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0. Introduction

In this note we deal with Lipschitz-free compact and Lipschitz-free weakly compact operators between 
metric spaces. They are nonlinear versions of the notions of compact and weakly compact linear opera-
tors between Banach spaces. We give several characterizations of Lipschitz-free compact and Lipschitz-free 
weakly compact operators. These results are nonlinear versions of the classical theorems due to Schauder 
and Gantmacher on compact and weakly compact linear operators, respectively. We also obtain a version 
for Lipschitz-free weakly compact operators of the factorization theorem of W.J. Davis et al. [6]. Similar 
versions of these results were stated for Banach-valued Lipschitz operators in [10]. The relationships be-
tween different classes of Lipschitz operators are studied. The key tool to obtain our results is a process 
of linearization of Lipschitz mappings provided by the Lipschitz-free space over a pointed metric space. 
We dedicate the following section to recall this process and present some known classes of Lipschitz oper-
ators.
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1. Preliminaries

A pointed metric space X is a metric space with a base point that we always will represent by 0. If X is 
a normed space, 0 will be its origin. We denote by d the distance in any metric space.

Let X and Y be pointed metric spaces. Let us recall that a map f : X → Y is Lipschitz if there exists a 
real constant C ≥ 0 such that d(f(x), f(y)) ≤ Cd(x, y) for all x, y ∈ X. The infimum of such constants is 
denoted by Lip(f). In other words,

Lip(f) = sup
{
d(f(x), f(y))

d(x, y) :x, y ∈ X, x �= y

}
.

We denote by Lip0(X, Y ) the set of all Lipschitz maps f from X into Y such that f(0) = 0. The elements 
of Lip0(X, Y ) are also referred to as Lipschitz operators. If E is a Banach space over the field K of real 
or complex numbers, Lip0(X, E) is a Banach space with the Lipschitz norm Lip. The space Lip0(X, K) is 
known as the Lipschitz dual of X and denoted frequently by X#.

The Lipschitz-free Banach space F(X) over a pointed metric space X is the closed linear span in (X#)∗
of the evaluation functionals δx: X# → K with x ∈ X, where

δx(f) = f(x)
(
f ∈ X#)

.

This space was called and denoted so by G. Godefroy and N.J. Kalton in [9]. We refer to Weaver’s book 
[16] for a complete study about spaces of Lipschitz functions.

Notation. Let E and F be Banach spaces. We denote by L(E, F ) the Banach space of all bounded linear 
operators from E into F with the usual norm. K(E, F ) and W(E, F ) stand for the spaces of compact and 
weakly compact linear operators from E into F , respectively. As is customary, E∗ stands for the dual space 
of E, BE for the closed unit ball of E and JE for the canonical isometric embedding from E into E∗∗. Given 
M ⊂ E, we denote by Γ(M) the closed, convex, balanced hull of M in E. For any T ∈ L(E, F ), T ∗ denotes 
the adjoint operator of T from F ∗ into E∗.

We gather in the next theorem some properties of the Lipschitz-free space over a pointed metric space.

Theorem 1.1. Let X and Y be pointed metric spaces.

(i). The Dirac map δX : X → F(X) given by δX(x) = δx is a (nonlinear) isometry.
(ii). F(X)∗ is isometrically isomorphic to X# via the evaluation map QX : X# → F(X)∗ given by 

QX(g)(γ) = γ(g) for all g ∈ X# and γ ∈ F(X).
(iii). The closed unit ball of F(X) is the closed, convex, balanced hull in (X#)∗ of the set

{
δx − δy
d(x, y) :x, y ∈ X, x �= y

}
.

(iv). For each f ∈ Lip0(X, Y ), the Lipschitz adjoint map f#: Y # → X#, given by f#(g) = gf for all 
g ∈ Y #, is a continuous linear operator and 

∥∥f#
∥∥ = Lip(f).

