
Modelling and Inference with Conditional Gaussian

Probabilistic Decision Graphs✩

Jens D. Nielsena,∗, José A. Gámeza, Antonio Salmerónb

aAlbacete Research Institute on Informatics, University of Castilla-La Mancha, Campus
Universitario s/n, 02071 Albacete, Spain

{dalgaard,jose.gamez}@dsi.uclm.es
bDept. Statistics and Applied Mathematics, University of Almeŕıa, La Cañada de San

Urbano s/n, 04120 Almeŕıa, Spain
antonio.salmeron@ual.es

Abstract

Probabilistic decision graphs (PDGs) are probabilistic graphical models that
represent a factorisation of a discrete joint probability distribution using a “de-
cision graph”-like structure over local marginal parameters. The structure of a
PDG enables the model to capture some context specific independence relations
that are not representable in the structure of more commonly used graphical
models such as Bayesian networks and Markov networks. This sometimes makes
operations in PDGs more efficient than in alternative models. PDGs have pre-
viously been defined only in the discrete case, assuming a multinomial joint
distribution over the variables in the model. We extend PDGs to incorporate
continuous variables, by assuming a Conditional Gaussian (CG) joint distribu-
tion. We also show how inference can be carried out in an efficient way.

Keywords: Probabilistic decision graphs, Conditional Gaussian distribution,
Hybrid Graphical Models, Inference

1. Introduction

The Probabilistic Decision Graph (PDG) model was introduced in [2] as an
efficient representation of probabilistic transition systems. In this study, we
consider the more general version of PDGs proposed in [3].

PDGs are probabilistic graphical models that can represent some context
specific independencies that are not efficiently captured by conventional graph-
ical models, such as Markov Network or Bayesian Network (BN) models. Fur-
thermore, probabilistic inference can be carried out directly in the PDG struc-
ture and has a time complexity linear in the size of the PDG model.

✩This work has been supported by the Spanish Ministry of Science and Innovation, through
projects TIN2007-67418-C03-01,02, TIN2010-20900-C04-02,03 and by EFRD (FEDER) funds.
A preliminary version of this paper was presented in the FLAIRS-23 Conference [1].

∗Corresponding author

Preprint submitted to Elsevier June 23, 2011

So far, PDGs have only been studied as representations of joint distributions
over discrete random variables, showing a competitive performance when com-
pared to BN or Latent class Näıve BN estimation models [4]. The PDG model
has also been successfully applied to supervised classification problems [5] and
unsupervised clustering [6].

However, it is common in practice to find problems where discrete and con-
tinuous variables coexist. This fact has motivated the development of graphical
models, mainly hybrid Bayesian networks, oriented to handle discrete and con-
tinuous variables simultaneously [7, 8, 9, 10, 11].

In this paper, we introduce an extension of PDG models that incorporates
continuous variables, and therefore expands the class of problems that can be
handled by these models. More precisely, we define a new class of PDG models,
called conditional Gaussian PDGs and show how they represent a joint dis-
tribution over a set of discrete and continuous variables, of class conditional
Gaussian. We also show how probabilistic inference can be carried out over
this new structure, taking advantage of the efficiency already shown for discrete
PDGs.

2. The Conditional Gaussian model

We will use uppercase letters to denote random variables, and boldfaced
uppercase letters to denote random vectors, e.g. X = {X0, X1, . . . , XN}. By
R(X) we denote the set of possible states of variable X , and similarly for random
vectors, R(X) = ×Xi∈XR(Xi). By lowercase letters x (or x) we denote some
element of R(X) (or R(X)). When x ∈ R(X) and Y ⊆ X, we denote by x[Y]
the projection of x onto coordinates Y. Throughout this document we will
consider a set W of discrete variables and a set Z of continuous variables, and
we will use X = W ∪ Z.

The Conditional Gaussian (CG) model [12, 13] allows a factorised represen-
tation of a joint probability distribution over discrete and continuous variables,
and that factorisation can be encoded by a Bayesian network with the restriction
that discrete variables are not allowed to have continuous parents.

