefore, we deduce that un ≥ 0. Moreover, since

−∆un + n‖γ‖L∞(Ω)+2un ≥ f

the strong maximum principle assures that un > 0. �
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Now we prove that the solutions of the approximated problems un are
away from zero in every compact subset of Ω. In this proof is where we ap-
preciate that γ(x) must be less than or equal to 2 only near of the boundary
in order to obtain our existence result.

Proposition 2.4. Let f ∈ Lq(Ω) with q ≥ N
2 satisfying (??) and γ(x) < 2

on ∂Ω or γ(x) ≤ 2 on ∂Ω with
∂γ(x)

∂ne
> 0 then there exists cω > 0 such that

un ≥ cω for every ω ⊂⊂ Ω.

Proof. Let us consider

Ωη = {x ∈ Ω : dist(x, ∂Ω) < η}.

Given ω ⊂⊂ Ω there exists η > 0 such that ω ⊂ Ω \ Ωη. The conclusion
follows from the fact that there exists c > 0 such that un(x) ≥ c a.e. x ∈
Ω \ Ωη. Note that it is enough to show this for η small.

We will prove this fact in two steps. In the first one we prove that there
exists c > 0 such that un(x) > c for every x ∈ ∂(Ω\Ωη). Then, in the second

step, we will use this inequality to prove the claim in the whole Ω \ Ωη.

Step 1. We may assume that η < δ, where δ is given by (??). Since

γ(x) < 2 on ∂Ω or γ(x) ≤ 2 on ∂Ω with
∂γ(x)

∂ne
> 0 then there exists

η1 ∈ (0, δ) such that, for every η < η1 there exists γ∗η < 2 with

0 ≤ γ(x) ≤ γ∗η < 2

for every x ∈ Ωη \ Ω η
4
. Thus we will assume that 0 < 2η < η1 < δ and we

also have that ∂(Ω \ Ωη) ⊂ ω1 with

ω1 :=

{
x ∈ Ω :

3η

4
< dist(x, ∂Ω) <

5η

4

}
.

Observe that ω1 ⊂⊂W where

W :=
{
x ∈ Ω :

η

2
< dist(x, ∂Ω) < 2η

}
⊂ Ω2η \ Ω η

2
.

For every 0 < s < C, with C given by Proposition ??, and x ∈ W we have
that

s

(s+ 1
n)γ(x)+1

≤ (C + 1)γ
∗
2η

sγ
∗
2η

.

Taking

h(s) =
(C + 1)γ

∗
2η

sγ
∗
2η

we have that 0 < un ∈ H1(W ) ∩ C(W ) is a supersolution to the equation

−∆z + h(z)|∇z|2 = T1(f) in W.
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Therefore, we can use Proposition 2.3 in [?] (note that condition (??) implies
that T1(f) satisfies (1.4) of that paper in W and, since γ∗2η < 2, the function

h satisfies (1.7) of [?]). We deduce the existence of cω1 > 0 that un(x) ≥ cω1

for every x ∈ ω1, n ∈ N.

Step 2. Using that, from Step 1, un(x) ≥ cω1 in ∂(Ω \Ωη) we prove now

that un ≥ cω1 in D := Ω \ Ωη.

We take φk ∈ C1
0 (Ω), with φk ≥ 0 and supp(φk) ⊂⊂ D, as test function

in (??) and we obtain∫
D
∇un∇φk +

∫
D

un|∇un|2(
un + 1

n

)γ(x)+1 (
1 + 1

n |∇un|2
)φk =

∫
D
fφk.

Thus, by density, for every nonnegative φ ∈ H1
0 (D) ∩ L∞(D) we have∫

D
∇un∇φ+

∫
D

un|∇un|2(
un + 1

n

)γ(x)+1 (
1 + 1

n |∇un|2
)φ =

∫
D
fφ.

Using that

un|∇un|2(
un + 1

n

)γ(x)+1 (
1 + 1

n |∇un|2
) ≤ (C + 1)‖γ‖L∞(Ω)

|∇un|2(
un + 1

n

)‖γ‖L∞(Ω)

we obtain, with c = (C + 1)‖γ‖L∞(Ω) , that∫
D
∇un∇φ+

∫
D
c

|∇un|2(
un + 1

n

)‖γ‖L∞(Ω)
φ ≥

∫
D
fφ,

for every 0 ≤ φ ∈ H1
0 (D) ∩ L∞(D).

Now, consider

Hn(s) =

∫ s

1

c

(s+ 1
n)‖γ‖L∞(Ω)

dt.

