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Human spatial memory research has significantly progressed since the development of
computerized tasks, with many studies examining sex-related performances. However,
few studies explore the underlying electrophysiological correlates according to sex.
In this study event-related potentials were compared between male and female
participants during the performance of an allocentric spatial recognition task. Twenty-
nine university students took part in the research. Results showed that while general
performance was similar in both sexes, the brain of males and females displayed a
differential activation. Males showed increased N200 modulation than females in the
three phases of memory process (encoding, maintenance, and retrieval). Meanwhile
females showed increased activation of P300 in the three phases of memory process
compared to males. In addition, females exhibited more negative slow wave (NSW)
activity during the encoding phase. These differences are discussed in terms of
attentional control and the allocation of attentional resources during spatial processing.
Our findings demonstrate that sex modulates the resources recruited to performed this
spatial task.

Keywords: spatial orientation, gender, spatial memory, dimorphism, evoked potential

INTRODUCTION

Knowledge about the external world and how our brain uses this information during spatial
orientation tasks have been the subject of many studies over the last decades. The development
of computerized virtual reality (VR) tasks allows spatial abilities to be assessed in controlled
environments while maintaining high levels of ecological validity (Matheis et al., 2007). A further
advantage of VR tasks is the ability to combine them with different neuroimaging techniques, which
are responsible for the identification of many neural structures underlying spatial behavior, such as
the hippocampal area (Burgess et al., 2002), parietal (Husain and Nachev, 2007), and retrosplenial
cortices (Mitchell et al., 2018), among others. Furthermore, the hippocampus and medial temporal
lobe structures have been specifically implicated in allocentric representation (Iaria et al., 2009), the
ability to form spatial associations between objects and locations that are independent of the viewer.
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Because allocentric spatial orientation involves the medial
temporal lobe, a brain region that also contributes to episodic
memory (Burgess et al., 2002), these VR spatial allocentric tasks
are especially interesting in the learning and memory research
field. However, the combination of VR allocentric-based tasks
and electrophysiological studies was not an easy job. Navigation
in a virtual scenery demands different movements interfering
with the collection of cortical activity. In addition, evoked brain
activity requires that events be controlled in time, thus making
possible to match behavioral and electrophysiological processes.

On this note, spatial recognition-based tasks are an attractive
alternative method to assess allocentric processes, often requiring
participants to retrieve memories from shifted viewpoints. Given
that viewpoint manipulation has been reported to depend on the
integrity of the medial temporal lobe (King et al., 2002; Lambrey
et al., 2008), spatial recognition tasks could be appropriate
paradigms to study the electrophysiological and neural features of
allocentric spatial memory performance. Note that some previous
studies used behavioral tasks demanding participants to decide
about the position of an object or tray of objects on a blank
background (Lithfous et al., 2014; Amico et al., 2015; Chueh et al.,
2017), which could not be considered properly allocentric.

Moreover, spatial skills involve several competences some
of them clearly sexually dimorphic (for a review see Nazareth
et al., 2019 Cimadevilla and Piccardi, 2020). Regarding spatial
recognition, previous studies reported that males outperformed
females with better recognition rates (Ardila et al., 2011; Lojko
et al., 2015; Tascón et al., 2016, 2017; Fernández-Baizán et al.,
2018) or in certain spatial components like forming and using
cognitive maps (Liu et al., 2011). However, females outperformed
males in object location memory (Voyer et al., 2007; Bocchi
et al., 2018). This sex-related performance could be mediated
by differences in brain activity in regions like the hippocampus,
where males are considered to have a more right lateralized
activation than females (Frings et al., 2006; Persson et al., 2013),
a fact that is overly related to better spatial performance. For an
in-depth review on these hippocampal differences, see Yagi and
Galea (2018).

Spatial recognition using EEG has been previously explored
by Murphy et al. (2009), who found sex differences on
parietal components (P300 at the CPz electrode site) for object
recognition, with larger amplitudes for females. Their task design
consisted in recalling the correct position of one stimulus when
given various novel and studied viewpoints context free. The
present study (adapted from Tascón et al., 2017), also examines
EEG signals while participants performed a spatial recognition
task with viewpoint manipulation. However, it examined the
encoding of three stimuli in a complex environment, combining
distal landmarks and perspective rotation, as well as the
maintenance and the retrieval of this spatial information. As
found in previous studies, higher difficulty levels are more prone
to find sexual dimorphism in performance in favor of males,
and, specially, viewpoint shifts favor the allocentric strategy and
hippocampal involvement, thus preventing the use of egocentric
solutions (Tascón et al., 2017). This also implies higher working
memory demands, where male superiority tends to occur, as
shown in a review by Coluccia and Louse (2004).

At the electrophysiological level, the role of the dorsal pathway
in the processing of visuospatial information has been extensively
studied, suggesting the involvement of attentional and memory
processes (Ungerleider et al., 1998; Podzebenko et al., 2002).
Ruchkin et al. (1996) found evidence that cortical streams
recruited in visuospatial processing also contributed to storage
and retention of such information. These streams were observed
in parietal and occipital regions, remaining active throughout the
entire encoding and maintenance intervals.

Previous research using visuospatial recognition paradigms
found negative slow waves (NSW) in parietal and occipital
areas related to retention of visuospatial information (Ruchkin
et al., 1992, 1996; Mecklinger and Pfeifer, 1996; Carmona et al.,
2020a) and also visuospatial manipulation (Liu et al., 2010;
Riečanský et al., 2013). This NSW is usually preceded by the
P300 component, a positive-going wave also detected in parietal
and occipital regions peaking about 350–550 ms after the stimuli
onset (Ruchkin et al., 1996; Roalf et al., 2006; Carmona et al.,
2020a) and related to the detection and discrimination of relevant
stimuli (Polich, 2012; Huang et al., 2015). There was also
described a N200 component, a negative-going wave in central
and parietal sites peaking about 250–350 ms after the stimuli
onset and related to cognitive control processes (Potts, 2011;
Koivisto et al., 2018; Carmona et al., 2020a).

