

J. Math. Anal. Appl. 280 (2003) 9-16

Journal of
MATHEMATICAL
ANALYSIS AND
APPLICATIONS

www.elsevier.com/locate/jmaa

Probabilistic norms and convergence of random variables *

Bernardo Lafuerza-Guillén a and Carlo Sempi b,*

^a Departamento de Estadística y Matemática Aplicada, Universidad de Almería, 04120 Almería, Spain ^b Dipartimento di Matematica "Ennio De Giorgi", Università di Lecce, Lecce, Italy 73100

Received 5 March 2001

Submitted by U. Stadtmueller

Abstract

We prove that the probabilistic norms of suitable Probabilistic Normed spaces induce convergence in probability, L^p convergence and almost sure convergence.

© 2003 Elsevier Science (USA). All rights reserved.

Keywords: Convergence in probability; Almost sure convergence; Complete convergence; Probabilistic normed space; Probabilistic norm

1. History and introduction

The study of possible topologies for the various modes of convergence of sequences of random variables has a long history.

Let a probability space (Ω, A, P) be given and let $L^0(A)$ be the linear space of (equivalence classes of) E-valued random variables, viz. E-valued measurable functions defined on it. Here $(E, |\cdot|)$ is a normed space.

For a sequence $\{f_n: n \in \mathbb{N}\}$ we shall consider the following modes of convergence: convergence in probability, convergence in L^p and almost sure convergence.

Ky Fan [7] showed that the topology of convergence in probability can be metrized and introduced the metric that now bears his name. Fréchet [6] exhibited several metrics whose

E-mail addresses: blafuerz@ual.es (B. Lafuerza-Guillén), sempi@ilenic.unile.it (C. Sempi).

0022-247X/03/\$ – see front matter © 2003 Elsevier Science (USA). All rights reserved. doi:10.1016/S0022-247X(02)00577-2

 $^{^{\}circ}$ The research here reported was carried out as a part of the program "Processi Stocastici" of the Italian M.U.R.S.T.

^{*} Corresponding author

topology coincides with that of convergence in probability. Later, it was proved by Dugué [3], Marczewski [14], Thomasian [20,21] that, in general, no norm exists that generates this topology. Moreover, in general, there exists no metric whose convergence coincides with almost sure convergence [4]. These results are summarized in [13].

Finally, Fernique [5], using and generalizing a famous theorem of Skorohod's [19] showed how one can build a probability space and a proper subset of $L^0(\mathcal{A})$ in which almost sure convergence can be defined through a metric topology.

As far as L^p convergence is concerned, we shall make reference to the paper [10], but see also the previous paper [9].

We now plan to examine the whole question from the point of view of probabilistic normed spaces; we shall then recognize that there are *probabilistic norms* that imply either type of convergence.

A probabilistic normed space (PN space in the following) (V, v, τ, τ^*) is a quadruple in which V is a real linear space, the probabilistic norm v is a mapping from V into Δ^+ , the space of the distance distribution functions (i.e., those distribution functions F that vanish at the origin, F(0) = 0), and τ and τ^* , with $\tau \leqslant \tau^*$ are triangle functions; v, τ and τ^* are subject to the following conditions:

- (N1) $v_p = \varepsilon_0$ if, and only if, $p = \theta$ (the null vector of V);
- (N2) $\nu_{-p} = \nu_p$ for every $p \in V$;
- (N3) for all p and q in V, $v_{p+q} \ge \tau(v_p, v_q)$;
- (N4) for every $p \in V$ and for every $\alpha \in [0, 1], \nu_p \leqslant \tau^*(\nu_{\alpha p}, \nu_{(1-\alpha)p})$.

An important class of PN spaces is that of *Šerstnev spaces*: a PN space is called a *Šerstnev space* if (N1) and (N3) are satisfied along with the following condition:

$$\forall \alpha \in \mathbf{R} \setminus \{0\} \ \forall x > 0 \ \nu_{\alpha p}(x) = \nu_p \left(\frac{x}{|\alpha|}\right), \tag{Š}$$

which implies (N2) and (see [1]) (N4) in the strengthened form

$$\forall \alpha \in [0, 1] \ \forall p \in V \ \nu_p = \tau_M(\nu_{\alpha p}, \nu_{(1-\alpha)p}). \tag{N4'}$$

A Šerstnev space will be denoted by (V, ν, τ) , since the rôle of τ^* is played by a fixed triangle function, τ_M , which then satisfies (N4').