If we take in the previous inequality e−Hn(un)(cω1 −un)+ ∈ H1
0 (D)∩L∞(D)

as test function it follows that

−
∫
D∩{cω1≥un}

|∇un|2e−Hn(un) ≥
∫
D
fe−Hn(un)(cω1 − un)+ ≥ 0.

Then, (cω1 − un)+ ≡ 0 and therefore un ≥ cw1 in D. �

3 Proofs of the main results

Proof of Theorem ??. The result follows from the following steps. First we
prove that un → u strongly in H1

loc(Ω) and next that we can pass to the
limit in (??).
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Step 1. un → u strongly in H1
loc(Ω). Here we prove that

(3.1) lim
n→+∞

∫
Ω
|∇(un − u)|2φ = 0, ∀φ ∈ C∞0 (Ω) with φ ≥ 0.

Reasoning as in [?], we consider the function ϕλ(s) defined in (??) and
we choose ϕλ(un − u)φ as test function in (??), we have∫

Ω
∇un · ∇(un − u)ϕ′λ(un − u)φ+

∫
Ω
∇un · ∇φϕλ(un − u)

+

∫
Ω

un|∇un|2(
un + 1

n

)γ(x)+1 (
1 + 1

n |∇un|2
)ϕλ(un − u)φ

=

∫
Ω
f ϕλ(un − u)φ.

Since, up to a subsequence, un → u weakly in H1
0 (Ω) and strongly in L2(Ω),

we note that∫
Ω
f ϕλ(un − u)φ −

∫
Ω
∇un · ∇φϕλ(un − u) = ε(n).

Moreover, choosing ωφ ⊂⊂ Ω with suppφ ⊂ ωφ, from Proposition ??,

Proposition ?? and the fact that γ(x) ∈ C(Ω), we deduce that∫
Ω

un|∇un|2(
un + 1

n

)γ(x)+1 (
1 + 1

n |∇un|2
)ϕλ(un − u)φ

≥ −c(ωφ)

∫
Ω
|∇un|2|ϕλ(un − u)|φ .

Thus, it follows that

(3.2)

∫
Ω
∇un · ∇(un − u)ϕ′λ(un − u)φ−

−c(ωφ)

∫
Ω
|∇un|2|ϕλ(un − u)|φ ≤ ε(n).

Adding

−
∫

Ω
∇u · ∇(un − u)ϕ′λ(un − u)φ = ε(n)

in both sides of (??) and since∫
Ω
|∇un|2|ϕλ(un − u)|φ ≤2

∫
Ω
|∇(un − u)|2|ϕλ(un − u)|φ

+ 2

∫
Ω
|∇u|2|ϕλ(un − u)|φ

=2

∫
Ω
|∇(un − u)|2|ϕλ(un − u)|φ + ε(n),

we find ∫
Ω
|∇(un − u)|2

[
ϕ′λ(un − u)− 2c(ωφ)|ϕλ(un − u)|

]
φ ≤ ε(n).
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Choosing λ such that (??) holds with a = 1 and b = 2c(ωφ), we conclude
that (??) is satisfied.

Step 2. We pass to the limit in (??). Choosing 1
εTε(un) as test function in

(??), we obtain∫
Ω

Tε(un)

ε

un|∇un|2(
un + 1

n

)γ(x)+1 (
1 + 1

n |∇un|2
) ≤ ∫

Ω
f .

If we take the limit as ε tends to zero, and we use that un > 0 in Ω, we get

(3.3)

∫
Ω

un|∇un|2(
un + 1

n

)γ(x)+1 (
1 + 1

n |∇un|2
) ≤ ∫

Ω
f .

Since

−∆un = f − un|∇un|2(
un + 1

n

)γ(x)+1 (
1 + 1

n |∇un|2
) ,

and the right hand side is bounded in L1(Ω) by the assumptions on f and
by (??). Then we can apply Lemma 1 of [?] (see also [?]) to deduce that,
up to (not relabeled) subsequences, ∇un converges to ∇u a.e. in Ω.

Using Fatou lemma in (??), we get∫
Ω

|∇u|2

uγ(x)
≤
∫

Ω
f.

Therefore, to conclude the proof we only have to show that u is a distri-
butional solution of the problem (??). We begin by passing to the limit as
n→∞ in the equation satisfied by un, that is, in∫

Ω
∇un · ∇φ +

∫
Ω

un|∇un|2(
un + 1

n

)γ(x)+1 (
1 + 1

n |∇un|2
)φ =

∫
Ω
fφ , ∀φ ∈ C∞0 (Ω).

First of all, the weak convergence of un to u implies that

(3.4) lim
n→+∞

∫
Ω
∇un∇φ =

∫
Ω
∇u∇φ , ∀φ ∈ C∞0 (Ω).

