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Abstract. The framework of Bayesian networks is a widely popular
formalism for performing belief update under uncertainty. Structure re-
stricted Bayesian network models such as the Naive Bayes Model and
Tree-Augmented Naive Bayes (TAN) Model have shown impressive per-
formance for solving classification tasks. However, if the number of vari-
ables or the amount of data is large, then learning a TAN model from
data can be a time consuming task. In this paper, we introduce a new
method for parallel learning of a TAN model from large data sets. The
method is based on computing the mutual information scores between
pairs of variables given the class variable in parallel. The computations
are organised in parallel using balanced incomplete block designs. The
results of a preliminary empirical evaluation of the proposed method on
large data sets show that a significant performance improvement is pos-
sible through parallelisation using the method presented in this paper.
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1 Introduction

A Bayesian network (BN) [5, 14–16, 19] is a powerful and popular model for
probabilistic inference. Its graphical nature makes it well-suited for represent-
ing complex problems where the interactions between entities represented as
variables are described using conditional probability distributions.

Structure restricted Bayesian network models such as the Naive Bayes (NB)
Model [7] and Tree-Augmented Naive Bayes (TAN) Model [11] have shown im-
pressive performance for solving classification tasks [7, 20, 24]. Data sets to be
analysed using NB and TAN models are ever increasing in number and size.

? Published by Springer: Lecture Notes in Computer Science Volume 8754, 2014, pp
302-317. The final publication is available at link.springer.com. DOI: 10.1007/978-
3-319-11433-0 20



The size increases both with respect to the number of variables in the data sets
and the number of cases in each data set. Large data sets may challenge the
efficiency of pure sequential algorithms for constructing NB and TAN models
from data. On the other hand, the computational power of computers is increas-
ing and access to computers supporting parallel processing is improving. This
includes improved access to computers with multiple CPUs and multicore CPUs
as well as high performance computers such as supercomputers. Therefore, there
is an increasing need for algorithms supporting parallel processing. In this paper,
we present a new method for parallel computing when learning a TAN model
from large data sets, where variables are scored pairwise in parallel. Hence, this
method focuses mainly on learning from data sets, where the number of feature
variables is large. The challenge is to distribute the pairwise scoring of subsets
of variables onto a set of compute nodes.

Balanced Incomplete Block (BIB) diagrams [23] are related to the statistical
issue of design of experiments. In [23] the author writes ”Combinatorial design
theory concerns questions about whether it is possible to arrange elements of
a finite set into subsets so that certain balance properties are satisfied.” When
learning a TAN model from data with many feature variables, where the scoring
is distributed onto a number of compute nodes, we need to arrange the features
into subsets such that all pairs of variables are scored (at least) once. Design
theory can provide one solution to this challenge. This paper describes how.

In [8] the authors describe a MapReduce-based method for learning Bayesian
networks from massive data using a search & score algorithm while [4] describes
a MapReduce-based method for machine learning on multicore computers. Also,
[21] presents the R package bnlearn which provides implementations of some
structure learning algorithms including support for parallel computing. [2] in-
troduces a method for accelerating Bayesian network parameter learning using
Hadoop and MapReduce. In this paper, we consider parallelisation of TAN learn-
ing on distributed memory concurrent computers using the standardized and
portable message-passing system referred to as the Message Passing Interface
(MPI) [10]. We employ the SPMD (Single Program, Multiple Data) technique
to achieve parallelism in the learning of the TAN model from data through a
MPI implementation. The implementation has a master process and a number
of worker processes where the master process will also be a worker process.
Tasks are divided into subtasks and run simultaneously on multiple processors
with different input. The results of the subtasks are communicated to a master
process, which collects the results and produces the final outcome.

This paper is organised as follows. Section 2 presents preliminaries and no-
tation including an introduction to BIB designs. Section 3 describes the details
of the proposed method for parallel TAN learning while Section 4 presents the
results of a preliminary empirical evaluation. Finally, Section 5, Section 6 and
Section 7 give a discussion, conclusions and outline future work, respectively.



