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A b s t r a c t .  New methods for estimating confidence limits for quantiles 
in a finite population are proposed. These methods use auxiliary in- 
formation through the ratio, difference and regression estimator of the 
population distribution function. They may be applied to any type of 
sampling. Simulation studies based of two real populations show that 
the methods proposed in this paper can be considerably more efficient 
than the customary classic method. 
Key words: auxiliary information, finite population quantiles, ratio, dif- 
ference and regression type estimator, confidence intervals. 

1 I n t r o d u c t i o n  

In survey practice, it is often of interest to study variables with a highly skewed 
distribution. In such situations, it is useful to make inferences about  finite po- 
pulation quantiles. Sample medians have long been recognized as simple robust 
alternatives to sample means, for estimating location of heavy-tailed or markedly 
skewed populations from simple random samples. A large class of robust esti- 
mates of location, including the sample median, was investigated in the Princeton 
simulation study (D.F. Andrew et al (1972)). Although the sample median did 
not emerge as best estimate in many nonstandard populations simulated in the 
study, its robustness in small samples for medium and large deviations from 
normality was clearly demonstrated. Its simplicity relative to other robust esti- 
mates, indicated its choice. Unfortunately, while there is an extensive literature 
on the estimation of means and totals, relatively less research has been done 
to development of efficient methods for estimating finite population quantiles. 
Moreover, most of these methods in simple random sampling (Gross 1980, Se- 
dransk and Meyer 1978, Smith and Sedransk 1983) does not make explicit use of 
auxiliary variable is available, it is natural  to expect that  the auxiliary informa- 
tion can be incorporated to construct an estimator more efficient than the direct 
estimator (sample quantile). 
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The use of indirect methods for estimating a finite population mean has been 
widely studied (see Cochran 1977), however, it is not immediately clear how these 
well-established techniques, such as the regression estimator, can be extended 
to the case of estimating the quantiles. 

Increasingly, this need is being recognized, so point estimation of finite pop- 
ulation quantiles that uses auxiliary information has received considerable at- 
tention (Chambers and Dunstan, 1986, and Rao, Kovar and Mantel, 1990), both 
suggested estimating quantiles by in inverting improved estimates of the distri- 
bution functions in presence of auxiliary information. Other references are Kuk 
and Mak (1989,94), Mak and Kuk (1993). 

In this paper, we suggest alternative procedures for determining confidence 
intervals for a finite population median and other quantiles, under simple random 
sampling and using an auxiliary variable. 

Let yl, y2, . . . ,  YN denote the values of the population elements U1, U2, . . . ,  
UN, for the variable of interest y. For any y (-c~ < y < c~), as the population 
distribution Fy(y) is defined as the proportion of elements in the population 
that are less than or equal to y. 

The finite population/~ quantile is defined as 

Qy(Z)=FVI(Z), 
where F y  1 is the inverse function of Fy. 

The general procedure to estimate the population quantile Qy (/~), using data 
Yk for k E s, where s is a simple random sample can be summarized as follows: 
we first produce an estimated distribution function, Fy(y), and then, estimate 
Qy (/~) = F y  1 (/~) as ~)y (/~) = ~y1 (/~), where the inverse ~y1 is to be understood 
in the same way as F y  1 above. This method has been in use for a long time; the 
first published account is probably Woodruff (1952). 

Woodruff (1952) describes a general method of obtaining confidence inter- 
vals for medians and others positions measures using a principle that has been 
applied to sample random sampling and extending it to any type of sampling. 
These confidence limits can be approximated for any sampling design where the 
variance of the percentage of items less than a stated value can be acceptably 
estimated (in general, where large samples are involved). 

We present new methods to derive the confidence interval finite population 
quantiles in Section 2 and 3. Ratio, difference and regression estimators of the 
population distribution function based on an auxiliary variable is the key to 
these methods. We also compare the methods that we propose and Woodruff's 
method using simulation studies, in Section 4. 

