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1. Introduction

Throughout this note it will be assumed that K is either the real field R or the complex field C. As usual, 
we denote

T =
{
α ∈ K : |α| = 1

}
.

Given a Banach space X, the symbols BX and SX will stand for the closed unit ball and the unit sphere 
of X, respectively:

BX =
{
x ∈ X : ‖x‖ ≤ 1

}
, SX =

{
x ∈ X : ‖x‖ = 1

}
.

Furthermore, EX will be the set of extreme points of BX . Notice that EX can be empty if X is infinite-
dimensional. Nevertheless, if X∗ denotes the dual Banach space of X, it is well known that EX∗ �= ∅. On the 
other hand, for any A ⊂ X, spanA denotes the linear span of the set A.
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Let Y be another Banach space over the same field K and let L(X, Y ) denote the space of linear and 
bounded mappings from X into Y equipped with the operator norm. According to the custom, we will write 
L(X) instead of L(X, X). The adjoint of T will be represented by T ∗.

Assume for a moment that X and Y are isometrically isomorphic and let T be a linear isometry from X
onto Y . If T1, T2 ∈ BL(X,Y ) and T = 1

2 (T1 + T2), it is clear that T ∗ = 1
2 (T ∗

1 + T ∗
2 ). Since T ∗ is an isometric 

isomorphism, T ∗(EY ∗) = EX∗ and consequently T ∗, T ∗
1 and T ∗

2 coincide on EY ∗ . Moreover, BY ∗ is the 
closure in the weak-∗ topology of the convex hull of EY ∗ (a well known consequence of Krein–Milman and 
Banach–Alaoglú theorems). The linearity and weak-∗ continuity of T ∗, T ∗

1 and T ∗
2 ensure that T ∗ = T ∗

1 = T ∗
2

and hence T = T1 = T2. This proves that T is an extreme point of the closed unit ball of L(X, Y ).
Extreme points of BL(X,Y ) (for arbitrary Banach spaces X and Y ) are known in the literature as extreme 

operators or extreme contractions. In accordance with the previous comments, the identity mapping from 
X onto itself is an extreme operator for any Banach space X.

One can easily note that the only essential condition on T we used is T ∗(EY ∗) ⊂ EX∗ . The following 
concept appears for the first time in [8] and it is motivated precisely by such an inclusion:

An operator T ∈ L(X, Y ) is said to be nice if T ∗(EY ∗) ⊂ EX∗ .
The connection of such operators with extreme contractions was initially studied by Blumenthal, Lin-

denstrauss and Phelps [3] in the context of continuous function spaces and subsequently by Sharir [10–13]
in the same setting and also within the context of L1-spaces.

As we have already noted, isometric isomorphisms are nice operators and each operator of this last 
class is an extreme contraction. The overlap between nice operators and extreme contractions does occur 
in certain significant families of Banach spaces. This is the case, for example, if X and Y are L1-spaces. 
On the other hand, if X and Y are continuous function spaces, the coincidence between both types of 
operators frequently (but not always) takes place. An excellent source of information is the paper by Roy [9]. 
It contains a complete discussion of extreme points that pays special attention to the particular case of 
extreme contractions. More recent results can be seen in [1,2,6,7].

Nice operators between continuous function spaces are weighted composition operators. Specifically, if 
K1 and K2 are compact Hausdorff spaces, an operator T ∈ L(C(K1), C(K2)) is nice if, and only if, there 
exists an extreme point e of the closed unit ball of C(K2) (namely, a continuous function e : K2 → K with 
|e(t)| = 1, ∀t ∈ K2) and a continuous mapping ϕ : K2 → K1 such that

Tf = e(f ◦ ϕ), ∀f ∈ C(K1).

Furthermore, T is indeed an isometric isomorphism if and only if ϕ is a homeomorphism (an influential 
result universally known as the Banach–Stone theorem).

It is, therefore, clear that even in the case X = Y a nice operator T : X → Y need not be a surjective 
isometry. To narrow this comment further, you may think, for example, of the operator T : (R2, ‖ · ‖∞) →
(R2, ‖ · ‖∞) given by

T (x, y) = (x, x), ∀(x, y) ∈ R
2,

whose adjoint can be identified with the operator S : (R2, ‖ · ‖1) → (R2, ‖ · ‖1) defined by

S(x, y) = (x + y, 0), ∀(x, y) ∈ R
2.