2 Preliminaries and Notation

2.1 Bayesian Networks

Let X = {X1, . . . , Xn} be a set of discrete random variables such that dom(X)
is the state space of X and ||X|| = |dom(X)|. A discrete BN N = (X , G,P) over
X consists of an acyclic directed graph (DAG) G = (V,E) with vertices V and
edges E and a set of CPDs P = {P (X |pa(X)) : X ∈ X}, where pa(X) denotes
the parents of X in G [5, 15, 19]. The discrete BN N specifies a joint probability
distribution over X as

P (X ) =

n∏
i=1

P (Xi |pa(Xi)).

We only consider discrete Bayesian networks in this paper. We use upper case
letters, e.g., Xi and Y , to denote variables and lower case letters, e.g., xj and
y, to denote states of variables. Sets of variables are denoted using calligraphic
letters, e.g., X and F .

A TAN model T = (X , G,P) is a restricted type of BN with X = {C} ∪ F
where C is a class variable and F is a set of feature variables and G(F) is a tree
where G(X ′) is the subgraph of G induced by X ′ and C is parent of each F ∈ F .

Example 1. Figure 1 shows the graph G of a TAN model with |F| = n features
where pa(Fi) = {Fi−1, C} for i = 2, . . . , n, pa(F1) = {C} and pa(C) = ∅.

C

F1 F2 · · · Fn

Fig. 1. A TAN model with n features.

The class variable C is a parent of each F ∈ F and each F ∈ F has at most
one other parent. If C is removed from G, a tree is obtained over the remaining
variables, i.e., F .

2.2 Learning a TAN from Complete Data

Let D = (c1, . . . , cN ) denote a data set of N complete cases over variables X =
{C} ∪ F where C is the classification variable and F is a set of n features. The
task of constructing a TAN model over X from D basically amounts to finding
a maximal weighted spanning tree over F , directing edges such that each vertex
has at most one parent and adding C as a parent of each F ∈ F . The algorithm
of [11] based on [3] is basically:

1. Compute mutual information I(Fi, Fj |C) for each pair, i 6= j.



2. Build a complete graph G over F with edges annotated by I(Fi, Fj |C).
3. Build a maximal spanning tree T from G.
4. Select a vertex and recursively direct edges outward from it.
5. Add C as parent of each F ∈ F .

In order to build the complete graph G over F , we need to compute I(Fi, Fj |
C) for

(
n
2

)
= n(n− 1)/2 pairs where n = |F|, i.e., there are n feature variables.

When using multiple processes we need to determine how to distribute the scor-
ing between processors to avoid computing the score of any pair more than once.
The ultimate level of parallelisation would be to create one process for each pair
to score. However, this may not be the most efficient approach in practice.

Once the structure G has been determined, the parameters of P are es-
timated. We assume data D is complete and do not consider the process of
estimating P from D. Thus, we focus only on determining the structure of G.

2.3 Balanced Incomplete Block Designs

The use of block designs dates back to the statistical theory of design of exper-
iments [9], highly motivated in its origin by agricultural experiments. In such
scenarios, the goal was to compare the yield of different plant varieties, consid-
ering that the yield could be significantly affected by the environment, i.e., the
conditions under which the plants are grown. The idea was to remove the effect
of the environment by setting up blocks of uniform environmental conditions,
and distribute the plants among the blocks, as testing every plant in each block
might potentially have an unaffordable cost. The term balanced design refers to
the fact of keeping the probability that two varieties are compared (i.e., that
they fall inside the same block) constant for every pair. BIB designs are used to
distribute the pairwise scoring to obtain the highest level of parallelism making
sure that all pairs are scored and no pair is scored more than once.

The work of testing for independence between pairs of variables should be
distributed evenly among the processes (or processors) available. At the same
time, we want each process to access as little data as possible (in order to mini-
mize IO and memory usage). If we have n variables, p processes, and each process
reads data for k variables, then the following inequality must always be satisfied
in order to cover all pairs of variables

p

(
k

2

)
≥
(
n

2

)
.

Solving for k produces k ≥ n
/√

p, and equality holds only when p = 1.
In order to come as close as possible to this theoretical minimum, we must

distribute the data among the processes in such a way that each pair of variables
is assigned to exactly one process. We use BIB designs to achieve this. In Design
Theory, a design is defined as:

Definition 1 (Design [23]). A design is a pair (X,A) s. t. the following prop-
erties are satisfied:



1. X is a set of elements called points, and
2. A is a collection of nonempty subsets of X called blocks.

We only consider cases where each block is a set (and not a multiset) and each
point will correspond to a subset of variables. A BIB design is defined as:

Definition 2 (BIB design [23]). Let v, k and λ be positive integers s. t.
v > k ≥ 2. A (v, k, λ)-BIB design is a design (X,A) s. t. the following properties
are satisfied:

1. |X| = v,
2. each block contains exactly k points, and
3. every pair of distinct points is contained in exactly λ blocks.