(v). For each f ∈ Lip0(X, Y ), there exists a unique operator Lf ∈ L(F(X), F(Y )) such that (Lf )∗ =
QXf#(QY )−1. Furthermore, ‖Lf‖ = Lip(f).

(vi). For each f ∈ Lip0(X, Y ), there exists a unique operator Lf ∈ L(F(X), F(Y )) such that LfδX = δY f , 
that is, the following diagram commutes:
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X

F(X)

Y

F(Y )

f

δX δY

Lf

(vii). If X, Y and Z are pointed metric spaces, f ∈ Lip0(X, Y ) and g ∈ Lip0(Y, Z), then Lgf = LgLf .

Proof. The statement (i) was proved by R.F. Arens and J. Eells Jr. in [1] (see also the paper [14] by 
E. Michael). The assertions (ii) and (iii) were obtained in [10, Lemma 1.1]. See [11, Corollary 4.2] for 
another proof of (ii). The statement (iv) was stated by J.G. Peng and Z.B. Xu in [15, Proposition 1].

In order to show (v), let f ∈ Lip0(X, Y ). By (ii) and (iv), QXf#(QY )−1 is a continuous linear operator 
from (F(Y )∗, w∗) into (F(X)∗, w∗), where w∗ denotes the weak∗ topology. Hence there is a unique operator 
Lf ∈ L(F(X), F(Y )) such that (Lf )∗ = QXf#(QY )−1. Clearly, ‖Lf‖ = ‖(Lf )∗‖ =

∥∥QXf#(QY )−1
∥∥ =∥∥f#

∥∥ = Lip(f).
The statement (vi), which can be deduced readily from (v), is Lemma 3.1 in [12]. See [9, Lemma 2.2] for 

a particular case.
To prove (vii), the assertion (vi) provides operators Lf ∈ L(F(X), F(Y )) and Lg ∈ L(F(Y ), F(Z))

such that LfδX = δY f and LgδY = δZg. Clearly, gf ∈ Lip0(X, Z). Since δZgf = LgδY f = LgLfδX and 
LgLf ∈ L(F(X), F(Y )), we infer that Lgf = LgLf by the uniqueness given in (vi). �

We devote the rest of this section to recall and relate some known classes of Lipschitz operators. In what 
follows, p will be in [1, ∞).

An operator between Banach spaces T ∈ L(X, Y ) is p-nuclear if there are operators A ∈ L(�p, Y ), 
B ∈ L(X, �∞) and a diagonal operator Mλ ∈ L(�∞, �p) induced by a sequence λ ∈ �p such that the 
following diagram commutes:

X Y

�∞ �p

T

B

Mλ

A

Define νp(T ) = inf ‖A‖ · ‖Mλ‖ · ‖B‖, the infimum being taken over all factorizations as above.
The notion of Lipschitz p-nuclear operator was introduced by D. Chen and B. Zheng in [5] for mappings 

from a metric space into a Banach space. Given pointed metric spaces X and Y , we say that f ∈ Lip0(X, Y )
is Lipschitz p-nuclear if there exist a ∈ Lip0(�p, Y ), b ∈ Lip0(X, �∞) and a diagonal operator Mλ ∈ L(�∞, �p)
with λ ∈ �p giving rise to the following commutative diagram:

X Y

�∞ �p

f

b

Mλ

a
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Define LippN (f) = inf Lip(a) · ‖Mλ‖ · Lip(b), the infimum being taken over all factorizations as above, and 
denote by Lip0pN (X, Y ) the set of all Lipschitz p-nuclear operators from X into Y .

Let us recall now that an operator between Banach spaces T ∈ L(X, Y ) is p-integral if there are a 
probability measure μ and two operators A ∈ L(Lp(μ), Y ) and B ∈ L(X, L∞(μ)) such that the following 
diagram commutes:

X Y Y ∗∗

L∞(μ) Lp(μ)

T JY

B

Ip,∞

A

where Ip,∞: L∞(μ) → Lp(μ) is the formal inclusion operator. Denote ιp(T ) = inf ‖A‖ · ‖B‖, where the 
infimum is extended over all operators A and B as above.