On the other hand, if we fix ω ⊂⊂ Ω, then, by Proposition ??, Proposition ??
and since γ(x) ∈ C(Ω), we get

un(
un + 1

n

)γ(x)+1
≤ c(ω), ∀n >> 1, and ∀x ∈ ω.

Consequently, if E ⊂ ω it follows that∫
E

un|∇un|2(
un + 1

n

)γ(x)+1 (
1 + 1

n |∇un|2
) ≤ c(ω)

∫
E
|∇un|2.(3.5)
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Let ε > 0 be fixed. Since un is strongly compact in H1
loc(Ω) and there exist

nε, δε such that for every E ⊂ ω ⊂⊂ Ω with meas(E) < δε, we have∫
E
|∇un|2 <

ε

c(ω)
, ∀n ≥ nε.

In conclusion, by (??), we see that meas (E) < δε implies∫
E

un|∇un|2(
un + 1

n

)γ(x)+1 (
1 + 1

n |∇un|2
) ≤ ε, ∀n ≥ nε,

i.e., the sequence
un|∇un|2(

un + 1
n

)γ(x)+1 (
1 + 1

n |∇un|2
)

is equiintegrable. This, together with its a.e. convergence to |∇u|
2

uγ(x) , implies
by Vitali’s theorem that

lim
n→+∞

∫
Ω

un|∇un|2(
un + 1

n

)γ(x)+1 (
1 + 1

n |∇un|2
)φ =

∫
Ω

|∇u|2

uγ(x)
φ, ∀φ ∈ C∞0 (Ω).

Therefore, using the above limit and (??) we conclude that∫
Ω
∇u∇φ +

∫
Ω

|∇u|2

uγ(x)
φ =

∫
Ω
fφ , ∀φ ∈ C∞0 (Ω),

as we wanted to show. �

Now we prove our nonexistence result.

Proof of Theorem ??. From our hypothesis, we may assume that Γ = ∂D ∩
∂Ω with D ⊂ Ω open such that γ(x) ≥ 2 for every x ∈ D.

We prove the result using the ideas of [?]. Assume on the contrary that
there exists some u ∈ H1

0 (Ω) ∩ L∞(Ω) solution of (??) with u > 0 a.e. in Ω
such that ∫

Ω

|∇u|2

uγ(x)
dx < +∞.

Since γ(x) ≥ 2, we know in D that∫
D

|∇u|2

(u+ ε)2
≤
∫
D

|∇u|2

u2
≤ c

∫
D

|∇u|2

uγ(x)
< +∞, ∀ε > 0,

i.e., ∫
D
|∇(ln(u+ ε)− ln(ε))|2 ≤ C3, ∀ε > 0.

Denoting zε = | ln(u+ ε)− ln(ε)|, we have that zε ∈ H1(D) with zε = 0 on
∂D ∩ ∂Ω. Now we observe that there exists a constant C4 such that

(3.6)

∫
D
g2 ≤ C4

∫
D
|∇g|2
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for any function g ∈ H1(D) with g = 0 on Γ. To see this fact, we argue by
contradiction. Assume that there is a sequence gn such that

∫
D |∇gn|

2 → 0

and
∫
D g

2
n = 1. Then gn converges strongly in H1(D) to a function g0 that

verifies
∫
D |∇g0|2 = 0 (hence, g0 = cte)

∫
D g

2
0 = 1 and g0 = 0 on Γ, a

contradiction. Thus, using the generalized Poincare’s inequality (??) we get∫
D
z2
ε ≤ C4

∫
D
|∇zε|2 ≤ C4C3 := C5, ∀ε > 0.

Denote En = {x ∈ D : u(x) > 1
n} for every n ∈ N. Then we have

{x ∈ D;u(x) > 0} =
∞⋃
n=1

En,

which implies that

0 < |D| ≤
∞∑
n=1

|En|

and then there exists n0 ∈ N such that |En0 | > 0. We deduce∣∣∣∣ln( 1

n0
+ ε

)
− ln(ε)

∣∣∣∣2 · |En0 | ≤
∫
En0

| ln(u+ ε)− ln(ε)|2 ≤ C5,

for every ε > 0, therefore∣∣∣∣ln( 1

n0
+ ε

)
− ln(ε)

∣∣∣∣2 ≤ C5

|En0 |
< +∞, ∀ε > 0.

Now, as ε goes to zero, we obtain a contradiction. �

4 Behavior of the approximating solutions un

In this section we analyze the behavior of the solutions of the approximat-
ing problems (??) in the case in which there is no solution in the Sobolev
space H1

0 (Ω).