2 Confidence intervals for the quantiles using ratio, 
difference and regression estimators 

Consider the simple random sampling design. Suppose that the population under 
study consists of N units, and attached to each of these units are the values of the 
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survey variable y of interest and an auxiliary variable x. It 's assumed that only 
the population/3th quantile Qx(/3) of x is known and that Qv(/3) is to be esti- 
mated on the basis of a simple random sample of size n. Let (x~, y l ) , .  �9 -, (xn, y , )  
be the associated values of the variables x and y for the units in the sample. 

Consider the ratio, difference and regression estimators 

- ~ ( q ~  (/3)) - ~F~(QY (/3))/3 
Fx(Qx (/3)) 

~ ( ~  (/3)) = ~(o,Y (/3)) + (/3- ~(O.x (/3))) 

(b is a known constant) and the constants c~ and c~, i = 1, 2, 3 such that 

{4  _< ~ . ( ~ .  (/3)) _< 4 }  = 1 - . .  

{4  _< ~ ( ~ Y  (/3)) _< 4 }  = 1 - ~  

f o 
P 1 - a .  

Thus, the approximated 100(1 - a ) %  confidence intervals for Qy(/3) will be 

[~1 ( 4 - b  (~ - ~ x  ~ ) ) ,  ~ 1  ( 4 - b  (~ - ~ q x  ~))] 
For large samples, Fy(Qy (fl)), Fx(Qx (/3)) and FR(Qv (/3)) are approxi- 

mately normally distributed (see Kuk and Mak, 1989). Then, the asymptotic 
distributions of the estimation FD(QY (/3)) and Faeg(QY (/3)) approach a nor- 
mal distribution, and we would choose the smallest confidence interval as 

c~ = ~-z~ {v ( ~ / ~ / ~ ) }  ~ , 
and 

4 = ~ + ~ {v ( ~ q y  ~/~) } ~ , 
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1 

We don't know Qy (8), then the problem of evaluating the last unknown vari- 

ances is not so simple. For example, to evaluate the variance V (FR(QY (8))),  
we make the variables 

FY(QY (8)) - Fy(Qy (8)) Fx (Qx  (8)) - Fx (Qx  (8)) 
eo -~ Fy(Qy (8)) , el .= Fx (Qx (8)) 

Then, Taylor's series expansion yields 

v ( ~ . ( Q y  (8)) )  -~ F y ( Q .  (8)) ~ (~ (e~) + E (d )  - 2E ( ~ 0 ) )  -- 

= 2 1 - f  s ( 1 - 8 ) - 2 C o v ( ~ ' x ( Q x ( 8 ) ) , F y ( Q y ( 8 ) ) ) .  (1) 
n 

We have to calculate the value of Coy (F'x(Qx (8)) ,Fy(Qy (8))) ,  therefore 
we consider the two-way classification 

[~ <_ Qx(8) xk > Qx(8)[ 
Yk <_ QY(8) I n l l \  NIl n~2 \ N12 {N~. 
yk_ > QY(8) n21 \ N21 n22 \ N22 [N~.' 

N.1 N.2 [ 
where n n  denotes the number of units in the sample with x < Qx (8) and 
Y <_ QY (8); and N n  is the number of units in the population with x <_ Qx (8) 
and y < Qy (8). Thereby, 

(n11, n12, n21, n22) '~ HG(N, n, Nll, N12, Nul), 

nT'y(Qy (fl)) = n l l +  n12 and similarly n-Px(Qx (8)) = n l l +  n21. 
Besides, we can verify that 

) N - n n  
Cov nFy(Qy (fl)) ,nFx(Qx (fl)) - Y 1 N 2 (NnN22 -N12N21). 