J.D. Farmer and W.B. Johnson introduced the following generalization in [8]. Given pointed metric spaces 
X and Y , a Lipschitz operator f ∈ Lip0(X, Y ) is Lipschitz p-integral if there exist a probability measure μ
and two Lipschitz operators a ∈ Lip0(Lp(μ), (Y #)∗) and b ∈ Lip0(X, L∞(μ)) so that the following diagram 
commutes:

X Y (Y #)∗

L∞(μ) Lp(μ)

f JL
Y

b

I∞,p

a

where JL
Y is the canonical isometry from Y into (Y #)∗. The triple (a, b, μ) is called a Lipschitz p-integral 

factorization of f . We denote by Lip0pI(X, Y ) the set of all Lipschitz p-integral operators from X into Y . 
With each Lipschitz p-integral operator f , we associate LippI(f) = inf Lip(a) · Lip(b), where the infimum is 
taken over all Lipschitz p-integral factorizations of f .

We now introduce a smaller class of Lipschitz p-integral operators.

Definition 1.2. Let X and Y be pointed metric spaces. A Lipschitz operator f ∈ Lip0(X, Y ) is called a 
strongly Lipschitz p-integral operator if there exist a probability measure μ, a bounded linear operator A ∈
L(Lp(μ), (Y #)∗) and a Lipschitz operator b ∈ Lip0(X, L∞(μ)) such that the following diagram commutes:

X Y (Y #)∗

L∞(μ) Lp(μ)

f JL
Y

b

I∞,p

A

The triple (A, b, μ) is called a strongly Lipschitz p-integral factorization of f . Define

LippSI(f) = inf ‖A‖ · Lip(b),

the infimum being taken over all such factorizations. We denote by Lip0pSI(X, Y ) the set of all strongly 
Lipschitz p-integral operators from X into Y .
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Clearly, Lip0pSI(X, Y ) ⊂ Lip0pI(X, Y ) and LippI(f) ≤ LippSI(f) for every f ∈ Lip0pSI(X, Y ).
The preceding definition extends that of Banach-valued strongly Lipschitz p-integral operator in [10]. 

Indeed, when Y is a Banach space, the mapping JL
Y : Y → (Y #)∗ can be replaced in Definition 1.2 by the 

canonical injection JY : Y → Y ∗∗ since PJL
Y = JY where P : (Y #)∗ → Y ∗∗ is a linear projection of one-norm 

(see [13, Theorem 2]).
Finally, we recall that an operator T ∈ L(X, Y ) between Banach spaces is p-summing if there exists a 

constant C ≥ 0 such that regardless of the natural number n and regardless of the choice of vectors {vi}ni=1
in X, we have

(
n∑

i=1
‖T (vi)‖p

) 1
p

≤ C sup
v∗∈BX∗

(
n∑

i=1
|v∗(vi)|p

) 1
p

.

The infimum of such constants C is denoted by πp(T ).
A generalization of this concept was given by J.D. Farmer and W.B. Johnson in [8]. For pointed metric 

spaces X and Y , it is said that f ∈ Lip0(X, Y ) is Lipschitz p-summing if there exists a constant C ≥ 0 such 
that regardless of the natural number n and regardless of the choices of points {xi}ni=1 and {yi}ni=1 in X, 
we have

(
n∑

i=1
d(f(xi), f(yi))p

) 1
p

≤ C sup
g∈B

X#

(
n∑

i=1
|g(xi) − g(yi)|p

) 1
p

.

We denote the infimum of such constants by LippS(f) and the set of all Lipschitz p-summing operators from 
X into Y by Lip0pS(X, Y ). Lipschitz p-summing operators have been studied by J.A. Chávez-Domínguez 
in [2] and D. Chen and B. Zheng in [4].