We use BIB designs to control the process of scoring pairs of feature variables.
A point corresponds to a subset of feature variables and a process is created for
each block. The number of blocks in a design is denoted b and r denotes the
replication number, i.e., how often each point appears in a block. Property 3
in the definition is the balance property that we need. We only want to score
each pair once and therefore require λ = 1. A BIB design is called incomplete
as k < v. A BIB design where v = b or r = k is symmetric, i.e., the number of
points equals the number of blocks or the replication number equals the block
size. In a (v, k, λ)-BIB design, every point occurs in r blocks where r = λ(v − 1)
/(k − 1) and the number of blocks is b = vr/k [23].

Example 2. Consider the (7, 3, 1)-BIB design. In this design, b = 7 · 3/3 = 7 and
r = 1 · (7− 1)/(3− 1) = 3. Hence, each point appears in three blocks and there
are seven blocks. The blocks are (one out of a number of possibilities):

{123}, {145}, {167}, {246}, {257}, {347}, {356}, (1)

where {abc} is shorthand notation for {a, b, c}. This BIB design is symmetric as
the number of blocks equals the number of points. This will not be the case in
general.

Examples of other designs that are known to exist include (16, 20, 5, 4, 1),
(91, 91, 10, 10, 1) and (871, 871, 30, 30, 1), using the notation (v, b, r, k, λ) for each
BIB design [6].

There is no single method to construct all BIB designs. However, a difference
set can be used to generate some symmetric BIB designs.

Definition 3 (Difference Set[23]). Assume (G,+) is a finite group of order v
in which the identity element is 0. Let k and λ be positive integers such that
2 ≤ k < v. A (v, k, λ)-difference set in (G,+) is a subset D ⊆ G that satisfies
the following properties:

1. |D| = k,
2. the multiset [x−y : x, y ∈ D,x 6= y] contains every element in G\{0} exactly

λ times.



In our case, we are restricted to using (Zv,+), the integers modulo v.
If D ⊆ Zv is a difference set in group (G,+), then D+ g = {x+ g|x ∈ D} is

a translate of D for any g ∈ G. The multiset of all v translates of D is denoted
Dev(D) and called the development of D [23], page 42.

Theorem 1 ([23], Theorem 3.8 p. 43). Let D be a (v, k, λ)-difference set in
an Abelian group (G,+). Then (G,Dev(D)) is a symmetric (v, k, λ)-BIB design.

Example 3. The set D = {0, 1, 3} is a (7, 3, 1)-difference set in (Z7,+). The
blocks constructed by iteratively adding one to each element of D (modulo 7)
are:

{013}, {124}, {235}, {346}, {450}, {561}, {602}. (2)

Notice that the ith element of each block is unique across all blocks. This prop-
erty is used to assign blocks to processes.

Table 1 [12] shows difference sets for a set of symmetric BIB designs. The
corresponding BIB design blocks are constructed as illustrated in Example 3.
Notice that the first element of each difference set is unique. This means that
the first element of each block can be used to associate process ranks and blocks.

Table 1. Difference sets for a set of symmetric BIB designs.

BIB design Difference set k/v

(3,2,1) (0,1) 0.67
(7,3,1) (0,1,3) 0.43
(13,4,1) (0,1,3,9) 0.31
(21,5,1) (0,1,4,14,16) 0.24
(31,6,1) (0,1,3,8,12,18) 0.19
(57,8,1) (0,1,3,13,32,36,43,52) 0.14
(73,9,1) (0,1,3,7,15,31,36,54,63) 0.12
(91,10,1) (0,1,3,9,27,49,56,61,77,81) 0.11
(133,12,1) (0,9,10,12,26,30,67,74,82,109,114,120) 0.09
(183,14,1) (0,12,19,20,22,43,60,71,76,85,89,115,121,168) 0.08

Notice how the block size k increases and that some values are missing in
the sequence. That is, there is no symmetric BIB design for k = 7 with λ = 1.
We know that a symmetric BIB design exists when k− 1 is a prime power and a
conjecture states that a symmetric BIB design exists only when this is the case.
For instance, 8− 1 = 71 and 9− 1 = 23 whereas 7− 1 = 6 = 2 ∗ 3 [13, 12].