On the other hand, if X and Y are finite-dimensional, it is easy to find situations in which each nice 
operator is an isometric isomorphism. Consider, for example, the case X = Y = H, where H is a (finite-
dimensional) Hilbert space.
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In the third section of this paper we will show the existence of infinite dimensional Banach spaces X
and Y with the same property (the coincidence between nice operators and surjective linear isometries). 
The geometric nature of this fact will become apparent in the fourth section.

A specific construction is not necessary because, as we shall see, there are classical Banach spaces satis-
fying what is expressed in the preceding paragraph. They are spaces of continuously differentiable functions 
on compact intervals of R. Therefore we will make a detailed study of nice operators between them. We will 
consider two natural norms in such spaces and in general neither injectivity nor surjectivity of the operators 
will be assumed. Our results include, as a particular case, the description of surjective linear isometries, 
whose precedents can be found for complex scalars in [4] and for both scalar fields in [5]. The latter reference 
contains very general and relevant results that are applicable to various function spaces with different norms.

2. Continuously differentiable function spaces

In this section we will complete the notation to be used and discuss some basic facts about spaces of 
differentiable functions with continuous derivative. The proofs are elementary and have been incorporated 
in view of the preliminary nature of this subject.

Let K be a compact interval of R and C1(K) the vector space of scalar valued continuously differentiable 
functions defined on K. The symbol l(K) will denote the length of K. Furthermore, uK and iK will be the 
elements in C1(K) given by

uK(t) = 1, iK(t) = t, for every t ∈ K.

If t ∈ K, we will consider the functionals δt, δ′t : C1(K) → K, defined by

δt(x) = x(t), δ′t(x) = x′(t), for each x ∈ C1(K).

The following notations will also be used:

∇K = {δt : t ∈ K} and ∇′
K =

{
δ′t : t ∈ K

}
.

We shall often need the next algebraic property of the newly considered functionals:

Proposition 1. Let n ∈ N, t1, . . . , tn ∈ K and α1, . . . , αn, β1, . . . , βn ∈ K. Assume that ti �= tj, for any 
i, j ∈ {1, . . . , n} with i �= j and |αi| + |βi| �= 0, for every i ∈ {1, . . . , n}. Then the functionals α1δt1 + β1δ

′
t1 ,

. . . , αnδtn + βnδ
′
tn are linearly independent.

Proof. Let λ1, . . . , λn be scalars such that 
∑n

i=1 λi(αiδti +βiδ
′
ti) = 0 and define x∗ =

∑n
i=1 λi(αiδti +βiδ

′
ti). 

For each i0 ∈ {1, . . . , n} consider the functions xi0 , yi0 ∈ C1(K) given by

xi0(t) =
∏

i∈{1,...,n}\{i0}
(t− ti)2(t− ti0), yi0(t) =

∏
i∈{1,...,n}\{i0}

(t− ti), ∀t ∈ K.

Obviously xi0(ti) = 0 for any i ∈ {1, . . . , n}, x′
i0

(ti) = yi0(ti) = 0, for any i ∈ {1, . . . , n}\{i0} and x′
i0

(ti0) =∏
i∈{1,...,n}\{i0}(ti0 − ti)2 �= 0. It is therefore clear that 0 = x∗(xi0) = λi0βi0x

′
i0

(ti0) and consequently 
λi0βi0 = 0. Since i0 is arbitrary x∗ =

∑n
i=1 λiαiδti . Thus 0 = x∗(yi0) = λi0αi0yi0(ti0) and the inequality 

yi0(ti0) �= 0 gives us that λi0αi0 = 0.
Let i ∈ {1, . . . , n}. According to the above note that λiαi = λiβi = 0. Then

0 = |λi||αi| + |λi||βi| = |λi|
(
|αi| + |βi|

)
and it can be concluded that λi = 0. �
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It is convenient to isolate the following consequence of the previous result.

Corollary 2. Consider α1, α2, β1, β2 ∈ K and t, s ∈ K such that

α1δt + β1δ
′
t = α2δs + β2δ

′
s.

Then α1 = α2 = β1 = β2 = 0 or α1 = α2, β1 = β2 and t = s.

Proof. If t �= s, necessarily |αi| + |βi| = 0 for some i ∈ {1, 2}. Hence

α1δt + β1δ
′
t = α2δs + β2δ

′
s = 0

and evaluating such functionals at uK and iK , it is obtained that α1 = α2 = β1 = β2 = 0.
If t = s the above mentioned functionals can be used to conclude that α1 = α2 and β1 = β2. �
The next observation completes our presentation of preliminary results.

Proposition 3. Let I and J be two intervals of R with nonempty interior and ϕ : J → I a function such that 
x′ ◦ ϕ belongs to C1(J) for any x ∈ C1(I). Then ϕ is a constant function.