Next, we study the relationships between the aforementioned classes of Lipschitz operators. Some prop-
erties of Lipschitz p-summing operators are needed.

It is known that Lip0pS(X, Y ) enjoys the ideal property (see [3,8]). More concretely, if X, Y , Z and V
are pointed metric spaces, f ∈ Lip0(X, Y ), g ∈ Lip0pS(Y, Z) and h ∈ Lip0(Z, V ), then hgf ∈ Lip0pS(X, V )
and LippS(hgf) ≤ Lip(h)LippS(g)Lip(f).

By the very definition, it is clear that Lip0pS(X, Y ) also enjoys the injectivity property. More specifically, 
if i: Y → Z is an isometry, then f ∈ Lip0pS(X, Y ) if and only if if ∈ Lip0pS(X, Z). In this case, LippS(if) =
LippS(f).

In a clear parallel to the linear case, we have the following.

Proposition 1.3. Let X and Y be pointed metric spaces and let 1 ≤ p < ∞.

(i). Lip0pN (X, Y ) ⊂ Lip0pI(X, Y ) and LippI(f) ≤ LippN (f) for each f ∈ Lip0pN (X, Y ).
(ii). Lip0pI(X, Y ) ⊂ Lip0pS(X, Y ) and LippS(f) ≤ LippI(f) for each f ∈ Lip0pI(X, Y ).

Proof. (i) Let f ∈ Lip0pN (X, Y ) and consider a typical Lipschitz p-nuclear factorization for f :

f = aMλb:X
b→ �∞

Mλ→ �p
a→ Y.

It is known (see, for example, [7, p. 111]) that the linear operator Mλ is strictly p-integral, that is, it admits 
a factorization

Mλ = AI∞,pB: �∞
B→ L∞(μ) I∞,p→ Lp(μ) A→ �p,
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where μ is a probability measure, A ∈ L(Lp(μ), �p) and B ∈ L(�∞, L∞(μ)). Moreover, the strictly p-integral 
norm of Mλ, defined by inf ‖A‖ · ‖B‖ where the infimum is taken over all such factorizations, is ‖Mλ‖. So 
we arrive at a Lipschitz p-integral factorization for f :

JL
Y f = JL

Y aAI∞,pBb:X b→ �∞
B→ L∞(μ) I∞,p→ Lp(μ) A→ �p

a→ Y
JL
Y→ (Y #)∗.

Hence f ∈ Lip0pI(X, Y ) and LippI(f) ≤ Lip(aA)Lip(Bb) ≤ Lip(a) ‖A‖ ‖B‖Lip(b). Passing to the infimum 
twice, we obtain LippI(f) ≤ Lip(a) ‖Mλ‖Lip(b) and LippI(f) ≤ LippN (f).

(ii) Let f ∈ Lip0pI(X, Y ) and take a Lipschitz p-integral factorization as

JL
Y f = aI∞,pb:X

b→ L∞(μ) I∞,p→ Lp(μ) a→ (Y #)∗.

Notice that I∞,p is p-summing with πp(I∞,p) = 1 by [7, 2.9 (d)]. Hence I∞,p ∈ Lip0pS(L∞(μ), Lp(μ)) and 
LippS(I∞,p) = 1 by [8, Theorem 2]. Then JL

Y f is in Lip0pS(X, (Y #)∗) by its ideal property. By its injectivity 
property, it follows that f ∈ Lip0pS(X, Y ) and

LippS(f) = LippS(JL
Y f) = LippS(aI∞,pb) ≤ Lip(a)LippS(I∞,p)Lip(b) = Lip(a)Lip(b).