As there has been little work examining sex differences
using EEG and spatial recognition (see Murphy et al., 2009), in
this experiment we explored the electrophysiological correlates
underlying the performance of this allocentric spatial recognition
task, using the event related potentials (ERP) technique. We
explored sex-dimorphic patterns since males and females could
implement various strategies (Roalf et al., 2006; Hirnstein et al.,
2019) or show some visuospatial processing differences (for a
review, see Vanston and Strother, 2017).

According to the aforementioned researches, we expected
to find different behavioral and electrophysiological profiles
in males and females. Regarding to the behavioral data, it is
hypothesized that males could outperform females in correct
responses, as demonstrated by Tascón et al. (2017). Moreover, at
electrophysiological level, it is predicted that sex differences could
be observed in the NSW, since this wave is related to maintenance
and manipulation of visuospatial information. P300 component
could also reflect sex differences as described in previous research
on spatial memory (Murphy et al., 2009).

MATERIALS AND METHODS

Participants
Twenty-nine participants, sixteen females (X = 23.5; SD = 2.30)
and thirteen males (X = 24.35; SD = 2.20), all of them
students from the University of Almería, voluntarily took part
in the study. They had normal or corrected vision in the
moment of the assessment. Exclusion criteria were addressed in
a brief initial interview, which screened for any psychological
or psychiatric disorder, drug, tobacco and alcohol abuse, head
traumatisms, or similar issues that could influence cognitive
performance. The study was approved by the University of
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Almería Ethical Committee and fulfills the requirements of the
European Communities Council Directive 2001/20/EC. Post hoc
power calculations were conducted with the G∗Power software,
version 3.1.9.2 (Faul et al., 2007) in order to determine the
minimum statistical power of both main and interaction effects
(within-between-subject factors) showed in our study. With an
alpha = 0.05, a medium effect size (d = 0.42) and total sample
size = 29, the analysis revealed statistical power greater than 0.99.

Procedure
Evaluations were run individually for each participant in a quiet
laboratory setting free from noise and distractions. All signed an
informed consent document and underwent an initial interview
to pinpoint the exclusion criteria before the commencement
of the experiment.

In order to assess the working memory capacity (WMC) at a
behavioral level (no EEG registry), the Change Localization Task
(Johnson et al., 2013; Noguera et al., 2019; Castillo et al., 2020;
Fernández et al., 2021) was used. The task was designed using
the e-Prime 2.0 software (Psychology Software Tools). Figure 1
represents the sequence of events presented in each trial.

At first, a fixation point was shown for 1,000 ms. Directly
afterward, four colored circles were displayed for 150 ms.
Minimal radius from the fixation point to the closest stimulus
was 3.36◦ and 6.24◦ for the farthest. Possible colors for the
circles (with the RGB values) were orange (255, 113, and 0),
green (0, 255, and 0), yellow (255, 255, and 0), cyan (0, 255,
and 255), magenta (255, 0, and 255), blue (0, 0, and 255), red
(255, 0, and 0), white (255, 255, and 255) and black (0, 0, and
0), without repeating colors for a single trial. Then, after a 900 ms
delay, another set of four circles was presented, whose colors and
positions were the same as those in the previous set except for
one that was colored differently. Participants had to click on the
left click button of a laptop mouse to choose the circle which had
changed its color between presentations.

An initial practice block, consisting of eight trials, was
provided to each participant, along with visual feedback following
each trial. Participants were then required to perform two
consecutive experimental blocks of 32 trials each, with a short
break between each block to avoid fatigue. Full task duration
was around 8–10 min. Mean correct response scores for both

FIGURE 1 | Sequence of events for a Change Location Task trial. Participants
needed to identify the circle that changed colors between presentations.

blocks were combined and transformed to a k-index, based on
the Pashler-Cowan equation (see Cowan et al., 2005). This index
allows to identify the number of items present in WM using false
alarms and hit rates. The proportion of correct responses for the
64 valid trials was multiplied by four (equaling the number of
circles per trial) to obtain the K-Index as the WMC reference.
This equals the mean number of colored circles a participant can
memorize in the task, with k = 1 or 25% being the chance level.

To examine spatial memory performance concurrently with
ERP technique, a virtual 2D recognition test was used, based
on the 3D environment of The Boxes Room and the procedure
(Cánovas et al., 2008) and 2D stimuli of the Almeria Spatial
Memory Recognition Test (ASMRT, Tascón et al., 2017).
ASMRT design was adapted based on the recommendations
of Woodman (2010) regarding electrophysiological studies with
evoked potentials (ERPs). The sequence of events per trial is
represented in Figure 2.

At the beginning of each trial, after a 2,200 ms delay, a
word (in black font, 18 size and Times New Roman style)
was presented for 1,000 ms at the center of the screen,
considered the “Criteria.” This word could be one of two possible
alternatives: Position or Color. Directly afterward, an image of
a room including a series of nine boxes placed on a 3 × 3
disposition grid (the “Memory Image”) was presented to the
participants for 5,000 ms. Three of those boxes were colored
green or red instead of the regular brown, and depending on the
Criteria, the information demanded to memorize from them was
different:

• If the Criteria were “Position,” participants had to memorize
the places occupied by the three outlined boxes in the room,
regardless if they are red or green.

• If the Criteria were “Color,” participants had to retain the
color (green or red, all of them identically colored) of
those three outlined boxes in the room, regardless of their
position in the museum room.

After a brief delay of 1,000 ms, another image of the same
room (the “Recognition Image”) was presented until participant
response, for a maximum of 6,000 ms. This time, only one
of the boxes was colored green or red, and participants were
demanded to answer if it matched the criteria from the previously
memorized ones. Using an USB game controller, they should
press the left trigger if their answer was positive (“yes”) and the
right trigger if it was negative (“no”). Responses were based on
the previous Criteria:

• For the “Position” criteria, participants needed to answer if
the outlined box of the Recognition Image was in the same
position that one of the three from the Memory Image,
regardless if they matched colors.

• For the “Color” criteria, participants needed to answer if the
outlined box of the Recognition Image matched the color
of the three boxes from the Memory Image, regardless if
position was the same or not.