We consider here the case Ω = D1 ∪D2, where D1, D2 ⊂ Ω are open sets
with |∂D2 ∩ ∂Ω|N−1 > 0 and

γ(x) < 2 for every x ∈ D1,

γ(x) ≥ 2 for every x ∈ D2.

This will be referred as condition (H).

In this case Theorem ?? assures that there is no solution u ∈ H1
0 (Ω) ∩

L∞(Ω) of (??). We explain what occurs with the approximations un in the
following result.
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Theorem 4.1. Assume (??) for every δ > 0 and that condition (H) is
satisfied. Then the weak limit u of the sequence un satisfies that 0 < u in
D1, u ≡ 0 in D2, u ∈ H1

0 (D1) ∩ L∞(Ω) and u satisfies

(4.1)

−∆u+
|∇u|2

uγ(x)
= f in D1,

u = 0 on ∂D1.

Moreover, there exists a Radon measure ν0 ∈ M(Ω) supported in D2 such
that, in the sense of distributions,

(4.2)

−∆u+
|∇u|2

uγ(x)
χD1 = f − ν0 in Ω,

u = 0 on ∂Ω.

Proof. Observe that the sequence un of solutions of (??) weakly converges
in H1

0 (Ω) to u ∈ H1
0 (Ω) ∩ L∞(Ω) (using the Sobolev’s estimate proved in

Proposition ??). Moreover, Proposition ?? is valid for ω ⊂⊂ D1 (observe
that what we use in that result is that γ(x) < 2 for every x in a strip around
∂Ω inside Ω) and, in particular, u > 0 in D1. Even more, as in (??) we have
that

νn =
un|∇un|2

(un + 1
n)γ(x)+1(1 + 1

n |∇un|2)
is bounded in L1(Ω),

therefore, the result of [?] yields that (up to subsequences) ∇un converges
to ∇u almost everywhere in Ω. Thus there exists a positive Radon measure
ν ∈ M(Ω) such that, up to a subsequence, νn → ν in the weak-∗ topology

of measures. Since we can use Fatou lemma to obtain that |∇u|
2

uγ(x) ∈ L1(D1)

we can even assume that ν = |∇u|2
uγ(x) χD1(x) + ν0, where ν0 is a nonnegative

bounded Radon measure on Ω.

Now we claim that u = 0 in D2. Indeed, if D = {x ∈ D2 : u(x) > 0}
and |D| > 0 then, since γ(x) ≥ 2 in D2 we can argue as in the proof of
Theorem ?? (observe that u ∈ H1(D) and u = 0 on a subset of ∂D of
positive measure). For example, if D = D2 then u = 0 on ∂D2 ∩ ∂Ω. As
another example, we mention that if D ⊂ D2 then u = 0 on ∂D. Thus we
reach a contradiction and the claim is proved.

As a consequence u ∈ H1
0 (D1) and, as in the proof of Theorem ??, we can

pass to the limit in the approximating problems to prove (??). In addition,
(??) follow from the weak-∗ convergence of νn. Finally, in order to prove
that ν0 is supported in D2 we observe that, taking φ ∈ C∞0 (D1) as test
function in (??) and (??) and substracting we obtain that∫

Ω
φdν0 = 0.
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On the other hand, taking φ ∈ C∞0 (D2) as test function in (??) and using
that u = 0 in D2 we get that∫

Ω
φdν0 =

∫
Ω
fφ. �

Remark 4.2. Now we just remark that when we consider (H) in the case
∂D2 ∩ ∂Ω = ∅ we have proved that the weak limit u of the sequence un
satisfies that 0 < u in Ω and it is a solution to (??). This is a consequence
of the fact that we have γ(x) < 2 in a strip near the boundary of Ω, and
hence the approximations converge to a solution to (??) as was proved in
Theorem ??.

The case in which ∂D2 ∩ ∂Ω 6= ∅ with |∂D2 ∩ ∂Ω|N−1 = 0 is left open.

Remark 4.3. Finally we point out that, as in [?] or [?], the above results
can be generalized to a more general class of differential operators. More
precisely we can consider−div(M(x, u)∇u) +Q(x, u)

|∇u|2

uγ(x)
= f in Ω,

u = 0 on ∂Ω,

with M(x, s) a matrix with coefficients mi,j(x, s), such that Q and mi,j

are Carathéodory functions, i, j = 1, . . . , N and for some positive constants
a, b, α, β it is satisfied that

0 < a ≤ Q(x, s) ≤ b, s > 0,

0 < α|ξ|2 ≤M(x, s)ξ · ξ, |M(x, s)| ≤ β, s > 0, x ∈ Ω, ξ ∈ RN .
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