For more information about PN spaces and for their properties see [1,9–12]. PN spaces were first introduced in a slightly less general form in [17]. The notation adopted in the present note is mainly from the book [16]. A PN space is endowed with the *strong topology* (see [16]) and this latter is metrizable. A sequence $\{p_n\}$ of elements of V converges to θ_V , the null element of V, in the strong topology if, and only if,

$$d_S(v_{p_n}, \varepsilon_0) \xrightarrow[n \to +\infty]{} 0,$$

where d_S denotes the Lévy metric as modified by Sibley [15,18].

2. Convergence in probability

In the notation we have fixed in the previous section, let $\nu: S \to \Delta^+$ be defined, for every $f \in L^0(A)$ and for every $x \in \overline{\mathbb{R}}_+$, by

$$\nu_f(x) := P\{\omega \in \Omega \colon |f(\omega)| < x\}. \tag{1}$$

The couple $(L^0(\mathcal{A}), \nu)$ is called an EN space. It was proved in [9] that the relationship, defined in the EN space $(L^0(\mathcal{A}), \nu)$ by $f \sim g$ if, and only if, $\nu_f = \nu_g$ is an equivalence relationship. Moreover, if $\overline{L^0(\mathcal{A})} := L^0(\mathcal{A})/\sim$ is the quotient space and if the *quotient mapping* $\bar{\nu}: \overline{L^0(\mathcal{A})} \to \Delta^+$ is defined via

$$\bar{\nu}_{\bar{f}} := \nu_f$$

for every f in the equivalence class \bar{f} , then $(\overline{L^0(A)}, \bar{\nu})$ is a PN space under the triangle functions τ_W and τ_M [16]; in fact, more is true: $(\bar{L^0(A)}, \bar{\nu}, \tau_W)$ is a Šerstnev space [8, Theorem 2.2.8].

As usual in probability theory, one writes f even when one means the equivalence class \bar{f} of f. The equivalence between convergence in probability and convergence with respect to the probabilistic norm (1) is now almost obvious.

Theorem 1. For a sequence of (equivalence classes of) E-valued random variables $\{f_n\}$, the following statements are equivalent:

- (a) $\{f_n\}$ converges in probability to θ_S , $f_n \xrightarrow[n \to +\infty]{P} \theta_S$;
- (b) the corresponding sequence $\{v_{f_n}\}$ of probabilistic norms converges weakly to ε_0 , viz. $d_S(v_{f_n}, \varepsilon_0) \xrightarrow[n \to +\infty]{} 0$;
- (c) $\{f_n\}$ converges to θ_S in the strong topology of the Šerstnev space (L^0, ν, τ_W) .

Proof. Since (b) and (c) are equivalent by definition, it suffices to establish the equivalence of (a) and (b).

The sequence $\{f_n\}$ converges to θ_S in probability if, and only if, for every x > 0,

$$\lim_{n \to +\infty} P(|f_n| < x) = 1,$$

or, equivalently, on account of (1), if, and only if, for every x > 0,

$$\lim_{n \to +\infty} \nu_{f_n}(x) = 1.$$

But this latter statement, in its turn, is equivalent (see [16]) to

$$\lim_{n\to+\infty}d_S(\nu_{f_n},\varepsilon_0)=0,$$

which proves the theorem. \Box

Of course, there is nothing special about θ_S as a limit; if one wishes to consider the convergence in probability of the sequence $\{f_n\}$ to the (E-valued) random variable f, then it suffices to consider the sequence $\{f_n - f\}$ and its convergence to θ_S .

3. L^p convergence

In order to consider convergence in L^p with $p \in [1, +\infty]$, the following result connecting the L^p norms with the probabilist norm (1) will be needed (see [10]).