The task consisted of an initial practice block of eight trials
supervised by the experimenter, followed by a total of 128
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FIGURE 2 | Example of a trial sequence for the spatial recognition task. Depending on the Criteria, participants need to memorize different information of a Memory
Image and subsequently answer about it in a Recognition Image.

FIGURE 3 | Mean percentage of correct responses (left graph, Hits; right graph, Correct Rejections) as a function of Criteria (Color vs. Position) and Sex (Men vs.
Women). Error bars represent the standard deviations.

experimental trials. Trials were separated in two blocks (64 trials
each), with a brief pause in the middle. Each block consisted
of 32 unique pairs of memory and recognition images, which
were presented twice (one for each criteria), and randomized.
The viewpoint was different in memory image and in recognition
image. The angle of rotation between each pair of images was
always the same, for color and position trials. Percentage of
correct responses (correct acceptances and correct rejections)
and reaction times were registered.

Finally, electroencephalographic (EEG) data for each
participant were recorded for the full duration of the
experimental blocks of the spatial task using a Brain
Products actiCAP helmet, with 30 scalp channels following
the international 10–10 system. This was coupled with a
compatible Brain Products AC-amplifier in order to digitize the
signals, with a sampling frequency of 250 Hz (0.1–70 Hz band-
pass, 50 Hz notch filter), digitally band-pass filtered (high cutoff:
25 Hz, 24 dB/octave attenuation; low cutoff: 0.1 Hz, 12 dB/octave
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attenuation). A midfrontal electrode (FCz) was used as the
reference channel, with the ground electrode placed between
Fpz and Fz. Two additional electrodes were placed to record
vertical (VEOG) and horizontal (HEOG) electrooculograms.
Lastly, another set of two electrodes were situated on left and
right mastoid locations in order to a posterior re-reference of
EEG data. Impedance at all electrodes remained below 5 k�.
Assessment was performed in an isolated room that mitigated
electrical noise which could alter the registry.

Electroencephalographic markers were placed in the spatial
task design to facilitate differentiation between codification and
recovery memory processes, and differentiated due to different
components of task methodology. This allowed to classify trials
for subsequent analyses due to different variables such as Criteria,
Decision Type or Response Type.

Independent component analyses (ICA; Makeig et al., 1997)
were used to correct EEG data for ocular/blink artifacts. Then,
the corrected data of the spatial task were segmented from: (i)
encoding phase: 200 ms pre Memory Image onset to 5,000 ms
post Memory Image onset; (ii) maintenance phase: 200 ms pre
Memory Image offset to 1,000 ms post Memory Image offset;
and (iii) retrieval phase: 200 ms pre Response Image onset to
1,500 ms post Response Image onset. Only trials with correct
responses were included in the segmentations. Later on, EEG
were corrected to a 200 ms baseline before the start of each
segment (i.e., the last 200 ms of the preceding screen). Artifacts
in each EEG segment and channel were rejected automatically
(maximal allowed amplitude ±100 µV; maximal allowed voltage
step 50 µV; maximal allowed difference of values in intervals
200 µV; lowest allowed activity 0.5 µV, interval length 100 ms).
EEG data were re-referenced to averaged mastoids before the
segments were averaged. The number of averaged segments was
greater than 40 (>50% of valid trials) in all conditions, there were
no significant differences in valid trials between conditions.

Three regions of interest (ROI), central (C), parietal (P), and
occipital (O), were examined in order to explore N200 (Koivisto
et al., 2018), P300 (Roalf et al., 2006; Steffensen et al., 2008),
and NSW (Liu et al., 2010; Riečanský et al., 2013) components.
A bilateral electrode pairs and a middle electrode were selected
in each ROI (C: C3, Cz, and C4; P: P3, Pz, and P4; and O:
O1, Oz, and O2). Additionally, t-tests were conducted between
the male and female group at each electrode (30) for criteria,
in time windows of 100 ms, with the aim of establishing the
most appropriate time intervals and cluster of electrodes for
component analysis.

Data Analysis
For EEG data processing, the Brain Vision Analyzer 2.0 software
was used. Processing of behavioral task performance alongside
EEG data was analyzed using IBM SPSS Statistics 25, with a
confidence level of p < 0.05.

Statistical Analyses
Behavioral data (accuracy and reaction times for correct choices),
were analyzed with a mixed analysis of variance (ANOVA) with
Sex (Male vs. Female) as the between-subject factor, Blocks
(Block 1 and Block 2), Decision Type (Acceptance vs. Rejection)

and Criteria (Color vs. Position) as the within subject factors
(2 × 2 × 2 × 2).

Electrophysiological data were analyzed with mixed ANOVAs
with Sex (Male vs. Female) as the between subject factor, Criteria
(Color vs. Position), Decision Type (Acceptance vs. Rejection,
only in the retrieval phase), Laterality (Left, Middle, and Right),
and Caudality (C, P, and O) as the within subject factors
(2 × 2 × 2 × 3 × 3), and ERP components in ROI (average
voltage data in each time windows).

Kolmogorov-Smirnov tests were conducted to check
normality of data, and Levene’s tests to verify homogeneity of
variance. Bonferroni correction was applied to correct for type I
error accumulation in multiple comparisons.

T-Tests Analyses
T-test were conducted in order to identify significant differences
between ERPs signals in the NSW time window and the
baseline (zero value) in ROI. Also, T-tests were conducted as
complementary behavioral analyses.

Correlation Analyses
Correlation analyses were performed by using the Pearson’s
correlation coefficient, in order to evaluate the relationship
between behavioral measures of performance (correct responses
and reaction times) and k-scores. Only significant correlations
(ps < 0.05) are reported in the “Results” section.

RESULTS

Behavioral Results
Accuracy Data
The analysis of correct responses (see Figure 3) revealed a
significant main effect of Criteria [F(1,27) = 31.9, p < 0.001,
ηp2 = 0.54], indicating that participants were less accurate in
Position trials (X = 63%, SD = 0.03) than in Color trials (X = 86%,
SD = 0.03). No other main effects or interactions were statistically
significant (p > 0.05).