Proof. The function ϕ is differentiable with continuous derivative because, in fact, ϕ = x′ ◦ ϕ for any 
primitive x of the identity in I. The problem reduces to proving that if ϕ is non-constant there exists 
x ∈ C1(I) such that the function x′ ◦ ϕ does not belong to C1(J). Indeed, if ϕ is not constant, there is at 
least one point t0 in the interior of the interval J such that ϕ′(t0) �= 0. Assume for example that ϕ′(t0) > 0. 
Then ϕ is strictly increasing in a certain neighborhood of t0. Now consider the function x : I → R given by

x(s) =
{

(s− ϕ(t0))2 if s ≥ ϕ(t0)
0 if s < ϕ(t0).

Obviously x ∈ C1(I) and

x′(s) =
{

2(s− ϕ(t0)) if s ≥ ϕ(t0)
0 if s < ϕ(t0).

Let {tn} be a sequence of elements in the aforementioned neighborhood of t0 such that {tn} → t0. Then 
{ϕ(tn)} converges to ϕ(t0). If {tn} is strictly increasing, the same happens with the sequence {ϕ(tn)} and 
therefore x′(ϕ(tn)) = 0, for every n ∈ N. In consequence,

{
x′(ϕ(tn)) − x′(ϕ(t0))

tn − t0

}
= {0} → 0.

On the other hand, if {tn} is strictly decreasing, so does the sequence {ϕ(tn)} and thus x′(ϕ(tn)) =
2(ϕ(tn) − ϕ(t0)), for each n ∈ N. In this way,

{
x′(ϕ(tn)) − x′(ϕ(t0))

tn − t0

}
=

{
2(ϕ(tn) − ϕ(t0))

tn − t0

}
→ 2ϕ′(t0) > 0.

Hence, the function x′ ◦ ϕ is not differentiable at t0. �
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Before concluding this section consider two compact intervals of R, K1 = [a1, b1] and K2 = [a2, b2], and 
let ϕ : K2 → K1 be an isometry. Evidently the existence of isometries from K2 into K1 is equivalent to the 
condition l(K2) ≤ l(K1). It is well known and easy to check that there exists c ∈ R such that either

ϕ(t) = t + c, for every t ∈ K2 (1)

or

ϕ(t) = −t + c, for every t ∈ K2. (2)

To be more precise, given a real number c, the equality (1) defines an isometry from K2 into K1 if, and 
only if, a1 − a2 ≤ c ≤ b1 − b2. Similarly, the equality (2) provides an isometry from K2 into K1 if, and 
only if, a1 + b2 ≤ c ≤ a2 + b1. In particular, if l(K2) = l(K1), there are exactly two isometries (in this case 
surjectives) from K2 onto K1. One of them is given by (1) with c = a1 − a2 = b1 − b2 and the other by (2)
with c = a1 + b2 = a2 + b1. Thus, for example, the isometries from the interval [0, 1] to itself are the identity 
mapping and the function t �→ 1 − t. It is also clear that a mapping ϕ : K2 → K1 is an isometry if, and only 
if, ϕ is differentiable and |ϕ′(t)| = 1, for every t ∈ K2.

3. On the coincidence between nice operators and onto isometries

In the context of continuously differentiable function spaces, different norms, equivalent and complete, 
are commonly used. All of them give rise to the adequate convergence notion for these spaces. The norm we 
are going to consider in this section is particularly frequent, easy to use and mainly will allow us to illustrate 
the existence of infinite-dimensional Banach spaces where the class consisting of the nice operators matches 
the one formed by the isometric isomorphisms.

Let K be a compact interval of R and denote by X the Banach space (C1(K), ‖ · ‖), where

‖x‖ = max
{
‖x‖∞,

∥∥x′∥∥
∞
}
, for every x ∈ C1(K). (3)

Throughout this section, any reference to the maximum norm should be interpreted in terms of the 
previous equality.

It is known (see [5]) that the set of the extreme points of the closed unit ball of X∗ is given by

EX∗ = T∇K ∪ T∇′
K .

Obviously, the sets

{
x∗ ∈ X∗ :

∣∣x∗(uK)
∣∣ < 1

2

}
and

{
x∗ ∈ X∗ :

∣∣x∗(uK)
∣∣ > 1

2

}

are disjoint and w∗-open. Furthermore, T∇′
K is contained in the first one and T∇K is included in the second 

of them. Indeed, x∗(uK) = 0, for every x∗ ∈ T∇′
K , while |x∗(uK)| = 1, for every x∗ ∈ T∇K . Moreover, it is 

clear that the sets ∇K and ∇′
K are w∗-connected. The just stated facts will be useful to characterize nice 

operators between continuously differentiable function spaces under the maximum norm.

