A common fixed point for operators in probabilistic normed spaces

M.B. Ghaemi a, b, Bernardo Lafuerza-Guillen b, A. Razani c

a Faculty of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran
b Department of Applied Mathematics, University of Almeria, Almeria, Spain
c Department of Mathematics, Faculty of Science, I. K. International University, P.O. Box 14194-288, Qazvin, Iran

Accepted 7 September 2007

Abstract

Probabilistic Metric spaces was introduced by Karl Menger. Alsina, Schweizer and Sklar gave a general definition of probabilistic normed space based on the definition of Menger [Alsina C, Schweizer B, Sklar A. On the definition of a probabilistic normed spaces. Archivaeae Math 1993;46:91–8]. Here, we consider the equicontinuity of a class of linear operators in probabilistic normed spaces and finally, a common fixed point theorem is proved. Application to quantum Mechanics is considered.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of probabilistic metric spaces, introduced in 1942 by Menger [10], was developed by numerous authors, for instance [4], as well as those in [12,13]. The notion of a probabilistic metric space corresponds to the situations when we do not know exactly the distance between two points, we know only probabilities of possible values of this distance. Such a probabilistic generalization of metric spaces appears to be well adapted for the investigation of quantum physics as shown by El Naschie [2]. The notion of a probabilistic normed space was introduced by Senyshyn [14]. Alsina, Schweizer and Sklar gave a general definition of probabilistic normed space based on the definition of Menger [13] for probabilistic metric spaces in [3,2]. Linear operator in probabilistic normed spaces has been studied by Gähler, Lalena and Sempi in [5,8]. In this paper, we consider the equicontinuity of a class of linear operators on probabilistic normed space and applying these results, a common fixed point theorem is proved. In order to do this, we recall some definitions from [1–5,6].

Definition 1.1. A distribution function is a function \(P: \mathbb{R} \to [0, 1] \) that is nondecreasing and left continuous on \(\mathbb{R} \); moreover, \(P(-\infty) = 0 \) and \(P(\infty) = 1 \).

* Corresponding author.

E-mail addresses: mghaemi@just.ac.ir (M.B. Ghaemi), b.lafuerza@uniof.es (B. Lafuerza-Guillen), razani@khu.ac.ir (A. Razani).

069SS0757/8 - see front matter © 2007 Elsevier Ltd. All rights reserved.
The set of all distribution functions is denoted by \mathcal{D} and the set of those distribution functions such that $F(0) = 0$ is denoted by \mathcal{D}^\star. The distance distribution functions are denoted by D^* and $D^\star = \{ F \in \mathcal{D}^*: \lim_{x \to \pm \infty} F(x) = 1 \}$. A natural ordering in \mathcal{D} and \mathcal{D}^\star is defined by $F \preceq G$ whenever $F(x) \leq G(x)$ for every $x \in \mathbb{R}$. The maximal element in this order for D^\star is ε_0, where for $a \in \mathbb{R}$, the distribution function ε_a is defined by

$$
\varepsilon_a = \begin{cases}
0, & \text{if } t \leq a, \\
1, & \text{if } t > a.
\end{cases}
$$

Definition 1.2. A triangle function is a binary operation on \mathcal{D}^\star that is commutative, associative, nondecreasing in each place, and has ε_0 as identity.

Note that the continuity of a triangle function means continuity with respect to the topology of weak convergence in \mathcal{D}^\star.

Example 1.3. Let T^* be a continuous τ-norm, i.e., a continuous binary operation in $[0,1]$ that is associative, nondecreasing and has 1 as identity; T^* is a continuous τ-conorm, namely a continuous binary operation on $[0,1]$ that is related to a continuous τ-norm through

$$
T^*(x,y) = 1 - T(1-x,1-y).
$$

Typical continuous triangle functions are convolution, the operations τ_T and τ_T^*, which are given by

$$
\tau_T(F,G)(x) = \sup_{t \in \text{supp}(F)} T(F(x),G(t))
$$

and

$$
\tau_T^*(F,G)(x) = \inf_{t \in \text{supp}(F)} T^*(F(x),G(t))
$$

for all F, G in \mathcal{D}^\star and all $x \in \mathbb{R}$ [13, Sections 7.2 and 7.3], respectively.

It follows without difficulty from the above that

$$
\tau_T(\varepsilon_a, \varepsilon_b) = \varepsilon_{a+b} = \tau_T^*(\varepsilon_a, \varepsilon_b)
$$

for any continuous τ-norm T, any continuous τ-conorm T^* and any $a,b \geq 0$.