FIGURE 4 | Dispersion of mean percentage of Correct Rejections in Position
trials in the Spatial Memory Task due to the K-index. Blue point (male), red
point (female).
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FIGURE 5 | Mean of reaction times for correct choice, as a function of Criteria
(Color vs. Position) and Decision Type (Hits vs. Correct Rejections). Error bars
represent the standard deviations. Simple *p-value = 0.001.

Complementary T-test analyses showed that there were no
significant differences in correct rejections due to Sex [t(27) = 2,
p = 0.055; mean 70 vs. 63%, male vs. female)] in Position trials as
can be seen in Figure 3.

Also, as can be seen in Figure 4, complementary analyses
showed a positive significant correlation between mean
percentage of correct rejections in Position trials and k-scores
(N = 29; r = 0.37, p = 0.03). No other significant correlations nor
difference were found (p > 0.05).

The analysis of reaction times (of correct choices, correct
acceptances and correct rejections) showed a main effect of Block
[F(1,27) = 10.7, p = 0.003, ηp2 = 0.28], Criteria [F(1,27) = 76.5,
p < 0.001, ηp2 = 0.74], and Decision Type [F(1,27) = 7.9,
p = 0.011, ηp2 = 0.21]. Participant’s response times were slower in
the first block (X = 1,952 ms; SD = 51) than in the second block
(X = 1,783 ms; SD = 53); their responses were faster in the Color
criteria (X = 1,365 ms; SD = 115) than in the Position criteria
(X = 2,374 ms; SD = 115); finally, they were slower to respond to
rejection trials (X = 1,946 ms; SD = 83) than to acceptance trials
(X = 1,789 ms; SD = 86).

Interaction Criteria X Decision Type was found statistically
significant [F(1,27) = 7.6, p = 0.011, ηp2 = 0.08]. The analysis
of the interaction showed a significant effect of Decision Type in
Position trials [F(1,27) = 13, p = 0.001, ηp2 = 0.33], indicating
that reaction times (Figure 5) were slower (p < 0.05) in correct
rejection trials (X = 2,506 ms; SD = 51) than in correct acceptance
trials (X = 2,235 ms; SD = 83). In contrast, Decision Type
effect was not found in Color trials (X = 1,386 ms, SD = 74,
and X = 1,342 ms, SD = 74, rejection and acceptance trials,
respectively) [F(1,14) = 0.41, p = 0.511, ηp2 = 0.02]. No other
effect nor interactions were statistically significant (p > 0.05).

Electrophysiological Data
Encoding Phase
N200: time window from 250 to 350 ms after the memory
image onset
The analysis revealed a significant main effect of Sex
[F(1,27) = 7.6, p = 0.010, ηp2 = 0.22] and Caudality [F(2,26) = 17,
p < 0.001, ηp2 = 0.57]. A higher wave deflection was registered
in the male group (X = 0.93 mV, SD = ±0.63) than in the female
group (X = 3.26 mV, SD = ±0.56); and wave deflection was

greater in O region (X = 2 mV, SD = ±0.58) than in P region
(X = 2.5 mV, SD = ±0.46) and in C region (X = −0.06 mV,
SD = ±0.51). No other main effects nor interactions were found
(see Table 1).

P300: time window from 350 to 550 ms after the memory
image onset
The ANOVA showed a significant main effect of Sex
[F(1,27) = 5.5, p = 0.027, ηp2 = 0.17], with an increased electrical
activity being recorded in the female group (X = 3.4 mV,
SD = ±0.95) compared to the male group (X = 1.2 mV,
SD = ±0.93); and Caudality [F(2,26) = 24.4, p < 0.001,
ηp2 = 0.65]. A greater activity in P region (X = 3.12 mV,
SD = ±0.53) than in O region (X = 2.6 mV, SD = ±0.63) and in
C region (X = 1.1 mV, SD = ±0.54) was registered (see Figure 6).
Sex X Caudality interaction effect also reached significance
[F(2,26) = 3.92, p = 0.032, ηp2 = 0.23]. The interaction analysis
showed a main effect of Sex in P region [F(1.27) = 6.3, p = 0.021,
ηp2 = 0.19; males (X = 1.8 mV, SD = ±0.79), females (X = 4.5 mV,
SD = ±0.72)] and in O region [F(1,27) = 7.6, p = 0.01, ηp2 = 0.22;
males (X = 0.91 mV, SD = ±0.93), females (X = 4.4 mV,
SD = ±0.84)], but not in C region (p > 0.05). No other main
effect nor interactions were found (p > 0.05).

NSW: time window from 1,000 to 5,000 ms after the memory
image onset
The analysis revealed a significant main effect of Criteria
[F(1,27) = 9, p = 0.006, ηp2 = 0.625] and Caudality [F(2,26) = 17,
p < 0.001, ηp2 = 0.60]. Wave amplitude in Position trials
(X = −2.8 mV, SD = ±0.59) was significantly more negative than
in Color trials (X = −1.1 mV, SD = ±0.50). Activity in O region
(X = −3.4, SD = ±0.66) was more negative than it was in both
P region (X = −1.9, SD = ±0.49) and C region (X = −0.4 mV,
SD = ±0.48). The Criteria X Caudality interaction effect also
reached significance [F(2,26) = 7.2, p = 0.003, ηp2 = 0.36]. The
interaction analysis revealed a significant main effect of Criteria
in each of the three regions [C: F(1,27) = 5.1, p = 0.032, ηp2 = 0.16;
P: F(1,27) = 12.4, p = 0.002, ηp2 = 0.32; and O: F(1,27) = 7.4,
p = 0.011, ηp2 = 0.22], in all of them less amplitude was registered
in color trials (C: X = −0.18 mV, SD = ±0.57; P: X = −0.86 mV,
SD = ±0.54; and O: X = −2.5 mV, SD = ±0.60) than in position
trials (C: X = −0.98 mV, SD = ±0.51; P: X = −3.0 mV, SD = ±0.62;
and O: X = −4.4 mV, SD = ±0.87). No other significant effects nor
interactions were found (p > 0.05).