Theorem 4. Let K1 and K2 be compact intervals of R, X = C1(K1) and Y = C1(K2), provided with their 
respective maximum norms.
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i) If K = R, the existence of nice operators from X into Y is equivalent to the condition l(K1) ≥ l(K2). 
Furthermore, in such a case, an operator T : X → Y is nice if, and only if, there is a scalar α0 ∈ T and 
an isometry ϕ : K2 → K1 such that

(Tx)(t) = α0x
(
ϕ(t)

)
, for any t ∈ K2 and x ∈ X. (4)

ii) Suppose K = C. If l(K1) < l(K2), there are no more nice operators than those of the form

(Tx)(t) = α(t)x(s0), for any t ∈ K2 and x ∈ X, (5)

or

(Tx)(t) = α(t)x′(s0), for any t ∈ K2 and x ∈ X, (6)

where s0 is a point of K1 and α is a differentiable function from K2 into T whose derivative is continuous 
and |α′(t)| = 1, for every t ∈ K2.
On the other hand, if l(K1) ≥ l(K2), an operator T : X → Y is nice if, and only if, it is of the form 
(4), (5) or (6).

Proof. The operators described in the statements are obviously nice. Therefore, everything is reduced to 
proving that any nice operator is given by one of these descriptions. Suppose, then, that T : X → Y is a 
nice operator. Since the set T ∗(∇K2) is w∗-connected and it is contained in T∇K1 ∪ T∇′

K1
one and only 

one of the following two assertions is satisfied:

A.1. T ∗(∇K2) ⊂ T∇K1 or
A.2. T ∗(∇K2) ⊂ T∇′

K1
.

Likewise, one of the two following conditions holds:

B.1. T ∗(∇′
K2

) ⊂ T∇′
K1

or
B.2. T ∗(∇′

K2
) ⊂ T∇K1 .

First, assume that the assertion A.1 is true. Then, for any t ∈ K2, there are α(t) ∈ T and ϕ(t) ∈ K1 such 
that

T ∗(δt) = α(t)δϕ(t). (7)

The mappings α and ϕ are continuously differentiable because α = TuK1 and ϕ = TiK1
α . According to the 

equality (7)

(Tx)(t) = α(t)x
(
ϕ(t)

)
, for any x ∈ X and t ∈ K2. (8)

In consequence, given x ∈ X,

(Tx)′(t) = α′(t)x
(
ϕ(t)

)
+ α(t)ϕ′(t)x′(ϕ(t)

)
, for every t ∈ K2,

that is to say,

T ∗(δ′t) = α′(t)δϕ(t) + α(t)ϕ′(t)δ′ϕ(t), for every t ∈ K2. (9)
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If B.1 holds and t ∈ K2, there are γ(t) ∈ T and ψ(t) ∈ K1 such that T ∗(δ′t) = γ(t)δ′ψ(t). Therefore,

α′(t)δϕ(t) + α(t)ϕ′(t)δ′ϕ(t) = γ(t)δ′ψ(t).

It follows by applying Corollary 2 (or directly by evaluating such functional at uK1 , iK1 and (iK1)2) that 
α′(t) = 0, α(t)ϕ′(t) = γ(t) and ϕ(t) = ψ(t), for each t ∈ K2. Hence, α is constant and |ϕ′(t)| = 1, for any 
t ∈ K2. This implies that ϕ is an isometry from K2 into K1 and in particular l(K1) ≥ l(K2). There is, 
furthermore, α0 ∈ T such that

(Tx)(t) = α0x
(
ϕ(t)

)
, for any x ∈ X and t ∈ K2. (10)

Now assume that, in addition to A.1, B.2 is satisfied. Then, given t ∈ K2, there are β(t) ∈ T and η(t) ∈ K1

such that T ∗(δ′t) = β(t)δη(t). Taking into account (9), one infers that

α′(t)δϕ(t) + α(t)ϕ′(t)δ′ϕ(t) = β(t)δη(t)

and in accordance with Corollary 2, α′(t) = β(t) and α(t)ϕ′(t) = 0, for every t ∈ K2. Thus

∣∣α(t)
∣∣ =

∣∣α′(t)
∣∣ = 1 and ϕ′(t) = 0, for every t ∈ K2. (11)

The first two equalities of the previous line (and therefore the conditions A.1 and B.2) are manifestly 
incompatible if K = R. However, in the complex case there is no problem and, as it can be deduced from 
(8) and (11), there is s0 ∈ K1 such that

(Tx)(t) = α(t)x(s0), for any x ∈ X and t ∈ K2.