Then the relation LippS(f) ≤ LippI(f) follows readily. �
2. The results

Following [10, Definition 2.1], let us recall that a base-point preserving map f from a pointed metric 
space X to a Banach space Y is Lipschitz compact (Lipschitz weakly compact) if{

f(x) − f(y)
d(x, y) :x, y ∈ X, x �= y

}
is a relatively compact (respectively, relatively weakly compact) subset of Y . Our aim now is to introduce 
this property for maps taking values in a pointed metric space Y . The problem which would raise the possible 
lack of linear structure in such a space Y can be avoided if one observes in the light of Theorem 1.1 (i) that 
f : X → Y is Lipschitz if and only if {

δf(x) − δf(y)

d(x, y) :x, y ∈ X, x �= y

}
is a bounded subset of F(Y ) ⊂ (Y #)∗. This motivates the following concepts.

Definition 2.1. Let X and Y be pointed metric spaces. A base-point preserving map f : X → Y is Lipschitz-
free compact (Lipschitz-free weakly compact) if{

δf(x) − δf(y)

d(x, y) :x, y ∈ X, x �= y

}
is a relatively compact (respectively, relatively weakly compact) subset of F(Y ).

We denote by Lip0FK(X, Y ) and Lip0FW (X, Y ) the sets of all Lipschitz-free compact and Lipschitz-free 
weakly compact operators from X to Y , respectively. Notice that

Lip0FK(X,Y ) ⊂ Lip0FW (X,Y ) ⊂ Lip0(X,Y ).
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In the case that Y is a Banach space, we have the following fact.

Proposition 2.2. Let X be a pointed metric space and let Y be a Banach space. Then every Lipschitz-free 
(weakly) compact operator from X to Y is Lipschitz (weakly) compact.

Proof. If f : X → Y is a Lipschitz-free (weakly) compact operator, then{
δf(x) − δf(y)

d(x, y) :x, y ∈ X, x �= y

}
is relatively (weakly) compact in F(Y ). By [9, Lemma 2.4], there is a bounded linear operator βY from 
F(Y ) into Y (the barycentric map) so that βY ◦ δY (y) = y for y ∈ Y . It follows that{

f(x) − f(y)
d(x, y) :x, y ∈ X, x �= y

}
=

{
βY

(
δf(x) − δf(y)

d(x, y)

)
:x, y ∈ X, x �= y

}
is relatively (weakly) compact in Y , and so f is Lipschitz (weakly) compact. �

We study now the relation between the Lipschitz-free compactness of a Lipschitz operator f in Lip0(X, Y )
and the compactness of its linearization Lf in L(F(X), F(Y )). By the way, we obtain a nonlinear version 
of Schauder’s theorem on the compactness of the adjoint operator of a compact linear operator between 
Banach spaces.

Theorem 2.3. Let X and Y be pointed metric spaces and f ∈ Lip0(X, Y ). The following are equivalent:

(i). f is Lipschitz-free compact.
(ii). Lf is compact in L(F(X), F(Y )).
(iii). f# is compact in L(Y #, X#).

Proof. Put X̃ =
{
(x, y) ∈ X2:x �= y

}
, consider δ

X̃
: (x, y) �→ (δx − δy)/d(x, y) from X̃ to F(X), take its 

image δ
X̃

(X̃) and notice that

Lf (δ
X̃

(X̃)) =
{
δf(x) − δf(y)

d(x, y) :x, y ∈ X, x �= y

}
.

Since BF(X) = Γ(δ
X̃

(X̃)) by Theorem 1.1 (iii), the equivalence between (i) and (ii) follows from the inclusions

Lf (δ
X̃

(X̃)) ⊂ Lf (Γ(δ
X̃

(X̃))) ⊂ Γ(Lf (δ
X̃

(X̃))).