Although the interaction Criteria X Caudality X Sex was not
found [F(2,26) = 1.4, p = 0.26, ηp2 = 0.10], complementary
T-test analyses (see Table 2) showed statistically significant
differences in the female group due to criteria in the three ROI.
[C: t(15) = 2.2, p = 0.049; P: t(15) = 3.2, p = 0.007; and O:
t(15) = 2.4, p = 0.032]. In contrast, there were not differences in
the male group in no region (ps > 0.05). In addition, differences
between males and females were found in the NSW amplitude
only for position trials in parietal region [t(27) = 2.1, p = 0.041],
females exhibited a reliable higher wave amplitude than males (as
can be seen in Figure 6). No other significant differences were
found (p > 0.05).
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TABLE 1 | Main significant results from analysis of variances (ANOVAs) on event related potentials (ERPs) amplitudes in the three phases (f : effect size; p, significance in
brackets after Bonferroni correction, simple *p < 0.05; **p < 0.01; and ***p < 0.001).

Phase Time window (ms) ERP component f from ANOVAs

Sex Criteria Interaction effects

Encoding 250–350 N200 0.53(**) n.s. n.s.

350–550 P300 0.45(*) n.s. Sex × Caudality 0.55(*)

1,000–5,000 NSW n.s. 1.3(**) Criteria × Caudality 0.75(*)

Maintenance 250–350 N200 0.96(***) n.s. Sex × Caudality 0.42(*)

350–550 P300 0.44(*) n.s. Sex × Caudality 0.59(*)

Retrieval 250–350 N200 0.50(*) 0.44(*) Sex × Caudality 0.42(*)

350–550 P300 0.44(*) 0.61(*) Sex × Caudality 0.59(*)Decision Type × Laterality 0.36(*)

FIGURE 6 | Grand-average voltage data (in mV) of ERP in the Encoding phase in ROI, as a function of Criteria and Sex (Color_Men, blue line; Color_Women, black
line; Position_Men, green line; and Position_Women, red line). Gray shades represent the P300 time window. On the top, topographic map of the difference in ERP
waves due to Sex (Men–Women) in the P300 time window. NSW, negative-slow wave. Time zero represents Memory Image onset.

Finally, we compared the sustained NSW with the baseline
in each of the conditions per group (see Table 2). These
T-tests analyses showed that in the female group, the NSW was

significantly different from baseline (0 value) in position trials, in
the three regions. In contrast, in the male group, the NSW was
similar to baseline in position trials in C region.
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TABLE 2 | p-value obtained by comparing the electrical activity in the negative slow wave (NSW) time window: (a) with the baseline by region of interest (Central, Parietal,
and Occipital), criteria (color, position) and sex (men, women); (b) between color and position trials by ROI and sex; (c) between sexes, by ROI and criteria.

R.O.I. (a) T-test (NSW vs. Baseline) (b) T-test (Color vs. Position) (c) T-test (Men vs. Women)

Men Women Men Women Color Position

Color Position Color Position

Central n.s. n.s. n.s. * n.s. * n.s. n.s.

Parietal n.s. * n.s. *** n.s. ** n.s. *

Occipital ** ** * ** n.s. * n.s. n.s.

Simple *p < 0.05; **p < 0.01; and ***p < 0.001.

Maintenance Phase
N200: time window from 250 to 350 ms after the memory
image offset (delay period)
Significant main effects of Sex [F(1,27) = 24.6, p < 0.001,
ηp2 = 0.48] and Caudality [F(2,26) = 28.6, p < 0.001, ηp2 = 0.51]
were found. Again, as in the N200 time window in the encoding
phase, a higher wave deflection in the male group (X = 0.98 mV,
SD = ±0.65) compared to the female group (X = 3.2 mV,
SD = ±0.59) was found; also, wave deflection was greater in O
region (X = 2.6 mV, SD = ±0.53) than in P region (X = 2.5 mV,
SD = ±0.49) and in C region (X = −0.16 mV, SD = ±0.53). Similar
to the encoding phase, Sex X Caudality interaction reached
significance [F(2,26) = 4.8, p = 0.012, ηp2 = 0.15]. The interaction
analyses showed a main effect of Sex in P region [F(1.27) = 6,
p = 0.021, ηp2 = 0.18; male (X = 1.3 mV, SD = ±0.73), female
(X = 3.7 mV, SD = ±0.66)] and in O region [F(1,27) = 10.8,
p = 0.003, ηp2 = 0.29; male (X = 1.6 mV, SD = ±0.73), female
(X = 4.1 V, SD = ±0.64)], but not in C region (p > 0.05). No other
main effects nor interactions were found (p > 0.05; see Figure 7).

P300: time window from 350 to 550 ms after the memory
image offset
As in the encoding phase, a significant main effect of Sex
[F(1,27) = 5.2, p = 0.031, ηp2 = 0.16] was found in the P300
time window, and again, increased amplitude was recorded in the
female group (X = 3.5 mV, SD = ±0.65) compared to the male
group (X = 1.3 mV, SD = ±0.74); and Caudality [F(2,26) = 27.5,
p < 0.001, ηp2 = 0.68], a greater activity in P region (X = 3.2 mV,
SD = ±0.55) and in O region (X = 3.4 mV, SD = ±0.63) than in C
region (X = 0.68 mV, SD = ±0.54) was registered (see Figure 7).
A Sex X Caudality interaction effect was also found [F(2,26) = 4.7,
p = 0.021, ηp2 = 0.26]. As in the previous phase, the interaction
analysis showed a main effect of Sex in P region [F(1.27) = 5.3,
p = 0.029, ηp2 = 0.16; males (X = 1.9 mV, SD = ±0.81), females
(X = 4.5 mV, SD = ±0.73)] and in O region [F(1,27) = 9.9,
p = 0.001, ηp2 = 0.27; males (X = 1.4 mV, SD = ±0.93), females
(X = 5.3 mV, SD = ±0.84)], but not in C region (p > 0.5). No
other main effects nor interactions were found.