3 Parallelisation of TAN Learning

There are two obvious approaches to parallelise the TAN learning algorithm
described in Section 2.2. One approach is to assign the same number of cases to



each process. Each process would then count the configurations of all pairs of
variables (together with the class variable) in the data assigned to the process.
The counts from all processes are combined and used to perform the pairwise
scoring. We refer to this as horizontal parallelisation. This approach to horizontal
parallelization is embarrassingly parallel, i.e., it requires little effort to separate
the problem into a number of parallel tasks.

A second approach (and the one investigated in this paper) is to distribute
the scoring to the processes. The idea is to assign a set of variables to each
process such that each pair of variables is assigned to exactly one process as we
need to score each pair of variables at least once. This is only possible for certain
combinations of numbers of variables and processes. We refer to this as vertical
parallelisation.

Horizontal parallelisation mainly addresses learning from data sets with many
cases whereas vertical parallelization mainly addresses learning from data sets
with many feature variables. Horizontal and vertical parallelization can be com-
bined to cope with data sets where both N and |F| are large. In this paper, we
focus only on vertical parallelisation.

3.1 Parallel Scoring Using BIB Designs

In learning the structure of a TAN model, each pair of variables Xi, Xj ∈ F
should be scored for mutual information given C (at least once). The task of
calculating these scores in parallel can be solved using BIB designs. That is,
BIB designs are used to control the process of scoring all pairs of features in
Step 1 of the algorithm in Section 2.2, i.e., computing the mutual information
between Fi, Fj ∈ F given the class variable C. This means that BIB designs are
used to divide F into subsets to be assigned to each process. Each process will
score pairs of features assigned to it.

Fisher’s inequality states that b ≥ v [23] (who cites [9]). That is, no design
with b < v is possible. This means that the number of blocks b is larger than or
equal to the number of points v. On the other hand, |F| is usually much larger
than the number of processors available. This means that each point should
represent a subset of variables, i.e., each point p represents a set of variables
Fp ⊆ F . We do not include the class variable C in the set of points. As we need
to score pairs exactly once, we are only interested in designs with λ = 1.

A separate process with a unique rank is created for each block where the
rank is a number from zero to the number of processes minus one. Each process
computes the pairwise scores represented by the block as described below. This
means that ideally the number of blocks should match the number of processes
and each point in all blocks should represent the same number of features. This
may not be possible in practice as BIB designs for any combination of v and k
do not necessarily exist. Instead either some processors will be idle, more blocks
than processes can be created or idle processors can be used for other tasks such
as horizontal parallelisation.

The process of computing the scores in Step 1 of the algorithm in Section 2.2
can be organized and distributed using a BIB design. Each process computes



the score for each pair of features from different points. This is referred to as
inter-point scoring. This means that all variables in different points are scored. In
addition, each process computes the score for each pair of features in a unique
point. This is referred to as intra-point scoring and ensures that all pairs are
scored exactly once. This is demonstrated by the next example continuing Ex-
ample 2.

Example 4. In the (7, 3, 1)-BIB design, each point p = 1, . . . , 7 represents a sub-
set Fp ⊆ F . If we assume |F| = 140, then |Fp| = 20, i.e., each point represents 20
features. As k = 3 each process is assigned 60 features, but each process does not
score all pairs as described below. The seven blocks (b = 7) of the (7, 3, 1)-BIB
design are shown in (1).

Example 5. Consider again the (7, 3, 1)-BIB design and assume |F| = 14. This
means that each point represents two features. Each process is assigned six fea-
tures. The seven blocks (b = 7) of the (7, 3, 1)-BIB design are shown in (1).

Figure 2 is a graphical illustration of how BIB designs are used to calculate
the scores in parallel using seven processes and assuming |F| = 14. Each process
is assigned a block containing three points. Each point represents two variables.

p = 1

0 1 3

X1 X2 X3 X4 X7 X8

x1 x2 x3 x4 x7 x8

· · ·

p = 7

6 0 2

X13 X14 X1 X2 X5 X6

x13 x14 x1 x2 x5 x6

Intra

Inter

Fig. 2. Illustration of how BIB designs are used to parallelise the pairwise scoring.