Definition 1.4. A probabilistic normed space (briefly, PN-space) is a quadruple $(X, \Theta, \tau, \tau^*)$, where X is a real vector space, τ and τ^* are continuous triangle functions, and Θ is a mapping from X into \mathcal{D}^\star such that, for $p,q \in X$, the following conditions hold:

1. (PN1) $\Theta_p = \varepsilon_0$ if $p = 0$ is the null vector in X;
2. (PN2) $\Theta_{-x} = \Theta_x$;
3. (PN3) $\Theta_{p+q} \succeq \tau(\Theta_p, \Theta_q)$;
4. (PN4) $\Theta_{\alpha} = \tau^*(\Theta_{\alpha p}, \Theta_{\alpha q})$, for all $\alpha \in \mathbb{R}$.

If $(X,\|\cdot\|)$ is a real normed space, τ a triangle function such that $\tau(\varepsilon_a, \varepsilon_b) \leq \varepsilon_{a+b}$ for all $a, b \geq 0$, and if $\Theta : X \to \mathcal{D}^\star$ is defined via $\Theta_p = \Theta_{\|p\|}$, then $(X,\|\cdot\|)$ is a PN-space.

Note that if $\tau^* = \tau_M$ (where τ_M is the τ-norm defined as $\tau_M(x,v) = \text{Min}(x,v)$) and equality holds in (PN4), then (X,Θ,τ,τ_M) is a Šerstnev PN-space [1]. In this case, as shown in [3], the conditions

$$
\Theta_p = \tau_M(\Theta_{\alpha p}, \Theta_{\alpha q})
$$

for all p in X and $x \in I$ and (PN2), taken together, are equivalent to Šerstnev's condition

$$
\Theta_{\alpha}(x) = \Theta_{\frac{\alpha}{\|x\|}}(x)
$$

for all $x \in \mathbb{R} \setminus \{0\}$ and α in \mathbb{R}.

Every PN-space $(V, \Theta, \tau, \tau^*)$ can be endowed with the strong topology; this topology is generated by the strong neighborhood, which are defined as follows: for every $r > 0$, the neighborhood $N_r(\eta)$ at a point η of V is defined by

$$
N_r(\eta) := \{ q \in V : d_\tau(\Theta_{\eta q}, \varepsilon_r) < r \} = \{ q \in V : \Theta_{\eta q}(\tau_r) > 1 - r \}.
$$
Definition 1.5. A topological vector space (TVS) is a vector space V together with a topology such that with respect to this topology:

(i) The map of $V \times V \to V$ defined by $(x, y) \to x + y$ is continuous.
(ii) The map of $F \times X \to X$ defined by $(x, x) \to xx$ is continuous. Where F is \mathbb{R} or \mathbb{C}.

Definition 1.6. A topological vector space X is called locally convex if the neighborhood filter around 0 has a basis of convex sets.

Note that every PN-space (V, Θ, τ, τ'), when it is endowed with the strong topology induced by the probabilistic norm Θ is a topological vector space if, and only if, for every $p \in V$ the map from \mathbb{R} into V defined by $x \to xp$ is continuous (see [2]) for more details. Henceforth a PN-space (V, Θ, τ, τ') which is a topological vector space is denoted by TV PN-space.

Remark 1.7. It was proved [3, Theorem 4] that if the triangle function τ' is Archimedean, i.e. if τ' admits no idempotents other than 0 and 1, then the mapping $x \to xp$ is continuous and as a consequence of this, the PN-space (V, τ, τ', τ) is a TV PN-space.

Definition 1.8. A PN-space (V, τ, τ', τ) is characteristic if $v(V) \subseteq \mathbb{R}$, or equivalently $v_p \in \mathbb{R}$ for every $p \in V$.

Theorem 1.9. A characteristic Šerstnev space (V, τ, τ') with $\tau = \tau_M$ is locally convex.

Proof. (11). We prove it here because the notation in Prochaska's thesis is different from the one that has become usual after the publication of [12].