Retrieval Phase
N200: time window from 250 to 350 ms after the response
image onset
Examination of the retrieval phase also revealed a significant
main effect of Sex [F(1,27) = 7.3, p = 0.012, ηp2 = 0.21]

and Caudality [F(2,26) = 20.4, p < 0.001, ηp2 = 0.60]. Again,
as in the N200 time window in the encoding and in the
maintenance phases, higher wave deflection was found in the
male group (X = 0.86 mV, SD = ±0.64) compared to the
female group (X = 3.1 mV, SD = ±0.57); also, wave deflection
was greater in O region (X = 2.5 mV, SD = ±0.59) than
in P region (X = 2.4 mV, SD = ±0.47) and in C region
(X = −0.16 mV, SD = ±0.52), as can be seen in Figure 8. A Sex
X Caudality interaction was found [F(2,26) = 4.7, p = 0.013,
ηp2 = 0.15]. The interaction analyses showed a main effect of
Sex in P region [F(1.27) = 6.7, p = 0.010, ηp2 = 0.20; males
(X = 1.2 mV, SD = ±0.70), females (X = 3.6 mV, SD = ±0.63)]
and in O region [F(1,27) = 10.5, p = 0.003, ηp2 = 0.28; males
(X = 1.8 mV, SD = ±0.87), females (X = 4.5 mV, SD = ±0.76)],
but not in C region (p > 0.05). No other main effect nor
interactions were found.

P300: time window from 350 to 550 ms after the response
image onset
Again, a significant main effect of Sex [F(1,27) = 5, p = 0.034,
ηp2 = 0.16] was found, with greater amplitude in female
participant (X = 3.4 mV, SD = ±0.64) compared to male
participants (X = 1.3 mV, SD = ±0.71); a main effect of Caudality
[F(2,26) = 23.9, p < 0.001, ηp2 = 0.65], greater activity in P
region (X = 3.1 mV, SD = ±0.52) and in O region (X = 3.2 mV,
SD = ±0.66) than in C region (X = 0.6 mV, SD = ±0.53) was
registered. Also, a main effect of Criteria [F(1,27) = 9.9, p = 0.004,
ηp2 = 0.27] was found, with a lower amplitude in Position trials
(X = 1.8 mV, SD = ±0.49) than in Color trials (X = 2.8 mV,
SD = ±0.52).

Sex X Caudality interaction effect reached also significance
[F(2,26) = 4.5, p = 0.02, ηp2 = 0.26]. As in the previous
phases (encoding and maintenance), the interaction analysis
showed a main effect of Sex in P region [F(1.27) = 6.2,
p = 0.02, ηp2 = 0.19; males (X = 1.8 mV, SD = ±0.77), females
(X = 4.4 mV, SD = ±0.69)] and in O region [F(1,27) = 7.6,
p = 0.01, ηp2 = 0.22; males (X = 1.4 mV, SD = ±0.98),
females (X = 5.1 mV, SD = ±0.88)], but not in C region
(p > 0.05). Finally, Decision Type X Laterality interaction effect
was significant [F(2,26) = 3.6, p = 0.035, ηp2 = 0.12]. Further
analyses of the interaction showed that the Laterality main
effect was found only in Correct Rejections trials [F(2,26) = 8.3,
p = 0.002, ηp2 = 0.39]: as can be seen in Figure 9, there
were significant differences between Left and Middle laterality

Frontiers in Behavioral Neuroscience | www.frontiersin.org 8 September 2021 | Volume 15 | Article 736778

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-15-736778 August 31, 2021 Time: 10:21 # 9

Castillo et al. Sex Modulates Spatial Memory Electrophysiology

FIGURE 7 | Grand-average voltage data (in mV) of ERP in the Maintenance phase (delay period) in ROI, as a function of Criteria and Sex (Color Men, blue line; Color
Women, black line; Position Men, green line; and Position Women, red line). Gray shades represent the P300 time window. On the top, topographic map of the
difference in ERP waves due to Sex (Men–Women) in the P300 time window. Time zero represents Memory Image offset.

[F(1,27) = 13.5, p = 0.001, ηp2 = 0.33]; and Middle and
Right laterality [F(1,27) = 9.7, p = 0.004, ηp2 = 0.26], with
lower activation of central sites in all cases. Although Decision
Type × Laterality × Sex interaction was not found (p > 0.05),
complementary T test analysis revealed a main effect of Decision
Type only in middle axis (Cz, Pz, and Oz) for the male group
[t(12) = 2.1, p = 0.041], with decreased amplitude for correct
rejections compared to hits. No other main effect nor interactions
were found (p > 0.05).

DISCUSSION

The main goal of our study was to identify the underlying
electrophysiological correlates of performance in an allocentric
spatial recognition, exploring any sex-related pattern. In order
to do so, a computerized spatial recognition memory task with
viewpoint manipulation in a complex environment was used.
It was based on the Almeria Spatial Memory Recognition Test
(ASMRT, Tascón et al., 2017) alongside the ERP technique.
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FIGURE 8 | Grand-average voltage data (in mV) of ERP in the Retrieval phase in ROI, as a function of Criteria and Sex (Color Men, blue line; Color Women, black
line; Position Men, green line; and Position Women, red line). Gray shades represent the P300 time window. On the top, topographic map of the difference in ERP
waves due to Sex (Men–Women) in the P300 time window. Time zero represents Response Image onset. P300. Time window from 350 to 550 ms after the
Response Image onset.

Behavioral Findings
Our results showed that performance was similar in both sexes.
Otherwise, reaction times suggest that correct rejections
implied greater cognitive demand, as suggested before
(Coluccia and Louse, 2004), because they took significantly
longer time than correct acceptances (successful responses to
correct items). This could be related to visuo-spatial working
memory load, according to Bosco et al. (2004). Previous studies
with ASMRT showed that spatial differences between male
and female participants arose only in certain difficulty levels,
which generally demanded the encoding of three colored boxes
(Tascón et al., 2017).