The figure illustrates how process p = 1 performs both inter-point and intra-
point calculations. The block assigned to process p = 1 is {013}. Each point
represents a unique pair of variables, e.g., point 0 represents the set {X1, X2}.
Calculating the score for X1 and X2 is an intra-point operation whereas cal-
culating the score for X1 and X3 is an inter-point score as X1 and X3 are in
different points. The challenge is to make sure that all processes perform the
same number of computations.



Notice that each process reads k/v = 3/7 = 43% of the feature data in
addition to the class data.

Each process p computes the score for all pairs of feature variables Xi, Xj

where Xi and Xj belongs to subsets represented by different points in the block
represented by p. These are the inter-point operations. In addition, each process p
computes the score for all pairs of feature variables Xi, Xj where Xi and Xj

belong to the subset represented by the first point in the block represented by p.
These are the intra-point operations. In this way, all pairs are scored exactly
once.

3.2 Generating Symmetric BIB Designs with λ = 1

Symmetric BIB designs with λ = 1 can be generated using difference sets as
described in Section 2.3 where Table 1 shows the difference sets needed to gen-
erate symmetric BIB designs with λ = 1 for k ≤ 14. Each process generates its
corresponding block using its unique rank by adding the rank to each element
of the difference set modulus the number of processes created.

3.3 Theoretical Performance Improvement

Each process p represents one block of points. If v < |F|, which is usually the
case, then each point represents a subset Fp ⊆ F . Here we assume that each
point represents the same number of features, i.e., we assume each point to
represent m feature variables. This means that each process p performs

(
k
2

)
m2

inter-point calculations, where k is the block size and m is the number of feature
variables in each point. Each process p performs

(
m
2

)
intra-point calculations.

Using a (v, k, λ)-BIB design each process will have to read k/v of the data
set in order to calculate the scores assigned to the process. If v = 7 and k = 3
(as in Example 2), then each process reads 3/7 = 43% of the data. If v = 91 and
k = 10 (as in Example 2), then each process reads 10/91 = 11% of the data. The
last column of Table 1 shows the amount of feature data read by each process for
p ∈ {3, 7, 13, 21, 57, 73, 91, 133, 183}. All feature data are read for p = 1, which
is equivalent to a pure sequential algorithm.

Example 6. Assume a (13, 4, 1)-BIB design with m = 10 where m is the number
of feature variables in each point, i.e., |F| = 130. Each process performs

(
4
2

)
102+(

10
2

)
= 600 + 45 = 645 calculations and reads 40 data files (in addition to the

data file containing the class variable) out of 130 data files, i.e. 41/131 = 31%
of D. In total 13 · 41 = 533 files are read by the 13 processes.

A pure sequential implementation will read all data, i.e., 130 feature data files
and one class data file, and score

(
130
2

)
= 8385 pairs of feature variables. That

is, each process in the parallel program computes 8% of the scores computed by
the single process in a pure sequential application.



Although the proposed method achieves a linear (in the number of processes)
speed-up in the number of calculations (mutual information scores) performed
by a single process, it only achieves a speed-up of the square root of the number
of processes in the amount of data needed by a single process. This is optimal
for vertical parallelisation as explained in Section 2.3.

4 Empirical Evaluation

This section reports on a preliminary empirical evaluation of the proposed par-
allel TAN learning algorithm.

4.1 Data Sets

Three different sources of data sets were considered in the empirical evaluation.
Random samples were generated from two real-world Bayesian networks of dif-
ferent sizes, i.e., the Munin1 [1] and Munin2 [1] networks. For each of these
networks a variable was arbitrarily chosen as class variable. The third source of
data was a sample generated from a real-world financial data set.

Table 2. Data sets used in the experiments.

data set |X | N

Munin1 189 750,000
Munin2 1,003 750,000
Bank 1,823 1,140,000

Table 2 describes properties of the data sets used in the experiments. Munin1
and Munin2 are data sets of 750,000 cases generated from the Munin1 and
Munin2 networks, respectively, while Bank is a data set with 1,140,000 cases over
financial data. Bank is an artificial data set generated from a real-world data
set maintaining some of the statistical properties of the original data. Variable
names and values have been anonymised. Continuous variables were discretized
into five bins. All data sets used in the empirical evaluation are complete, i.e.,
there are no missing values in the data.