It suffices to consider the family of neighborhoods of the origin 0, $N_0(t)$, with $t > 0$. Let $t > 0$, $p, q \in N_0(t)$ and $x \in [0, 1]$. Then

$$v_{t+1}(t) = \sup_{\beta \in [0, 1]} \{v_{t+1}(\beta) : v_{t+1}(\beta) > t\} = \sup_{\beta \in [0, 1]} \{v_{t+1}(\beta) : v_{t+1}(\beta) > t\} = \sup_{\beta \in [0, 1]} \{v_{t+1}(\beta) : v_{t+1}(\beta) > t\}$$

Thus $v_{t+1}(t) = \sup_{\beta \in [0, 1]} \{v_{t+1}(\beta) : v_{t+1}(\beta) > t\}$ for every $x \in [0, 1]$. □

Theorem 1.10. Let (V, τ, τ', τ) be a TV PN-space. If $A : X \to X$ is linear and continuous at 0, then A is continuous.

A linear operator $T : V_1 \to V_2$ where (V_1, τ_1, τ'_1) and (V_2, τ_2, τ'_2) are TV PN-spaces, is bounded if it transform bounded subset of V_1 into bounded subset of V_2. Note that continuous linear operators are bounded.

Remark 1.11. A linear operator between two locally convex TV PN-spaces is continuous if and only if it is bounded, see [5, p. 477].

2. Common fixed point

In this section, we prove some theorems and as a result of these theorems, one can prove the existence of a common fixed point theorem. Due to this, the next result is a uniform boundedness theorem for TV PN spaces.

Theorem 2.1. If Γ is a collection of continuous linear maps between two TV PN-spaces (V_1, τ_1, τ'_1) and (V_2, τ_2, τ'_2) and if the set

$$\Gamma(t) = \{A : A \in \Gamma\}$$

is a bounded subset of V_2, for every $x \in V_1$, then Γ is equicontinuous.

Proof. Let $N_0(t) = \{p \in V_1 : t_p(t) > 1 - t\}$ be a neighborhood of 0, then

$$N_0\left(\frac{1}{3}\right) = \left\{p : t_p(t) > 1 - \frac{1}{3}\right\} = \left\{p \in V_1 : d_p(t, t_0) \leq \frac{1}{3}\right\}$$
and we have
\[\mathcal{A}\left(\frac{1}{3} \right) + N_x\left(\frac{1}{3} \right) \subseteq \{ y \in \mathbb{R}^d : d(y, y_0) \leq 1 \} . \]

Put
\[E = \bigcap_{x \in \mathbb{R}^d} A^{-1}\left(N_x\left(\frac{1}{3} \right) \right) . \]

\(V_1 \) is a complete metric space and \(E \subseteq \bigcup_{x \in \mathbb{R}^d} A^{-1}\left(N_x\left(\frac{1}{3} \right) \right) . \) Therefore \(E \) is a closed subset of \(V_1 \) also the interior of \(E \) is not empty. Hence \(x - E \) contains a neighborhood \(N_x(\varepsilon) \) of 0 such that
\[A(N_x(\varepsilon)) \subseteq A(x) - A(E) \subseteq N_x\left(\frac{1}{3} \right) + N_x\left(\frac{1}{3} \right) \]
for every \(A \in E \). This proves \(E \) is equicontinuous. \(\square \)

Corollary 2.2. If \(\Gamma \) is a collection of continuous linear maps from \(\mathbb{R}^n \)-space \((V_1, v_1, \tau_1) \) onto \(\mathbb{R}^n \)-space \((V_2, v_2, \tau_2) \), where \(\tau_1 \) and \(\tau_2 \) are Archimedean and \(\Gamma(x) = \{ Ax : A \in \Gamma \} \) is a bounded subset of \(V_2 \) for every \(x \in V_1 \), then \(\Gamma \) is equicontinuous.

Proof. By Remark 1.7 the \(\mathbb{R}^n \)-spaces \((V_1, v_1, \tau_1) \) and \((V_2, v_2, \tau_2) \) are TV \(\mathbb{R}^n \)-spaces. Now the result follows from Theorem 2.1. \(\square \)

Corollary 2.3. If \(\Gamma = \{ A : V_1 \rightarrow V_2 \} \) is a collection of continuous linear maps, where \((V_1, v_1, \tau_1) \) and \((V_2, v_2, \tau_2) \) are characteristic \(\mathcal{S} \)-spaces with \(\tau_1 = \tau_2 = \tau_M \) and if \(\Gamma(x) = \{ Ax : A \in \Gamma \} \) is a bounded subset of \(V_2 \) for every \(x \in V_1 \), then \(\Gamma \) is equicontinuous.