Substituting the last expression in (1) we have 

(2) 
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Denoting Cramer's V coefficient as 

~ 1 ~ 2 - N 1 2 ~ 1  
~/N1.N2.N.1N.2 

we can rewrite the following expression 

V (FR(QY(~))) = 1 -- f 2~(1 --/3)(1 -- r  (3) 
n 

Analogously, we evaluate the variances o f  FD (QY (/3)) and FReg (QY (/3)) which 
are given by (3) and 

V ,A{FR~ (Qy(~))) ~ = 1 - f/~(1 - /3)(1 + b 2 - 2bCz). (4) 
\ n 

In practice Cf~ is unobservable since Qy(~) is unknown and therefore has 
to be estimated from the sample. Substituting nij for fi~j, based on a similar 
cross-classification 

x~ <_ ~)x(Z) x~ > 5x (Z )  
Yk <_ Q,Y(/~) nil \ N l l  n12 \ J~12 , 

and then, we would consider the following estimator for r 

~/3 = ?~117~22 - - n 1 2 n 2 1  

So, the intervals 

[~y1 (52_  ( B -  Fx(Qx ( f ~ ) ) ) ) , V  1 (522- ( / 3 -  Fx(Qx (f~))))] and 

[~y1 (53-b (~ - Fx(Qx ( /~)))) ,  ~y1 (5~ - b (~ - Fx(Qx (/3))))] where 

---- c, (/3) = /3 + ( -1) iz~  1 f 2 ~ ( 1 - D ) ( 1 - r  
n 

i= 1,2, 

1 

53(f]) = f ]+  (-1)~z~ /3(1 - /3)(1  + b  2 - 2br i = 1,2, 

are 100(1 - a)% confidence intervals for Qy(l~). When the sample size is small, 
the method should be applied with caution, as this method relies on several 
approximations. 
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3 C o n f i d e n c e  i n t e r v a l s  f o r  q u a n t i l e s  u s i n g  t h e  o p t i m u m  

r e g r e s s i o n  e s t i m a t o r  

~ o p t  The optimum regression estimator, . Re9 (QY(~)), that is, the regression type 
estimator with the smallest variance, is obtained in this section. The variance 
(4) is minimum to b = ~b~, and then we consider the regression type estimator 
for the population distribution function as follows: 

FR ~ ~9 (QY(~)) ~Y (Qv(~3)) + r ( Z -  Fx (QxG3))) , 

and its variance is given by 

(Qv(~))) = 1 - f~(1  - ~)(1 - r V \.  R~g n 

This regression type estimator is always more precise than the simple esti- 
mator Fr (Qy(fl)) (except to r -- 0), although it has the same difficulty that 
the previous estimators since r is unobservable, because Qy(f~) is unknown. 
To resolve this difficulty, we take the coefficient estimation corresponding to r 
but with Qy(13) and Qx(13) replaced by (~)y(/7) and ~)x(/~), respectively, which 
gives 

[ \ 

Now, the asymptotic distribution of FRea (QY (/7)) can be derived through the 
following reasoning: if Pll denotes the proportions of units in the sample with 
x < (~)x(/7) and y < Qv(B), and Pll  the proportions of units in the populations 
with x < Qx(B) and y < Qy(B), it can be see that 

~*~g (QY(~)) = FY (QY(/7)) + f / ( l ~  

Since Fx  (QY(~)) -+ ~/in probability and Pll -/:)11 is of order Op (n -1) 
(see Kuk and Mak, 1989), then 

= opt (1 )  
F og (QY(/7)) - Ro. (QY(/7)) + op , 

^ ^ ~  ~ o p t  and F~g (Qy(iT)) has the same asymptotic distribution ~,~ ~steg (Qy(13)). Hence 
A 

F~g (Qv(~)) is asymptotically normal with mean/7 and variance 

1 - ffl(1 -/7)(1 - r 
n 

Considering this new regression estimator we can derive a confidence interval 
for the/Tth quantile Qy(/7) as follows: 

= F eg �89 



IMPROVEMENT ON ESTIMATING QUANTILES IN FINITE POPULATION 497 

where 

Then, 

- f / Y ( 1  - / ~ ) ( 1  - ~ ) .  
n 

is a confidence interval with confidence coefficient 1 - a for Qy(~). 