Theorem 2. For $p \in [1, +\infty[$ the norm $\|\cdot\|_p$ in the space

$$L^{p}(\mathcal{A}) := \left\{ f \in L^{0}(\mathcal{A}) \colon \int |f|^{p} dP < +\infty \right\}$$

is given, for f in $L^p(A)$, by

$$||f||_p = \left(\int_{\mathbf{R}_+} t^p \, d\nu_f(t)\right)^{1/p};$$

for $p = +\infty$, the norm $\|\cdot\|_{\infty}$ in $L^{\infty}(A) := \{f \in L^{0}(A) : \operatorname{ess sup} |f| < +\infty\}$ is given, for f in $L^{\infty}(A)$, by

$$||f||_{\infty} = \sup\{t > 0: v_f(t) < 1\}.$$

With the help of the previous result one can characterize L^p convergence. As in the previous section, there is no loss of generality in considering only convergence to θ_S , for, if one wishes to study the convergence of a sequence $\{f_n\}$ to $f \neq \theta_S$, it suffices to replace $\{f_n\}$ by $\{f_n - f\}$.

Theorem 3. For a sequence of (equivalence classes of) E-valued random variables $\{f_n\}$ in L^p , the following statements are equivalent: if $p \in [1, +\infty[$:

- (a) $\{f_n\}$ converges to θ_S in L^p , $f_n \xrightarrow[n \to +\infty]{L^p} \theta_S$;
- (b) the sequence of the p-th moments of the probabilistic norms $\{v_{f_n}\}$ tends to 0, viz.

$$\int_{\mathbf{R}_{+}} t^{p} d\nu_{f_{n}}(t) \xrightarrow[n \to +\infty]{} 0;$$

if $p = +\infty$;

- (c) $\{f_n\}$ converges to θ_S in L^{∞} , $f_n \xrightarrow[n \to +\infty]{} \theta_S$;
- (d) for every t > 0, the sequence $\{v_{f_n}(t)\}$ is definitely equal to 1, viz., for all t > 0, there exists $n_0 = n_0(t) \in \mathbb{N}$ such that $v_{f_n}(t) = 1$ if $n \ge n_0$.

Proof. Only the equivalence of (c) and (d) is not immediately obvious; thus we limit ourselves to proving it.

(c) \Rightarrow (d) Assume $||f_n||_{\infty} \xrightarrow[n \to +\infty]{} 0$ and let t be strictly positive; then, for every $\varepsilon \in]0, t[$ there exists $n_0 = n_0(\varepsilon)$ in $\mathbb N$ such that, for every $n \geqslant n_0$, one has

$$\sup\{t > 0: \ \nu_{f_n}(t) < 1\} = \|f_n\|_{\infty} < \varepsilon,$$

so that $v_{f_n}(\varepsilon) = 1$; but then, for all $n \ge n_0$, $v_{f_n}(t) \ge v_{f_n}(\varepsilon) = 1$.

(d) \Rightarrow (c) For t > 0, let $n_0 = n_0(t) \in \mathbf{N}$ be such that $v_{f_n}(t) = 1$ for all $n \geqslant n_0$; therefore, if $n \geqslant n_0$, $\|f_n\|_{\infty} < t$, which yields $\|f_n\|_{\infty} \xrightarrow[n \to +\infty]{} 0$. \square

In comparing Theorem 3 with Theorem 1, it should be noticed that, if the sequence $\{\nu_{f_n}(t)\}$ is definitely equal to 1 for every t>0, then, a fortiori, one has $\nu_{f_n}(t)\xrightarrow[n\to+\infty]{}1$, or, equivalently $d_S(\nu_{f_n},\varepsilon_0)\xrightarrow[n\to+\infty]{}0$; this is the translation in the language of PN spaces of the fact that convergence in L^∞ implies convergence in probability. The converse is not true, as is well known: and, in fact, a sequence $\{\nu_{f_n}(t)\}$ may well converge to 1 without being definitely equal to 1.