We will now analyze the case A.2. In this situation, given t ∈ K2, there are α(t) ∈ T and ϕ(t) ∈ K1 such 
that T ∗(δt) = α(t)δ′ϕ(t). Therefore

(Tx)(t) = α(t)x′(ϕ(t)
)
, for every x ∈ X (12)

and obviously α = T (iK1), so that the function α is continuously differentiable. In view of (12), x′ ◦ ϕ ∈ Y , 
for every x ∈ X and by virtue of Proposition 3, ϕ is a constant function. Consequently, there is s0 ∈ K1

such that

(Tx)(t) = α(t)x′(s0). (13)

This equality and ultimately the possibility A.2 cannot occur in the real case. In fact, under such a condition, 
the function α is constant and one can deduce from (13) that (Tx)′(t) = 0, for any t ∈ K2 and x ∈ X, that 
is, T ∗(δ′t) = 0, for every t ∈ K2, which is not possible when T is a nice operator. Thus, in the real case there 
are no more nice operators than those described by (10) and only if the inequality l(K1) ≥ l(K2) holds. 
Moreover, if K = C, Eq. (13) allows to deduce that T ∗(δ′t) = α′(t)δ′s0 and since T is nice, |α′(t)| = 1, for 
every t ∈ K2. �

We conclude this section with two immediate consequences of the preceding theorem.
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Corollary 5. Let X and Y be as in Theorem 4.

i) X and Y are isometrically isomorphic if, and only if, l(K1) = l(K2), in which case an operator T : X →
Y is an isometric isomorphism if, and only if, there is α0 ∈ T and an isometric bijection ϕ : K2 → K1

such that

(Tx)(t) = α0x
(
ϕ(t)

)
, for any t ∈ K2 and x ∈ X.

ii) If K = R and l(K1) = l(K2), every nice operator from X into Y is an isometric isomorphism.

In [5] more information about the first paragraph of the previous result can be obtained.

4. A change in the norm

As we said at the beginning, in this section we will show the geometric nature of the problem we are 
analyzing. If one replaces the previously considered norm on C1(K) by an equivalent norm, the set of nice 
operators may be different of the set of isometric isomorphisms (both for K = R and for K = C).

Let K be a compact interval of R and consider the norm on C1(K) defined by

‖|x‖| = max
{∣∣x(t)

∣∣ +
∣∣x′(t)

∣∣ : t ∈ K
}
, for every x ∈ C1(K). (14)

If X = (C1(K), ‖ | · ‖ |), the set of extreme points of the closed unit ball of X∗ is given, as may be seen in [4]
and [5], by

EX∗ =
{
αδt + βδ′t : α, β ∈ T, t ∈ K

}
.

The symbol ‖ | · ‖ | will be also used for the corresponding dual norm on X∗. Evidently ‖ |δt − δs‖ | ≤ |t − s|, 
for any t, s ∈ K. Moreover, if n ∈ N, α1, . . . , αn ∈ T and t1, . . . , tn are pairwise different elements of K

∥∥∣∣α1δ
′
t1 + · · · + αnδ

′
tn

∥∥∣∣ = n. (15)

Below we will describe the nice operators between continuously differentiable function spaces with respect 
to the norm just introduced. The results we get are new and have an independent interest to the problem 
we are addressing. Notice that the description of surjective isometries between such spaces can be easily 
obtained as a particular case.

Let thus K1 and K2 be compact intervals of R. From now on, X and Y will stand for the spaces C1(K1)
and C1(K2) endowed with their respective norms (14).

Lemma 6. Assume that T : X → Y is a nice operator. Then TuK1 is a constant function. Namely, there 
exists α0 ∈ T such that

(TuK1)(t) = α0, for every t ∈ K2.

Proof. Define e = TuK1 and consider t ∈ K2 and β ∈ T. Since T is nice, there are α1, β1 ∈ T and t1 ∈ K1

such that T ∗(δt + βδ′t) = α1δt1 + β1δ
′
t1 . As a consequence,

∣∣e(t) + βe′(t)
∣∣ =

∣∣α1uK1(t1) + β1u
′
K (t1)

∣∣ = |α1| = 1. (16)

1
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Now suppose K = R. Then |e(t) ± e′(t)| = 1 and therefore 2e(t) ∈ {−2, 0, 2}, that is, e(t) ∈ {−1, 0, 1}, for 
every t ∈ K2. Thus e is a constant function and, in view of the equality (16), either e(t) = 1, for every 
t ∈ K2, or e(t) = −1, for every t ∈ K2.