The equivalence between (ii) and (iii) is deduced from the equality (Lf )∗ = QXf#(QY )−1, stated in 
Theorem 1.1 (v), by applying Schauder’s theorem and the ideal property of compact linear operators between 
Banach spaces. �

We now state a similar characterization for Lipschitz-free weakly compact operators and also show that 
those Lipschitz-free operators factor through reflexive spaces. So we give both nonlinear versions of Gant-
macher’s theorem on the weak compactness of the adjoint operator of a weakly compact linear operator 
between Banach spaces and Davis–Figiel–Johnson–Pełczyński theorem on the factorization of a weakly 
compact linear operator between Banach spaces through reflexive spaces.

Theorem 2.4. Let X and Y be pointed metric spaces and f ∈ Lip0(X, Y ). The following are equivalent:
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(i). f is Lipschitz-free weakly compact.
(ii). Lf is weakly compact in L(F(X), F(Y )).
(iii). f# is weakly compact in L(Y #, X#).
(iv). There exist a reflexive Banach space F , a Lipschitz operator b ∈ Lip0(X, F ) and a bounded linear 

operator T ∈ L(F, F(Y )) such that δY f = Tb.

Proof. Similarly to the proof of Theorem 2.3, we can prove that (i), (ii) and (iii) are equivalent. Now, if (ii) 
holds, then there exist a reflexive Banach space F and operators T ∈ L(F, F(Y )) and S ∈ L(F(X), F ) such 
that Lf = TS by applying Davis–Figiel–Johnson–Pełczyński factorization theorem [6]. Define b = SδX . 
Clearly, b ∈ Lip0(X, F ) and δY f = LfδX = TSδX = Tb. Then (iv) follows. Finally, assume that (iv) is true. 
We have {

δf(x) − δf(y)

d(x, y) :x, y ∈ X, x �= y

}
=

{
T

(
b(x) − b(y)
d(x, y)

)
:x, y ∈ X, x �= y

}
.

Notice that {
b(x) − b(y)
d(x, y) :x, y ∈ X, x �= y

}
is a bounded subset of the reflexive Banach space F and therefore it is relatively weakly compact. Since 
a linear operator T between normed spaces is norm-to-norm continuous if and only if it is weak-to-weak 
continuous, it follows that {

T

(
b(x) − b(y)
d(x, y)

)
:x, y ∈ X, x �= y

}
is a relatively weakly compact subset of F(Y ), and we obtain (i). �
Proposition 2.5. Let X and Y be pointed metric spaces and 1 ≤ p < ∞. Every strongly Lipschitz p-integral 
operator from X to Y is Lipschitz-free weakly compact.

Proof. Let f ∈ Lip0pSI(X, Y ) and take a strongly Lipschitz p-integral factorization

JL
Y f = AI∞,pb:X

b→ L∞(μ) I∞,p→ Lp(μ) A→ (Y #)∗.

If p > 1, then Lp(μ) is reflexive and hence f is Lipschitz-free weakly compact by Theorem 2.4. For p = 1, 
take q > 1 and factor I∞,1: L∞(μ) → L1(μ) through the space Lq(μ) in the form

I∞,1 = Iq,1I∞,q:L∞(μ) I∞,q→ Lq(μ) Iq,1→ L1(μ).

Then we obtain the same conclusion. �
We now study the ideal property of the aforementioned classes of Lipschitz-free operators.

Proposition 2.6. Let X, Y , Z and V be pointed metric spaces, f ∈ Lip0(X, Y ) and h ∈ Lip0(Z, V ). If 
g ∈ Lip0FK(Y, Z) (Lip0FW (Y, Z)), then hgf ∈ Lip0FK(X, V ) (respectively, Lip0FW (X, V )).

Proof. Assume that g ∈ Lip0FK(Y, Z). Then Lg ∈ K(F(Y ), F(Z)) by Theorem 2.3. Since K(F(Y ), F(Z))
is a Banach operator ideal, then LhLgLf ∈ K(F(X), F(V )). By Theorem 1.1 (vii), it follows that 



30 M.G. Cabrera-Padilla, A. Jiménez-Vargas / Topology and its Applications 203 (2016) 22–31
Lhgf ∈ K(F(X), F(V )). This means that hgf ∈ Lip0FK(X, V ) by Theorem 2.3. The case Lip0FW is proved 
similarly. �

We study the relationships of a Lipschitz p-summing (p-integral, p-nuclear) operator f in Lip0(X, Y ) and 
its linearization Lf in L(F(X), F(Y )).