4.2 Hardware

The empirical evaluation was performed on three different computer systems.
One Linux server and two supercomputers Fyrkat and Vilje both running Linux:

1. A linux server running Ubuntu (kernel 2.6.38-11-server) with a four-core
Intel Xeon(TM) E3-1270 Processor and 32 GB RAM.



2. Fyrkat5 is a computer cluster where each worker node used has 2 Intel Xeon
(TM) X5260 Processors and 16GB RAM. It has a total of 80 such nodes. This
cluster system uses SLURM (simple Linux Utility for Resource Management)
for resource management.

3. Vilje6 is a computer cluster where each worker node has dual eight-core Xeon
E5-2670 Processors and 32GB. It has a total of 1404 such nodes. This cluster
system uses PBS (Portable batch System) for resource management.

The algorithms were implemented using HUGIN software version 8.0 [17, 18]
and MPI. The HUGIN software does not have any special features necessary for
implementing the ideas presented in this paper. It is important to notice that the
experiments were performed when the system was being used by other users and
running other applications. This is likely to impact performance and produce a
higher variance in execution times than if the experiments were performed on a
dedicated system.

4.3 Scoring Function

In the implementation, the score I(Xi, Xj |C) was computed from the likelihood
test statistics G = 2∗

∑
iOi · log(Oi

Ei
), where Oi is the observed frequency and Ei

is the expected frequency under the null hypothesis. Since G = 2 ·N · I(Xi, Xj),
the mutual information score can be computed as I(Xi, Xj) = G/(2 ·N).

If the counts computed by each process are stored and communicated to the
master process, then (assuming complete data) the parameters of the conditional
probability distribution can be estimated.

4.4 Evaluations

The parallel algorithm was implemented employing the SPMD model. The sys-
tem has a master process and a number of worker processes. Each process has a
unique identifier referred to as its rank. The process of rank zero is referred to as
the master process. Each process, including the master process, reads data for
the feature variables assigned to it and the class variable. Each variable is stored
in a single file. This means that each process only reads data for its assigned
features and the class variable. The block assigned to a process is uniquely iden-
tified using the rank of the process and the difference set (each process knows the
number of processes created). The unique block of process p is calculated using
the rank of p and the difference set (see Theorem 1). All processes including the
process of rank zero compute the mutual information for its assigned pairs and
communicate the results back to the process of rank zero. The process of rank
zero collects the results and creates the maximum spanning tree (Step 3 - 5).
These last steps are very fast to perform compared to data reading and scoring.

5 http://fyrkat.grid.aau.dk
6 https://www.hpc.ntnu.no/display/hpc/Vilje



The average computation time was calculated over ten runs with the same
data. The computation time was measured as the elapsed (wall-clock) time be-
tween two specific points in the program. Time was measured in the master
process from before it started reading data for its assigned features until the
scoring was completed and all results communicated to the master process. We
also report the time used for reading data and performing the scoring for the
process of rank zero to get an indication of the division of work between reading
data and computing scores as well as to verify the speed-up obtained.

4.5 Results

This section reports on the results of the empirical evaluation of the proposed
method for vertical parallelisation of learning the structure of a TAN. Exper-
iments were performed using the three data sets described in Section 4.1 and
three systems described in Section 4.2.
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Fig. 3. Average run times for Munin1 and Munin2 on Ubuntu.

Figure 3 (left) shows the average run time in seconds for Munin1 on Ubuntu
while Fig. 3 (right) shows the average run time in seconds for Munin2 on Ubuntu.
The figure shows that performance improved up to seven processes. For 13 and
21 processes performance deteriorated. This is expected as Ubuntu has only four
physical cores (and eight logical cores).

On Fyrkat data files were assumed mounted on the compute nodes before
executing the application. Figure 4 (left) shows the average running time for
Munin2 on Fyrkat while Fig. 4 (right) shows the average running time for Bank
on Fyrkat. It is clear that the average running time improved as the number of
blocks, i.e., processors used, increased. The performance should be expected to
deteriorate if the number of blocks is higher than the number of processors used.