After the memorization phase, a second picture of the room
was presented, but this time with a single-colored box and a
perspective rotated from the first picture. Hence, participants
were not only demanded to form a mental map of the room
and memorize the location of all three colored boxes in
relation to the environment, but also consider unannounced
changes in perspective in order to match the new viewpoint.
This shift demanded participants to imagine the room from
novel viewpoints, thus requiring knowledge of the relationships
between stimuli for an optimal orientation. This allocentric
processing is medial temporal lobe dependent (Iaria et al.,
2009) and, particularly relies on the hippocampus, a structure
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FIGURE 9 | Mean of P300 amplitude (in mV) of Hits (left graph) and Correct Rejections (right graph) as a function of Laterality, Left (C3, P3, O1), Middle (Cz, Pz,
Oz), and Right (C4, P4, O2), and Sex (male, female), in the Retrieval phase. There was a main effect of Sex (p < 0.050). Laterality main effect was found only in
Correct Rejections, p = 0.002. There were significant differences between Left and Middle laterality, p = 0.001; and Middle and Right laterality, p = 0.004.

well-known for its involvement in spatial performance. Hence,
damage to this structure is related to impaired spatial orientation
performance (Astur et al., 2002; Maguire et al., 2001) and
there are pronounced hippocampal activations in viewpoint
rotation tasks (Lambrey et al., 2011). In addition to this, the
hippocampus is known to have functional differences between
males and females (Koss and Frick, 2016), such as a more
right-lateralized activation in men (Persson et al., 2013). This
sexual dimorphism trend extended to other structures related to
spatial processing (Kaiser et al., 2008; Semrud-Clikeman et al.,
2012).

As a consequence, the way males and females engage in
strategic processing of spatial information can differ. Certain
studies identified that sex could modulate the understanding
of maps, and that, specifically, males tended to rely more
on Euclidean or abstract references, while females were more
concrete and landmark oriented (Dabbs et al., 1998; Sandstrom
et al., 1998; Nazareth et al., 2018).

Our behavioral results did not find reliable sex differences in
contrast to the general trend of male advantage in visuospatial
demands (Voyer et al., 2017). Males and females performed
similarly in parameters like correct responses or latencies,
differing from previous studies using the ASMRT (Tascón
et al., 2017). Nevertheless, there are important differences
between the original ASMRT and the version adapted in
this study that might explain these findings. The increase in
the number of trials compared to the original task could
produce a training effect. Note that enhanced number of trials
(128 presentations of the room from multiple perspectives)
increases familiarity with the environment. Participants have
more opportunities to learn the spatial layout. A previous
study by Livingstone-Lee et al. (2014) showed that spatial
training in both allocentric and egocentric strategies can
eliminate sex differences, and our participants were continuously
exposed to allocentric demands in the same environment.
Regarding this, increased familiarity with the environment

can also reduce this effect, as explained by Nori et al.
(2018). In addition, a memory image was followed by ten
recognition images (trials) in the original task, whereas
EEG adaptation demanded a correspondence of 1:1 between
memory and recognition trials, thus, allowing for more
encoding opportunities.

Furthermore, participants performed better in color trials
versus position trials. Using the same images and procedure,
color trials demanded to remember the color of the boxes
and no positions. The “color” condition was a control of
the “position” condition: same images as in “position trials”
but demanding more basic processes (color recognition). This
implies lower cognitive demands and potentially different
underlying mechanisms, confirmed in the ERP findings.

The WMC was also assessed using the Change Localization
Task, which proved to be a useful tool to disclose WMC
cognitive differences in multiple previous studies (Johnson
et al., 2013; Noguera et al., 2019; Castillo et al., 2020;
Fernández et al., 2021). In our study, higher WMC was
related to better rejection rates in position trials regardless
of the sex factor. Visuospatial working memory and spatial
orientations were proven to be related (Bergmann et al., 2016),
and higher working memory capabilities were associated to
a superior performance in a virtual spatial orientation task
(Castillo et al., 2020).

Electrophysiological Findings
Despite the fact that there was no difference on general
performance between males and females, the ERPs showed
a reliable sex difference across all three phases of memory
process—encoding, maintenance and retrieval—regardless of
decision type or criteria. Could these sex electrophysiological
differences be due to different ways of processing spatial
information, or due to different ways of looking at it? In
this regard, although sex differences in the visual system,
including visual perception, have been widely described (see
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Vanston and Strother, 2017, for a review), our results did not
show reliable differences between males and females, due to
criteria, in early ERP components (neither P100, N100 nor
P200). Nonetheless, higher amplitudes in the female group were
observed in positive early waves compared to the male group,
in all phases of the memory process. In contrast, the male
group showed higher amplitudes in negative early components,
thought to be related to attentional control mechanisms
(Vanston and Strother, 2017).

Encoding
The N200 component arose 250 ms after the memory image
onset. This negative ERP component has been commonly related
to encoding of visuospatial information and selective attention in
posterior sites (Corbetta and Shulman, 2002; Silver et al., 2005),
reflecting top-down modulations related to higher cognitive
functions (Lithfous et al., 2014). The higher amplitude in this
time window, is usually associated with an increase in cognitive
control (Folstein and Van Petten, 2007; Potts, 2011). Our results
revealed a reliable higher voltage drop in the male group than in
the female group, in the three phases of memory process, which
suggests that males recruited more cognitive control mechanisms
compared to females, at early steps of processing.

The N200 neural generators has been commonly located
in the dorsal anterior cingulate cortex (ACC) and in the
midcingulate cortex (MCC) (Huster et al., 2010), both regions
have relevant neural connections with cortical parietal areas.
These regions are involved in attentional control mechanisms
(Huster et al., 2010, 2014). In addition, recent research suggests
that the medial temporal lobe (MTL) could be a key source
of this early component, involving hippocampal formation
(Raynal et al., 2020).

Immediately later, the P300 component appeared. This ERP
has been shown reflecting selective attention, stimulus evaluation
and categorization (Lithfous et al., 2014; Carmona et al., 2020b).
Its amplitude can be modulated by the allocation of attentional
resources (Kok, 2001). The amplitude of P300 was significantly
higher in females than in males, supporting the differences
showed in several research (Roalf et al., 2006; Steffensen
et al., 2008). Roalf et al. (2006) suggested that differences
in hemispheric asymmetry could provoke the greater P300
amplitudes exhibited by females compared to males. Female
brains are commonly less lateralized compared to those of
males (Kolb and Whishaw, 1996). However, the way in which
the hemispheric asymmetry can affect the amplitude of this
component is not yet established.