Theorem 2.7. Let X, Y be pointed metric spaces, f ∈ Lip0(X, Y ) and p ∈ [1, ∞).

(i). If Lf is p-summing, then f is Lipschitz p-summing and LippS(f) ≤ πp(Lf ).
(ii). If Lf is p-integral, then f is Lipschitz p-integral and LippI(f) ≤ ιp(Lf ).
(iii). If Lf is p-nuclear, then f is Lipschitz p-nuclear and LippN (f) ≤ νp(Lf ).

Proof. (i) Notice first that, by Theorem 1.1 (i)–(vi),

d(f(x), f(y)) =
∥∥δf(x) − δf(y)

∥∥ = ‖Lfδx − Lfδy‖ = ‖Lf (δx − δy)‖

for all x, y ∈ X. If Lf is p-summing, we have

(
n∑

i=1
‖Lf (γi)‖p

) 1
p

≤ πp(Lf ) sup
F∈BF(X)∗

(
n∑

i=1
|F (γi)|p

) 1
p

for any finite set of vectors {γi}ni=1 in F(X). Then

(
n∑

i=1
d(f(xi), f(yi))p

) 1
p

≤ πp(Lf ) sup
F∈BF(X)∗

(
n∑

i=1
|F (δxi

− δyi
)|p

) 1
p

= πp(Lf ) sup
g∈B

X#

(
n∑

i=1
|g(xi) − g(yi)|p

) 1
p

.

Consequently, f ∈ Lip0pS(X, Y ) and LippS(f) ≤ πp(Lf ).
(ii) If Lf is p-integral, take a p-integral factorization in the form

JF(Y )Lf = AI∞,pB:F(X) B→ L∞(μ) I∞,p→ Lp(μ) A→ F(Y )∗∗.

Let IF(Y ),(Y #)∗ be the inclusion operator from F(Y ) into (Y #)∗. Using that (QY )∗JF(Y ) = IF(Y ),(Y #)∗ , 
LfδX = δY f and IF(Y ),(Y #)∗δY = JL

Y , we obtain the following Lipschitz p-integral factorization for f :

JL
Y f = (QY )∗AI∞,pBδX :X δX→ F(X) B→ L∞(μ) I∞,p→ Lp(μ) A→ F(Y )∗∗ (QY )∗→ (Y #)∗.

Hence f ∈ Lip0pI(X, Y ) and LippI(f) ≤ Lip((QY )∗A)Lip(BδX) ≤ ‖A‖ ‖B‖. Taking infimum, we infer that 
LippI(f) ≤ ιp(Lf ).

(iii) Take a p-nuclear factorization for Lf :

Lf = AMλB:F(X) B→ �∞
Mλ→ �p

A→ F(Y ).

We deduce a Lipschitz p-nuclear factorization for f :

f = δ−1
Y AMλBδX :X δX→ F(X) B→ �∞

Mλ→ �p
A→ δY (Y )

δ−1
Y→ Y.
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Then f ∈ Lip0pN (X, Y ) and LippN (f) ≤ Lip(δ−1
Y A) ‖Mλ‖Lip(BδX) ≤ ‖A‖ ‖Mλ‖ ‖B‖. Hence LippN (f) ≤

νp(Lf ). �
Remark 2.8. The converses in Theorem 2.7 do not always hold. Notice that the identity operator I on 
R is p-nuclear and hence Lipschitz p-nuclear, but its linearization LI is the identity map on the infinite-
dimensional Banach space F(R) and thus cannot be p-summing by the weak Dvoretzky–Rogers theorem 
[7, 2.18].
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