Figure 5 shows the average running time on Vilje for Munin2 (left) and
Bank (right). It is clear that the average running time improved as the number
of blocks, i.e., processors used, increased.
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Fig. 4. Average run times for Munin2 and Bank on Fyrkat.
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Fig. 5. Average run times for Munin2 and Bank on Vilje.



Figure 6 (left) shows the speed-up factors for reading data (Time) and the
theoretical number of files read by each process (Files) relative to the case of
one processor as well as the square root of the number of processors (Optimal).
The theoretical number of files read by each process is computed as k/v · |X |.
Figure 6 (right) shows the speed-up factor for scoring as a function of the number
of processors used.
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Fig. 6. Speed up as a function of the number of processors (relative to one processor).

It is clear from Fig. 6 that the theoretical number of files read by each process
as expected follows the square root of the number of processes. Similarly, the
speed-up factor for time used on testing is approximately a linear function of
the number of processors used. It is more surprising that the measured time
performance shows a higher speed-up that the square root of the number of
processes. The number of times a file was read by different processes increased
as the number of processors used increased. This means that the impact of
caching files increased with the number of processors used. We believe that this
explains the unexpected observed behaviour.

5 Discussion

This paper has introduced a new method for vertical parallelisation of TAN
learning based on using symmetric BIB designs with λ = 1. The use of BIB
designs makes it possible to achieve a work balance between processes such that
all processes score (almost) an equal number of pairs of feature variables. Sym-
metric BIB designs with λ = 1 do not exist for all values of v and k. Table 3
shows symmetric BIB designs with λ = 1 for k ≤ 14. Difference sets for sym-
metric BIB designs with λ = 1 for much higher k are known, see e.g.,[12]. If the
number of processors (or cores) does not match with a block size for which a
symmetric BIB design with λ = 1 is known to exist, then idle processors can
be used for horizontal parallelisation or parallelisation of the counting process.



Difference sets for b up to 1893 are implemented and this can be increased as
needed taking the prime power conjecture into account.

The results of the experimental evaluation show a clear time performance
improvement as the number of blocks, i.e., processors used, is increased. Notice
that even on a single CPU machine with multiple cores, a performance improve-
ment is achieved. For this system performance deteriorates when the number of
blocks is higher than the number of logical cores in the CPU. This should be
expected. There is some variance in the run time measured. This should also be
expected as the evaluation is performed on systems serving other users, i.e., the
experiments have not been performed on isolated systems.

Notice that the performance evaluation has been performed on three differ-
ent systems. From a personal computer running as a Linux server to powerful
supercomputers using different types of resource management systems. The re-
sults of the experiments show that a performance improvement can be realised
on each of these types of systems taking advantage of parallel computation. The
empirical evaluation has been performed using data sets of different complexity
both with respect to the number of variables and the number of cases.

6 Conclusion

This paper introduces a new method to vertical parallelisation of learning the
structure of a TAN model from data. The approach is based on the use of BIB
designs to distribute computing pairwise mutual information between features
given the class variable.

The results of an empirical evaluation of the proposed method on desktop as
well as supercomputers show a significant time performance improvement over
the pure sequential method.

7 Future Work

The principle of vertical parallelisation of pairwise scoring introduced in this
paper can be applied to the process of structure learning of a Bayesian network
using, e.g., the PC algorithm [22]. In the PC algorithm all variables are initially
tested for pairwise independence, which is similar to the scoring of all pairs
of F . In addition, a set of conditional independence tests are performed. The
principles of vertical parallelisation can be applied in both cases. The plan for
future work includes investigating how BIB designs can be applied to perform
the conditional independence tests in parallel.

Parallelising the counting process (horizontal parallelisation) can be consid-
ered as orthogonal to the pairwise scoring (vertical parallelisation). This means
that the methods can be combined to achieve even further performance improve-
ments when data sets are extremely large, i.e., do not fit into main memory of
the computer. Furthermore, we plan to investigate options for taking advan-
tage of multithreaded programming solving the tasks assigned to each process.



This may include both data reading for horizontal parallelisation of the count-
ing scheme as well as inter and intra pairwise conditional independence testing.
Furthermore, BIB designs can also be applied to improve the performance of the
pairwise scoring by a single process.
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