In the complex case, β can be replaced by ±1 and ±i in order to obtain that

∣∣e(t)∣∣2 +
∣∣e′(t)∣∣2 ± 2Re

(
e(t)e′(t)

)
= 1,∣∣e(t)∣∣2 +

∣∣e′(t)∣∣2 ∓ 2 Im
(
e(t)e′(t)

)
= 1.

It follows that e(t)e′(t) = 0 or, equivalently, e(t)e′(t) = 0. In this way, the images of the functions e and 
e′ are contained in {0} ∪ T. According to (16) it is clear that e(K2) ⊂ T and since ee′ = 0 necessarily 
e′(K2) ⊂ {0}. �
Theorem 7. Consider an operator T ∈ L(X, Y ).

i) Assume that l(K1) < l(K2). Then T is nice if, and only if, there are t0 ∈ K1 and α0, β0 ∈ T such that

(Tx)(t) = α0x(t0) + β0x
′(t0), for any x ∈ X and t ∈ K2. (17)

ii) Suppose now that l(K1) ≥ l(K2). Then T is nice if, and only if, one of the following two statements 
is true:
a) T is of the form (17).
b) There is a scalar α0 ∈ T and an isometry ϕ : K2 → K1 such that

(Tx)(t) = α0x
(
ϕ(t)

)
, for any x ∈ X and t ∈ K2. (18)

Proof. The operators described by Eqs. (17) and (18) are clearly nice. It is, therefore, sufficient to show 
that any nice operator from X into Y can be expressed in one of those ways.

Assume then that T is a nice operator. By the preceding lemma there is a scalar α0 ∈ T such that 
(TuK1)(t) = α0, for every t ∈ K2.

Since T = α0( 1
α0

T ) and 1
α0

T is a nice operator which maps uK1 to uK2 , also assume from this point 
that T itself associates uK2 with uK1 . To reach the general description of the nice operators it suffices to 
multiply by α0 the expression of T we are going to obtain under the assumed hypothesis.

With α0 = 1, fix a point t ∈ K2 and a scalar β ∈ T. Obviously there are ϕ(t, β) ∈ K1 and η(t, β) ∈ T

such that

T ∗(δt + βδ′t
)

= δϕ(t,β) + η(t, β)δ′ϕ(t,β) (19)

and, as we see next, the constructed mappings ϕ and η are continuous. First observe that the equality (19)
can be expressed equivalently as follows:

(Tx)(t) + β(Tx)′(t) = x
(
ϕ(t, β)

)
+ η(t, β)x′(ϕ(t, β)

)
,

for any x ∈ X, t ∈ K2 and β ∈ T. In particular, given t ∈ K2 and β ∈ T,

(TiK1)(t) + β(TiK1)′(t) = ϕ(t, β) + η(t, β)(
T
(
i2K1

))
(t) + β

(
T
(
i2K1

))′(t) = ϕ(t, β)2 + 2η(t, β)ϕ(t, β)(
T
(
i3K

))
(t) + β

(
T
(
i3K

))′(t) = ϕ(t, β)3 + 3η(t, β)ϕ(t, β)2.

1 1
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Therefore, the mappings ϕ + η, ϕ2 + 2ηϕ and ϕ3 + 3ηϕ2 are continuous. It follows that so are the functions 
(ϕ + η)2 and (ϕ + η)3. Observing that

(ϕ + η)2 −
(
ϕ2 + 2ηϕ

)
= η2

(ϕ + η)3 −
(
ϕ3 + 3ηϕ2) = 3ϕη2 + η3

we can say that η2 and 3ϕη2 + η3 are continuous. Consequently so is 3ϕ + η. Finally, the equalities

ϕ = 1
2
(
(3ϕ + η) − (ϕ + η)

)
η = −1

2
(
(3ϕ + η) − 3(ϕ + η)

)
allow to conclude that ϕ and η are continuous.

Now put

Q = K2 × T.

The above arguments are valid for real or complex scalars. From this moment we will reason separately in 
each of such situations.

Complex case: The first step is to prove that the function ϕ does not depend on β. To this end, consider 
t ∈ K2. If the mapping β �→ ϕ(t, β), from T into K1, were non-constant, by Proposition 1, infinite linearly 
independent vectors of X∗ would appear in the right side of equality (19). This is not possible since the 
vectors of the left side of such equality are contained in a two-dimensional subspace of X∗. Therefore, 
equality (19) can be written in the form

T ∗(δt) + βT ∗(δ′t) = δϕ(t) + η(t, β)δ′ϕ(t), for every (t, β) ∈ Q. (20)

Let y = TiK1 . In accordance with the above equalities,

y(t) + βy′(t) = ϕ(t) + η(t, β).