The temporoparietal junctions have been shown as one of
the different generating sources of the P300, along with regions
such as the insular cortex, the inferofrontal cortex and the
MCC (Huster et al., 2010, 2014). Also, the MTL has been
identified as neural generators of this component, specifically,
the hippocampal regions, suggesting the recruitment of the
subiculum and the hippocampal areas (Ludwig et al., 2009).
Otherwise, Kosmidou et al. (2015) suggest that the differences in
attentional control mechanisms between males and females could
be the consequence of the different brain lateralization exhibited
by each sex that could imply the differential contributions

of generating sources. In this regard, the implication of the
hippocampal formation in the generation of the N200-P300
tandem is relevant in our task since electrophysiological sex
differences are found in both components. The hippocampal
functional differences between males and females and the greater
lateralization exhibited by men (Persson et al., 2013; Koss and
Frick, 2016) could help to explain our results. In addition,
sexual dimorphism has been found in hippocampal subfields,
specifically in the subiculum (Van Eijk et al., 2020), also
described as a P300 generator (Ludowig et al., 2010). Moreover,
neuroanatomical sex differences have been found in the MCC
and they have been related to differences in attentional control
(Huster et al., 2010, 2014).

After a second, the NSW begins. This sustained wave for
several seconds, is usually related to encoding and maintenance
of visuospatial information (Ruchkin et al., 1992; Woodman and
Vogel, 2008; Morgan et al., 2010). Research suggests that the
amplitude of this negative wave is sensitive to working memory
load; therefore, when memory load increases, wave amplitude
increases (Morgan et al., 2010). The increase in amplitude of
the NSW can also be explained in terms of sustained cognitive
demand over time (Borragán et al., 2017) or greater task difficulty
(Rösler et al., 1997). The NSW has also been related to the
information path of what and where, with lower voltage for
visual than for spatial or complex stimuli (Woodman and Vogel,
2008; Luria et al., 2010). According to these accounts, our results
showed that Position trials elicited NSW with greater amplitude
compared with color trials. It should also be noted that males
and females showed different NSW pattern in position trials:
this wave emerged in parietal and occipital regions in both
groups, and in central sites only in the female group. While
in color trials, the NSW was similar in both groups, active in
occipital region, and null in central and parietal regions. In
addition, the NSW in the female group showed a significantly
higher amplitude in position trials than in color trials. Based
on the aforementioned research, these results would indicate
that the position trials required more cognitive demand, or
implied greater working memory load, than those of color for
females. By contrast, the NSW amplitude in the male group
was similar in both criteria and lower than in the female group.
Also, in parietal region reliable sex-related differences in NSW
amplitude were found. Specifically, it could be argued that the
emergence of NSW in parietal regions, and in central regions in
some cases, was an index of task difficulty or higher cognitive
demands (related to position trials), as occipital regions was
active regardless of criteria.

The NSW neural generators in the memory task remain
unclear. Recent research suggests that this sustained activity
could be due to the synchronization between the MMC
and the bilateral parietal regions, it explained as the MCC
deactivation and the bilateral parietal activation (Liu et al., 2018).
Again, the MCC appears as key region to promote cortical
activity, in this case by deactivation that facilitate the parietal
activation. The different morphology exhibited by males and
females in the MCC could contribute to the electrophysiological
differences. Additional research has found evidence of the
MTL involvement in this negative sustained activity pattern,
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although without describing the involvement of specific areas
(Axmacher et al., 2007).

Maintenance
Over a short delay between the memory image and the retrieval,
two ERP components were elicited, N200 and P300, as reflect
of maintenance in working memory (Polich, 2007). Again, as
in the encoding phase, higher amplitude in the N200 and
lower amplitude in the P300 were exhibited by the male group
compared to the female group. The greater attentional control
resources triggered, reflexed by the higher N200 amplitude by
men, could be interacting with the P300. The decreased in P300
amplitude is commonly related with greater cognitive demands
or greater amount of attention resources triggered (Polich, 2007).

Retrieval
Several researchers have argued that working memory load
and task difficulty also modulate the amplitude of the N200
component, in a way that higher working memory loads or
difficulty elicit larger N200 amplitude (Missonnier et al., 2003).
According to this account, in the retrieval phase, significantly
higher amplitudes were registered in position trials compared to
color trials, reflecting at electrophysiological level the results at
behavioral level.

Regarding to the P300, memory updating processes has been
related to this component, referred to the updating of a context-
environment model previously registered in memory, through an
attention-driven process of comparison between the information
kept in working memory (mental representation) and the
information that has just been displayed (Donchin and Coles,
1988; Polich, 2007). This attention-driven process is influenced
by working memory load and task difficulty (Scharinger et al.,
2017). Lower amplitudes in this component have been associated
with higher memory loads (Kok, 2001; Scharinger et al., 2015,
2017). In addition, when the manipulation of the information in
working memory is required, the decreased in P300 amplitude
has been related to the internal allocation of controlled attention
(Watter et al., 2001; Scharinger et al., 2017). Our results showed,
again, a lower amplitude of P300 in the male group compared to
that of females. In this phase of memory processing, the lower
amplitude exhibited by males suggests that cognitive demands in
this attention-driven comparison process were greater compared
to females. The same wave pattern was observed when comparing
position and color trials, reflecting the greater difficulty to
respond to position trials.

With regard to the Decision type, lower P300 amplitudes
were found in Correct rejections trials compared to Hits trials,
although differences were significant only in the men group, in
the middle axis. This result could explain the better performance
of males in correct rejections compared to that of females.
However, more research is needed to further explore this account.

Conclusion
In summary, the time course of the differences due to sex
found in the electrophysiological events analysed, revealed
the differential use of cognitive resources at different time
intervals, with similar general performance in the task. It could

correspond to electrophysiological correlates of different strategic
processes triggered by males and females. Males activated more
attentional control mechanisms at early stages of processing
(N200), followed by greater internal allocation of attentional
resources and memory updating processes (P300) than females,
in the three phases of memory process. While females exhibited
longer cognitive effort, sustained for several seconds, in later steps
of encoding process (NSW).

Oscillatory analysis could help to clarify the underlying
process to sex differences revealed in our study. An analysis of
ERP in the time-frequency domain would be a complementary
source of results to time domain that would offer useful and
valuable information.
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