4 S i m u l a t i o n  s t u d y  

To compare the efficiencies of the proposed methods and Woodfruff's method; 
we use simulation studies. Choose and fix a 1 - ~ level of confidence and a sample 
size n, consider 1000 samples of size n from the population and for each sample 
compute the length of the confidence intervals by several methods. The average 
length of 1000 samples yields information about the precision of each method. 
Furthermore, their variances yield information about the representatively of the 
means. 

We carry out empirical studies using two finite populations, the first one 
being the block population (Kish, 1965). The data consist of 270 blocks, and 
Y and X in this example are respectively the number of rented houses and the 
number of houses in each block, respectively. 

Table 1 shows the average length, l, and the variance length, a~, of the 
confidence intervals built using Woodfruff's method (classical) and the ratio, 
difference and regression methods that we propose, for 1000 samples of size n, 
for n = 30, 35, 40, 45, 50 and 100 selected from the population for Qy(0.5) and 
100(1 - c~)% = 90%, 95% and 99%. 

Prom table 1, we can see that for this population there is considerable im- 
provement between the average length of the confidence intervals built using the 
methods proposed in this paper and the classical method, for any quantile and 
confidence coefficient. For example, if 100(1- a)%--:95% and n = 50, the average 
length of 1000 confidence intervals determined using the ratio, difference and re- 
gression methods are, respectively, 63, 59 and 49 percent of the average length 
of the respective confidence intervals constructed using the classical method. In 
this population, the variables Y and X are well correlated, and the concordance 
is high. 

The second population (Ferndndez and Mayor, 1994) consist of 1500 house- 
holds. In this example Y and X are the annual food costs and annual income, 
respectively. Table 2 shows the results of this second simulation study. 

For two population we compute the proportion of intervals that contains the 
actual population quantile (Cove). We observe this variable doesn't differ a lot 
from the nominal coverage. Only in the case of the first population this difference 
is noteworthy for small samples with the regression method. As the sample size 
increases, the Cove variable is on the increase too and even surpasses the nominal 



498 GARCiA, CEBRIAN, AND RODRfGUEZ 

coverage, as it happened in the first population, moreover the average length 
keeps being lower than the direct method. 

In the two populations, we verify that  the proposed methods determine 
more precise confidence intervals for finite population quantiles than Woodruff 's 
method. 
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Table  1. Block population. Qy (0.5). 

100(1  - -  o~)~176 
n m e t h o d  1 Cove ~ 

30 classical: 13.08 .941 24.78 
rat io:  8.75 .911 35.97 

difference: 8,22 .910 21.57 
regression: 5.79 .791 15.22 

35 classical: 12,12 .928 17.34 
rat io:  7,68 .932 23.59 

difference: 7,35 .927 13.62 
regression: 5,56 .850 10.51 

40 classical: 9.86 .903 13.83 
rat io:  7.17 .939 17.02 

difference: 6.99 .948 10.47 
regression: 5.36 .885 7.87 

45 classical: 9.47 .937 10.27 
rat io:  6.20 .950 10.35 

difference: 5.98 .953 7.16 
regression: 4.90 .913 5.40 

50 classical: 9.51 .934 11.10 
rat io:  5.93 .953 8.87 

difference: 5.63 .947 5.52 
regression: 4.77 .912 4.38 

100 classical: 5.39 .925 2.49 
rat io:  3.25 .947 1.32 

difference: 3.10 .937 1.05 
regression: 2.88 .940 0.88 

100(1 - -  a ) % = 9 5 %  

l Cove a~ 
15.83 .974 32.21 
10.36 .941 53.06 

9.81 .942 26.78 
6.98 .832 18.61 

100(1 - ~ ) % = 9 9 %  

l Cove a~ 
19.01 .986 36.92 
13.49 .958 76.16 
13.05 .958 52.27 

9.52 .856 29.72 
12.06 .932 18.94 17.79 .996 26.34 

9.41 ,956 46.44 11.68 .972 45.41 
8.83 .955 19.79 11.36 .972 25.51 
6.62 ,889 13.66 8.92 .909 20.38 