It follows readily that

1. y′(t) = 0, for every t ∈ K2 or
2. |y′(t)| = 1, for every t ∈ K2.

In the first case, y is a constant function and clearly

y(t) = ϕ(t) + η(t, β). (21)

If Im stands for imaginary, there is a real number c such that

c = Im
(
y(t)

)
= Im

(
η(t, β)

)
.

Thus the function η is constant and by (21) so is ϕ. Hence, there are t0 ∈ K1 and λ0 ∈ T such that

T ∗(δt) + βT ∗(δ′t) = δt0 + λ0δ
′
t0 , for every (t, β) ∈ Q.

From the previous equality it follows that T ∗(δ′t) = 0, for every t ∈ K2. In consequence,
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(Tx)(t) = x(t0) + λ0x
′(t0), for any t ∈ K2 and x ∈ X.

Suppose now that |y′(t)| = 1, for every t ∈ K2. In such a case, y(t) = ϕ(t) and βy′(t) = η(t, β), for every 
(t, β) ∈ Q. Therefore ϕ is an isometry from K2 into K1 and, in particular, l(K2) ≤ l(K1). The equality (20)
ensures that

(Tx)(t) + β(Tx)′(t) = x
(
ϕ(t)

)
+ βϕ′(t)x′(ϕ(t)

)
, for any x ∈ X and (t, β) ∈ Q.

By summing the resulting equalities for β = 1 and β = −1 one concludes that

(Tx)(t) = x
(
ϕ(t)

)
, for any x ∈ X and t ∈ K2.

Real case: Given β ∈ T, the function t �→ η(t, β), from K2 into T, is constant. Thereupon, η only depends 
on β. We thus write η(β) instead of η(t, β).

Fix t ∈ K2. In accordance with equality (19),

T ∗δt + T ∗δ′t = δϕ(t,1) + η(1)δ′ϕ(t,1) and T ∗δt − T ∗δ′t = δϕ(t,−1) + η(−1)δ′ϕ(t,−1). (22)

Consequently,

T ∗δt =
δϕ(t,1) + δϕ(t,−1)

2 +
η(1)δ′ϕ(t,1) + η(−1)δ′ϕ(t,−1)

2 . (23)

Now, consider the sets A = {t ∈ K2 : ϕ(t, 1) = ϕ(t, −1)} and B = K2\A. Evidently, A is closed and we are 
going to see immediately that so is B. For this purpose let {tn} be a convergent sequence of elements in B, 
t = lim tn and suppose to reach a contradiction that t ∈ A. By virtue of (23),

T ∗δtn =
δϕ(tn,1) + δϕ(tn,−1)

2 +
η(1)δ′ϕ(tn,1) + η(−1)δ′ϕ(tn,−1)

2 , for every n ∈ N

and T ∗δt = δϕ(t,1)+ η(1)+η(−1)
2 δ′ϕ(t,1). It is clear that the sequences {T ∗δtn} and {δϕ(tn,1)+δϕ(tn,−1)} converge 

in the norm topology to T ∗δt and δϕ(t,1) + δϕ(t,−1), respectively. Therefore, the sequence {η(1)δ′ϕ(tn,1) +
η(−1)δ′ϕ(tn,−1)} also converges in norm to (η(1) + η(−1))δ′ϕ(t,1). This is a contradiction because according 
to (15)

∥∥∣∣η(1)δ′ϕ(tn,1) + η(−1)δ′ϕ(tn,−1) −
(
η(1) + η(−1)

)
δ′ϕ(t,1)

∥∥∣∣ ≥ 2, for every n ∈ N.

In order to prove that A = K2, assume first that there exists an open interval V ⊂ K2 and a point t0 ∈ K1
such that ϕ(t, 1) = t0, for every t ∈ V . Define y = TiK1 . The equality (23) ensures that

y(t) = t0 + ϕ(t,−1)
2 + η(1) + η(−1)

2 , for each t ∈ V

and hence the mapping t �→ ϕ(t, −1) is continuously differentiable on V . Likewise, given x ∈ X,

(Tx)(t) = x(t0) + x(ϕ(t,−1))
2 + η(1)x′(t0) + η(−1)x′(ϕ(t,−1))

2 , for every t ∈ V.