Proof. Note that \(V_1 \) and \(V_2 \) are locally convex spaces by [8, Theorem 7]. Now the result is immediate consequence of Theorem 2.1. \(\square \)

Theorem 2.4. If \(\{ A_n \} \) is a sequence of continuous linear mapping from a TV \(\mathbb{R}^n \)-space \((V_1, v_1, \tau_1) \) into a TV \(\mathbb{R}^n \)-space \((V_2, v_2, \tau_2) \) and if \(Ax = \lim_{n \to \infty} A_n x \) exist for every \(x \in V_1 \), then \(A \) is continuous.

Proof. Theorem 2.1 implies that \(\{ A_n \} \) is equicontinuous. Suppose \(U_1 \) is a neighborhood of 0 in \(V_1 \), then \(A_n(U_1) - U_1 \) for all \(n \in \mathbb{N} \) and some neighborhood \(U_1 \) of 0 in \(V_1 \). It follows that \(A(U_1) \subseteq U_1 \), hence \(A \) is continuous. \(\square \)

Definition 2.5. A linear operator \(T \) of \(V_1 \) into \(V_2 \) is called bounded if it transform bounded subset of \(V_1 \) into bounded subset of \(V_2 \) [5, p. 63].

Corollary 2.6. If \(\{ A_n \} \) is a sequence of bounded linear mapping from a characteristic \(\mathcal{S} \)-space \((V_1, v_1, \tau_1) \) into a characteristic \(\mathcal{S} \)-space \((V_2, v_2, \tau_2) \) with \(\tau_1 = \tau_2 = \tau_M \) and if \(Ax = \lim_{n \to \infty} A_n x \) exist for every \(x \in V_1 \), then \(A \) is bounded.

Proof. By Remark 1.1.1, \(A_n \) is continuous for all \(n \). Now the result is a immediate consequence of Theorem 2.4. \(\square \)

Lemma 2.7. In a characteristic \(\mathcal{S} \)-space \((V, v, \tau) \) the following statement are equivalent for a subset \(A \) of \(V

(a) \(A \) is \(\mathcal{S} \)-bounded
(b) \(A \) is topologically bounded

Proof. (a) \(\Rightarrow \) (b) Let \(A \) any \(\mathcal{S} \)-bounded subset of \(V \) and let \(p_n \) be any sequence of elements of \(A \) and \(x_n \) any sequence of real numbers that converges to 0; there is no loss of generality in assuming \(x_n = 0 \) for every \(n \in \mathbb{N} \).

\[e_n(x) = e\left(\frac{x}{|x_n|} \right) \Rightarrow R_n\left(\frac{x}{|x_n|} \right) \rightarrow 1 \]
as \(e \rightarrow +\infty. \)
Thus \(x_0 \rightarrow 0 \) in the strong topology and \(A \) is topologically bounded. (b) \(\Rightarrow \) (a) Let \(A \) be a subset of \(V \) which is not \(\mathcal{S} \)-bounded. Then
\[
R_A(x) - \gamma < 1
\]
as \(x \rightarrow +\infty \).

By definition of \(R_A \) for every \(n \in \mathbb{N} \) there is \(p_n \in A \) such that
\[
v_{p_n}(r^2) < \frac{1 + \gamma}{2} < 1.
\]

If \(z_n = \frac{1}{n} \), then
\[
v_{p_n}(r^2) = v_{p_n}(r) - v_{p_n}(r^2) < \frac{1 + \gamma}{2} < 1,
\]
which shows that \(v_{p_n} \) does not tend to \(z_n \), even if it has a weak limit. viz. \(x, p_n \) does not tend to \(\ell \) in the strong topology, in other words, \(A \) is not topologically bounded.

The following corollary is immediate from Corollary 2.6 and Lemma 2.5.

Corollary 2.8. If \(\Gamma = \{ A : A \in \mathcal{N} \} \) is a collection of continuous linear maps, where \((V_1, t_1, v_1) \) and \((V_2, \tau_2, v_2) \) are characteristic \(\mathcal{S} \)-spaces with \(t_1 = \tau_2 = \tau_M \) and if \(\Gamma(x) = \{ Ax : \lambda \in \Gamma \} \) is a \(\mathcal{S} \)-bounded subset of \(V_2 \) for every \(x \in V_1 \), then \(\Gamma \) is equicontinuous.