4. Almost sure convergence

Consider the family $V := \{L^0(\mathcal{A})\}^N$ of all the sequences of (equivalence classes of) E-valued random variables. The set V is a real vector space with respect to the componentwise operations; specifically, if $s = \{f_n\}$ and $s' = \{g_n\}$ are two sequences in V and if α is a real number, then the sum $s \oplus s'$ of s and s' and the scalar product $\alpha \odot s$ of α and s are defined via

$$s \oplus s' = \{f_n\} \oplus \{g_n\} := \{f_n + g_n\}, \qquad \alpha \odot s = \alpha \odot \{f_n\} := \{\alpha f_n\}.$$

A mapping $\phi: V \to \Delta^+$ will be defined on V via

$$\phi_s(x) := P\left(\sup_{k \in \mathbb{N}} |f_k| < x\right) = P\left(\bigcap_{k \in \mathbb{N}} \left\{ |f_k| < x \right\} \right),$$

where x > 0 and $s = \{f_k\}$. Then one can prove

Theorem 4. The triple (V, ϕ, τ_W) is a Šerstnev space.

Proof. Let O denote the null sequence, $O := \{o_n\}$, where, for every $n \in \mathbb{N}$, $o_n \equiv \theta_E$; here, θ_E is the null vector of E. Obviously, O is the null element of the vector space V, $O = \theta_V$ and $\phi_O = \varepsilon_0$. In the other direction, assume $\phi_S = \varepsilon_0$; then one has, for every x > 0,

$$\phi_{s}(x) := P\left(\sup_{k \in \mathbb{N}} |f_{k}| < x\right) = 1,$$

so that, for every x > 0 and for every $k \in \mathbb{N}$,

$$P(|f_k| < x) = 1;$$

in other words, $v_{f_k} = \varepsilon_0$ for every $k \in \mathbb{N}$. As already noticed in the previous section, (L^0, v, τ_W) is a Šerstnev space; therefore, $f_k = \theta_E$ for all $k \in \mathbb{N}$, or, equivalently, s = O, which concludes the proof of (N1).

Property (N2) is obvious.

Notice that, for $\alpha \in \mathbf{R}$, $\alpha \neq 0$, for every $s \in V$ and for all x > 0, one has

$$\phi_{\alpha \odot s}(x) = P\left(\sup_{k \in \mathbb{N}} |\alpha f_k| < x\right) = P\left(\sup_{k \in \mathbb{N}} |f_k| < \frac{x}{|\alpha|}\right) = \phi_s\left(\frac{x}{|\alpha|}\right).$$

This proves (Š).

For all sequences $s = \{f_k\}$ and $s' = \{g_k\}$, for all x > 0 and $t \in]0, x[$, one has

$$P\left(\bigcup_{k\in\mathbb{N}}\{|f_{k}+g_{k}|\geqslant x\}\right)\leqslant P\left(\bigcup_{k\in\mathbb{N}}\{|f_{k}|+|g_{k}|\geqslant x\}\right)$$

$$\leqslant P\left[\bigcup_{k\in\mathbb{N}}\left(\{|f_{k}|\geqslant t\}\cup\{|g_{k}|\geqslant x-t\}\right)\right]$$

$$=P\left(\bigcup_{k\in\mathbb{N}}\{|f_{k}|\geqslant t\}\right)+P\left(\bigcup_{k\in\mathbb{N}}\{|g_{k}|\geqslant x-t\}\right)$$

$$-P\left[\left(\bigcup_{k\in\mathbb{N}}\{|f_{k}|\geqslant t\}\right)\cap\left(\bigcup_{k\in\mathbb{N}}\{|g_{k}|\geqslant x-t\}\right)\right]$$

so that

$$P\left(\bigcap_{k\in\mathbb{N}}\left\{|f_{k}+g_{k}|< x\right\}\right) \geqslant P\left(\bigcap_{k\in\mathbb{N}}\left\{|f_{k}|+|g_{k}|< x\right\}\right)$$

$$=1-P\left(\bigcup_{k\in\mathbb{N}}\left\{|f_{k}|+|g_{k}|\geqslant x\right\}\right)$$