Thus the mapping t �→ x′(ϕ(t, −1)) is continuously differentiable on V , for any x ∈ X. Pursuant to Propo-
sition 3, there is t1 ∈ K1 such that ϕ(t, −1) = t1, for every t ∈ V . Clearly then
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(Tx)(t) = x(t0) + x(t1)
2

+ η(1)x′(t0) + η(−1)x′(t1)
2

, for any x ∈ X and t ∈ V.

In consequence, (Tx)′(t) = 0, for any x ∈ X and t ∈ V . That is to say T ∗δ′t = 0, for every t ∈ V . The 
equalities (22) allow to deduce that

T ∗δt = δt0 + η(1)δ′t0 = δt1 + η(−1)δ′t1 , for every t ∈ V.

In particular t0 = t1 and thus ϕ(t, 1) = ϕ(t, −1), for each t ∈ V . Therefore the set A is nonempty and 
necessarily A = K2.

Suppose now that the mapping t �→ ϕ(t, 1) is not constant on any open interval contained in K2. Then, 
given s ∈ K2, there is a sequence {sn} in K2 such that {sn} → s and {ϕ(sn, 1)} is strictly monotonic. 
Suppose, to arrive at a contradiction, that A = ∅. Equivalently ϕ(t, 1) �= ϕ(t, −1), for every t ∈ K2. In this 
way ϕ(s, 1) �= ϕ(s, −1) and since {ϕ(sn, −1)} → ϕ(s, −1) it can be assumed that ϕ(sn, −1) �= ϕ(s, 1), for 
every n ∈ N. According to (23)

T ∗δsn =
δϕ(sn,1) + δϕ(sn,−1)

2 +
η(1)δ′ϕ(sn,1) + η(−1)δ′ϕ(sn,−1)

2 , for every n ∈ N.

It follows, as we saw above, that the sequence {η(1)δ′ϕ(sn,1) + η(−1)δ′ϕ(sn,−1)} converges in norm to 

η(1)δ′ϕ(s,1) +η(−1)δ′ϕ(s,−1). But this is a contradiction because, for any n ∈ N, the points ϕ(sn, 1), ϕ(sn, −1)
and ϕ(s, 1) are pairwise different and by virtue of (15)

∥∥∣∣η(1)δ′ϕ(sn,1) + η(−1)δ′ϕ(sn,−1) − η(1)δ′ϕ(s,1) − η(−1)δ′ϕ(s,−1)
∥∥∣∣ ≥ 2,

for every n ∈ N. We thus conclude that ϕ(t, 1) = ϕ(t, −1) for any t ∈ K2. From now on we will write ϕ(t)
to represent the common value of both sides of the previous equality.

Making use once again of (23)

T ∗δt = δϕ(t) + η(1) + η(−1)
2 δ′ϕ(t), for every t ∈ K2. (24)

Select t ∈ K2 and define as before y = TiK1 . Then y(t) = ϕ(t) + η(1)+η(−1)
2 and hence ϕ is continuously 

differentiable on K2. Moreover, from the equalities (22) it follows that

y(t) + y′(t) = ϕ(t) + η(1), y(t) − y′(t) = ϕ(t) + η(−1).

Consequently, y′(t) = η(1)−η(−1)
2 . As a result of that, if η(1) = η(−1) the function y, and hence ϕ, is 

constant. In this manner there is t0 ∈ K2 such that

T ∗δt = δt0 + η(1)δ′t0 , for every t ∈ K2,

that is, (Tx)(t) = x(t0) + η(1)x′(t0), for every t ∈ K2.
Finally, if η(1) = −η(−1), then |ϕ′(t)| = |y′(t)| = |η(1)| = 1, for any t ∈ K2. Therefore ϕ is an isometry 

and, according to (24),

(Tx)(t) = x
(
ϕ(t)

)
, for every t ∈ K2. �

As an immediate consequence we obtain the following description of the isometries from X onto Y .
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Corollary 8. The spaces X and Y are isometrically isomorphic if, and only if, l(K1) = l(K2). Furthermore, 
in such a case, an operator T : X → Y is an isometric isomorphism if, and only if, there are α0 ∈ T and 
an isometric bijection ϕ : K2 → K1 such that

(Tx)(t) = α0x
(
ϕ(t)

)
, for any t ∈ K2 and x ∈ X.

This last result was already known as can be seen in [4] and [5].
Thus, regardless of the scalar field and even assuming that l(K1) = l(K2) Theorem 7 shows in particular 

that nice operators and surjective isometries are different sets under the norm (14).
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