In order to give the final result of this article, the following definition is given:

Definition 2.9. A set \(A \subseteq V \) is balanced, if \(x \in A \) whenever \(x \in V \) and \(|x| \leq 1. \) A set \(A \) is absorbing, if for each \(x \in V \) there is an \(e > 0 \), such that \(tx \in A \) for \(0 < t < e.\)

Theorem 2.10. Suppose \(K \) is a nonempty convex compact subset of locally convex TV PN-space \((V, v, \tau, \tau^*) \). Let \(G \) be a group of linear mapping such that
\[
\Gamma(x) = \{ Ax : \lambda \in G \}
\]
is bounded in \(V \) for every \(x \in V \). Also \(\mathcal{A}(K) \subseteq K \) for every \(\lambda \in G \). Then \(G \) has a common fixed point in \(K \); that is there exist \(p \in K \) such that \(Ap = p \) for every \(\lambda \in G \).

Proof. The group \(G \) is equicontinuous by Theorem 2.1 and \(V \) has a local base consisting of balanced convex set \(U \) which satisfies \(\mathcal{A}(U) \subseteq U \) for every \(\lambda \in G \). Let \(\overline{\Omega} \) be the collection of all nonempty convex sets \(H \subseteq K \) such that \(\mathcal{A}(H) = H \) for every \(\lambda \in G \). Now, we partially ordered the set \(\overline{\Omega} \) by set inclusion. Then Hahn-Banach's maximality theorem shows that \(\overline{\Omega} \) contains a maximal totally ordered subcollection \(\overline{\Omega}_0 \). The intersection \(H_0 \) of all members of \(\overline{\Omega}_0 \) is a minimal member of \(\overline{\Omega} \). Now, it is enough to show that \(H_0 \) has exactly one point. Otherwise, if \(H \in \overline{\Omega} \) contains more than one point. Then \(H - H = \{ 0 \} \) and there is a convex balanced member of the above local base which does not cover \(H - H \). Since \(H - H \) is compact, there exists some \(s > 0 \) such that \(H - H \subseteq s \). Let \(t \) be the greatest lower bound of these member \(s. \) Set \(W = tU \), then \(W \) is a convex balanced open set such that
\[
(1 - r)W \text{ does not cover } H - H \text{ if } 0 < r < 1.
\]

Proof. Let \(x_1, x_2, \ldots, x_n \in H \) such that \(H \subseteq \bigcup_{i=1}^{n} (x_i + 1/2W) \). Let \(r = 1/4n \) and define \(H_1 = \bigcap_{i=1}^{n} (x_i + (1 - r)W) \). \(H_1 \) is compact, convex and \(\mathcal{A}H_1 \subseteq H_1 \) for every \(\lambda \in G \). By (1) there are points \(x \in H \) and \(y \notin H \) such that \(x - y \) does not lie in \((1 - r)W \). Any such \(x \) is not in \(H_1 \). Thus \(H_1 \neq H \). The point \(x_0 = 1/n \sum_{i=1}^{n} x_i \) is in \(H_1 \) and therefore \(H_1 \neq \emptyset \). This shows that \(H_0 \) contains only one point.

The following corollaries are immediate consequences from Theorems 2.10 and 1.9.

Corollary 2.11. Suppose \(K \) is a nonempty convex subset of characteristic \(\mathcal{S} \)-space \((V, v, \tau, \tau^*) \) with \(\tau = \tau_M \). Let \(G \) be a group of linear mapping such that \(\Gamma(x) = \{ Ax : \lambda \in G \} \) is bounded in \(V \) for every \(x \in V \). Moreover, \(\mathcal{A}(K) \subseteq K \) for every \(\lambda \in G \). Then \(G \) has a common fixed point in \(K \).

Corollary 2.12. Suppose \(K \) is a nonempty convex subset of characteristic \(\mathcal{S} \)-space \((V, v, \tau, \tau^*) \) with \(\tau = \tau_M \) and \(\lambda \) is an invertible operator on \(V \) such that the set \(\{ Ax : \lambda^{-1}x \} \) is bounded for every \(x \in V \), then \(\lambda \) and \(\lambda^{-1} \) has a common fixed point.
3. Application in physics

Menger sponge is a random space which could be used for instance to predict the Background micro wave radiation (see El Naschie and also Ie’s Book [7]).

4. Conclusions

In this work we have analyzed in some detail the problem of equicontinuity of a class of linear operators on probabilistic normed spaces. We have shown for the class of characteristic Selivanov spaces if \(\{ A_\alpha \} \) is bounded then \(I \) is equicontinuous. A detailed study of how we can have a common fixed point for a group of linear operators is given.

References