$$\geqslant 1-P\left(\bigcup_{k\in\mathbb{N}}\left\{|f_{k}|\geqslant t\right\}\right)-P\left(\bigcup_{k\in\mathbb{N}}\left\{|g_{k}|\geqslant x-t\right\}\right)$$

$$+P\left[\left(\bigcup_{k\in\mathbb{N}}\left\{|f_{k}|\geqslant t\right\}\right)\cap\left(\bigcup_{k\in\mathbb{N}}\left\{|g_{k}|\geqslant x-t\right\}\right)\right]$$

$$=P\left(\bigcap_{k\in\mathbb{N}}\left\{|f_{k}|< t\right\}\right)+P\left(\bigcap_{k\in\mathbb{N}}\left\{|g_{k}|\geqslant x-t\right\}\right)$$

$$-1+P\left[\left(\bigcup_{k\in\mathbb{N}}\left\{|f_{k}|\geqslant t\right\}\right)\cap\left(\bigcup_{k\in\mathbb{N}}\left\{|g_{k}|\geqslant x-t\right\}\right)\right]$$

$$\geqslant P\left(\bigcap_{k\in\mathbb{N}}\left\{|f_{k}|< t\right\}\right)+P\left(\bigcap_{k\in\mathbb{N}}\left\{|g_{k}|< x-t\right\}\right)-1.$$

Thus, one has, for every $t \in]0, x[$,

$$\phi_{s \oplus s'}(x) \geqslant \phi_s(t) + \phi_{s'}(x-t) - 1;$$

therefore

$$\phi_{s \oplus s'} \geqslant \tau_W(\phi_s, \phi_{s'}),$$

which proves (N3) and concludes the proof. \Box

Given an element s of V, viz. given a sequence $s = \{f_k : k \in \mathbb{N}\}$ of E-valued random variables, $f_k \in L^0(\mathcal{A})$ for every $k \in \mathbb{Z}_+ := \{0, 1, \ldots\}$, consider the n-shift s_n of s, $s_n := \{f_{k+n} : k \in \mathbb{N}\}$, which again belongs to V. We are now in a position to state our main result.

Theorem 5. A sequence $s = \{f_k : k \in \mathbb{N}\}$ of E-valued random variables converges almost surely to θ_E , the null vector of E, if, and only if, the sequence $\{\phi_{s_n} : n \in \mathbb{Z}_+\}$ of the probabilistic norms of the n-shifts of s converges weakly to ε_0 , or, equivalently, if, and only if, the sequence $\{s_n\}$ of the n-shifts of s converges to $O := \{\theta_E, \theta_E, \ldots\}$ in the strong topology of (V, ϕ, τ_W) .

Proof. All the statements are equivalent to the assertion, which holds for every x > 0,

$$1 = \lim_{n \to +\infty} \phi_{s_n}(x) = \lim_{n \to +\infty} P\left(\bigcap_{k \in \mathbb{N}} \{|f_{k+n}| < x\}\right)$$
$$= \lim_{n \to +\infty} P\left(\bigcap_{k \geqslant n} \{|f_k| < x\}\right) = P\left(\bigcup_{n \in \mathbb{N}} \bigcap_{k \geqslant n} \{|f_k| < x\}\right)$$
$$= P\left(\liminf_{n \to +\infty} \{|f_k| < x\}\right).$$

This proves the result. \Box

Given an element s in V, define $n: V \to \Delta^+$ via

$$n_s(x) := \sup_{n \in \mathbb{N}} \phi_{s_n}(x) = \lim_{n \to +\infty} P\left(\bigcap_{k \geqslant n} \left\{ |f_k| < x \right\} \right);$$

then Theorem 5 says that s converges to θ_E if, and only if, $n_s = \varepsilon_0$. An equivalence relationship can be defined on V by stipulating that $s = \{f_n\} \sim s' = \{g_n\}$ if, and only if, $\{f_n - g_n\}$ converges almost surely to the null element $O = \{\theta_E, \theta_E, \ldots\}$ of V, or, equivalently, if, and only if, $n_s = \varepsilon_0$. In the quotient space $V_0 := V/\sim$, the constant sequence $\{f, f, \ldots\}$, where f is in $L^0(\mathcal{A})$, is the family of the sequences of E-valued random variables that converge almost surely to f.