12.04 .957 15.51 16.48 .990 20.83 
8.17 .962 28.79 11.42 .979 45.53 
7.89 .962 13.39 10.79 .980 19.77 
6.31 .905 10.67 8.72 .945 13.61 

11.43 .945 13.66 15.71 .994 18.28 
7.53 .964 15.05 10.21 .979 30.54 
7.23 .965 9.68 9.66 .981 15.37 
5.95 .929 7.40 8.07 .958 10.68 

10.99 .965 11.47 
6.94 .967 11.84 
6.48 .962 7.56 
5.41 .928 5.74 
6.28 .958 2.81 
3.98 .972 1.97 
3.79 .969 1.42 
3.47 .959 1.06 

14.53 .993 15.99 
9.37 .987 22.68 
8.78 .986 11.34 
7.44 .967 7.24 
8.97 .996 4.15 
5.03 .994 3.00 
4.85 .995 2.02 
4.52 .990 1.35 

Table 2. Household population. Qy(0.5). 

100(1 -- ~ ) % = 9 0 %  

n m e t h o d  1 Cove a~ 
30 classical: 902.42 .920 70012.73 

rat io:  732.42 .845 102011.39 
difference: 735.94 .872 72255.67 
regression:  647.72 .864 57635.63 

35 classical: 869.32 .910 61117.19 
rat io:  717.95 .899 74739.91 

difference: 705.56 .904 60664.25 
regression: 615.78 .890 47201.46 

40 classical: 815.62 .907 48657.10 
rat io:  651.66 .885 58891.99 

difference: 637.23 .886 43446.93 
regression:  554.84 .884 34808.63 

45 classical: 659.01 .865 33460.33 
rat io:  619.80 .892 54675.29 

difference: 603.06 .885 39712.07 
regression: 533.12 .886 29573.68 

50 classical: 659.93 .905 29497.58 
rat io:  569.48 .878 38292.25 

difference: 570.99 .892 30036.28 
regression: 498.01 .895 24763.54 

100 classical: 442.95 .895 11055.36 
rat io:  386.65 .877 12057.26 

difference: 385.23 .887 10022.00 
regression: 345.74 .878 8792.42 

100(1 -- ~ ) % = 9 5 %  

I Cove a~ 
1120.36 .961 78944.98 

932.74 .924 163754.75 
913.56 .937 96244.71 
775.95 ,923 68952.73 

l Cove a~ 
1343.77 .989 67891.63 
1269.66 .970 250355.64 
1244.99 .980 135796.34 
1043.31 .972 90731.77 

1037.03 .967 66873.03 1416.70 .996 81143.97 
838.36 .924 106418.91 1122.44 .976 169528.73 
853.60 ,936 76192.88 1132.52 .990 101151.03 
729.89 ,933 56199.54 965.02 .983 71993.33 
987.70 ,963 53706.22 1316.73 .991 67421.45 
765.09 ,922 77151.24 1044.07 .974 138418.58 
771.50 .934 57501.28 1052.02 .987 78183.77 
670.20 .923 43843,52 901.39 .978 53760.44 
801.92 .931 42223,61 1100.41 .986 55879.21 
735.40 .946 72341.49 977.01 .979 99075.30 
737.81 .960 48640,51 984.62 .983 60614.36 
647.30 .948 35393,71 857.71 .983 47882.70 
784.47 .942 37390.02 1033.61 .989 44294.93 
678.98 .934 50601,72 906.85 .973 84822.34 
686.16 .947 39557,14 901.79 .979 52860.35 
600.00 .937 31051,13 797.53 .984 40655.98 
573.00 .963 14610.82 761.55 .998 19171.91 
470.89 .944 15444.78! 617.80 .985 19659.33 
473.97 .948 13011.61 612.82 .987 15872.20 
419.40 .945 10947.29 553.51 .987 14143.49 