As a final remark, notice that we have shown that the strong topology of the Šerstnev space (V, ϕ, τ_W) induces a convergence equivalent to almost sure convergence in $L^0(A)$. This does not contradict the well-known fact that, in general, almost sure convergence does not derive from a topology on $L^0(A)$.

References

- C. Alsina, B. Schweizer, A. Sklar, On the definition of a probabilistic normed space, Aequationes Math. 46 (1993) 91–98.
- [2] R.B. Ash, Real Analysis and Probability, Academic Press, New York, 1972.
- [3] D. Dugué, L'existence d'une norme est incompatible avec la convergence en probabilité, C. R. Acad. Sci. Paris 240 (1955) 1037–1039.

- [4] D. Dugué, Incompatiblité de la convergence presque certaine et de l'écart, C. R. Acad. Sci. Paris 242 (1956) 728–729.
- [5] X. Fernique, Un modèle presque sûr pour la convergence en loi, C. R. Acad. Sci. Paris Sér. I 306 (1988) 335–338.
- [6] M. Fréchet, Généralités sur les probabilités. Éléments aléatoires, Gauthier-Villars, Paris, 1950; (2ième éd.) Springer, New York, 1983, pp. 229–240.
- [7] Ky Fan, Entferung zweier züfalliger Grössen und die Konvergenz nach Wahrscheinlichkeit, Math. Z. 49 (1944) 681–683.
- [8] B. Lafuerza-Guillén, Primeros resultados en el estudio de los Espacios Normados Probabilísticos con nuevos conceptos de acotación, y algunos nuevos resultados sobre Espacios Métricos Probabilísticos, Ph.D. dissertation, Universidad de Almería, Spain, 1996.
- [9] B. Lafuerza-Guillén, J.A. Rodríguez Lallena, C. Sempi, Completion of probabilistic normed spaces, Internat. J. Math. Sci. 18 (1995) 649–652.
- [10] B. Lafuerza-Guillén, J.A. Rodríguez Lallena, C. Sempi, Some classes of probabilistic normed spaces, Rend. Mat. Appl. (7) 17 (1997) 237–252.
- [11] B. Lafuerza-Guillén, J.A. Rodríguez Lallena, C. Sempi, A study of boundedness in probabilistic normed spaces, J. Math. Anal. Appl. 232 (1999) 183–196, doi:10.1006/jmaa.1998.6261.
- [12] B. Lafuerza-Guillén, J.A. Rodríguez Lallena, C. Sempi, Probabilistic norms for linear operators, J. Math. Anal. Appl. 220 (1998) 462–476, doi:10.1006/jmaa.1997.5810.
- [13] E. Lukacs, Stochastic Convergence, Academic Press, New York, 1975.
- [14] E. Marczewski, Remarks on the convergence of measurable sets and measurable functions, Coll. Math. 3 (1955) 118–124; Reproduced in: E. Marczewski, Collected Mathematical Papers, Polish Academy of Sciences, Warsaw, 1996, pp. 475–481.
- [15] B. Schweizer, Multiplication on the space of distribution functions, Aequationes Math. 12 (1975) 156–183.
- [16] B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North-Holland, New York, 1983.
- [17] A.N. Šerstnev, On the notion of a random normed space, Dokl. Akad. Nauk SSSR 149 (2) (1963) 280–283; English translation in Soviet Math. Dokl. 4 (1963) 388–390.
- [18] D.A. Sibley, A metric for weak convergence of distribution functions, Rocky Mountain J. Math. 1 (1971) 427–430.
- [19] A.V. Skorokhod, Studies in the Theory of Random Processes, Addison–Wesley, Reading, MA, 1965; Reprinted by Dover, New York, 1982.
- [20] A.J. Thomasian, Distances et normes sur les espaces de variables aléatoires, C. R. Acad. Sci. Paris 242 (1956) 447–448.
- [21] A.J. Thomasian, Metrics and norms for spaces of random variables, Ann. Math. Statist. 28 (1956) 512-514.