In the CG model, the conditional distribution of each discrete variable W ∈
W given their parents is a multinomial, whilst the conditional distribution of
each continuous variable Z ∈ Z with discrete parents E ⊆ W and continuous
parents C ⊆ Z, is given by

f(z|E = e,C = c) = N (z; α(e) + β(e)Tc, σ2(e)) , (1)

for all e ∈ R(E) and c ∈ R(C), where α and β are the coefficients of a linear
regression model of Z given its continuous parents which could be a different
model for each configuration of the discrete variables E.

In the CG model, after fixing any configuration of the discrete variables, the
joint distribution of any subset C ⊆ Z of continuous variables is a multivariate
Gaussian. In the following we will show how the parameters of the multivariate
Gaussian can be obtained from the ones in the CG representation. To this end,

2

consider a set of n continuous variables Z1, . . . , Zn with a conditionally specified
joint density

f(z1, . . . , zn) =

n
∏

i=1

f(zi|zi+1, . . . , zn) , (2)

where the k-th factor, 1 ≤ k ≤ n, is such that

f(zk|zk+1, . . . , zn) = N (zk; µzk|zk+1,...,zn
, σ2

zk|zk+1,...,zn
) ,

and therefore it holds that the joint is

f(z1, . . . , zn) = N (z1, . . . , zn; µ,Σ) ,

where µ is the n-dimensional vector of means and Σ is the covariance matrix of
the multivariate distribution over random variables Z1, . . . , Zn. We will use the
notation µzi

and Σzi,zj
to index µ and Σ. Please note that the Σzi,zi

contains
the marginal variance σ2

zi
, and Σzi,zj

contains the covariance of Zi and Zj, also
denoted as σzi,zj

. The conversion between the parameters of the joint and the
conditional specification is established as follows (see for instance [14, Theorems
7.3 and 7.4]). According to Eq. (1), the conditional mean µzk|zk+1,...,zn

is a linear
regression model over Zk+1, . . . , Zn. If we write that regression model as

µzk|zk+1,...,zn
= αk + βT

(+k)z(+k) , (3)

where zT

(+k) = (zk+1, . . . , zn), βT

(+k) = (βk
k+1, . . . , β

k
n), it is known that the

regression coefficients verify that

Σzk,zi
=

n
∑

j=k+1

βk
j Σzi,zj

, i = k + 1, . . . , n, (4)

and
αk = µzk

− βT

(+k)µ(+k), (5)

where µT

(+k) = (µzk+1
, . . . , µzn

).
The conditional variance can be obtained using the law of total variance,

which states that for any random variable Z and random vector U, it holds
that

Var(Z) = E[Var(Z|U)] + Var(E[Z|U]).

In this context, it means that

σ2
zk

= E[σ2
zk|zk+1,...,zn

] + Var(µzk|zk+1,...,zn
)

= σ2
zk|zk+1,...,zn

+ Var(αk + βT

(+k)z(+k)).

Hence,

σ2
zk|zk+1,...,zn

= σ2
zk

− βT

(+k)Σ(+k)β(+k) , (6)

where Σ(+k) is the projection of Σ to variables Zk+1, . . . , Zn.

3

3. Discrete PDGs with Multinomial distribution

We need to introduce some notation before we define the PDG model. Let
G be a directed graph over nodes V1. Let ν ∈ V, we then denote by paG(ν)
the set of parents of node ν in G, by chG(ν) the set of children of ν in G, by
deG(ν) the set of descendants of ν in G, that is recursively defined as deG(ν) =
{ν′ : ν′ ∈ chG(ν) ∨ [ν′ ∈ chG(ν′′) ∧ ν′′ ∈ deG(ν)]}, and we use as shorthand
notation de∗

G(ν) = deG(ν) ∪ ν. By anG(ν) we understand the set of ancestors
(or predecessors) of ν in G, that is recursively defined as anG(ν) = {ν′ : ν′ ∈
paG(ν) ∨ [ν′ ∈ paG(ν′′) ∧ ν′′ ∈ anG(ν)]}.

The PDG model was introduced in [3] as a probabilistic graphical model of
joint distributions over discrete variables. The structure is formally defined as
follows:

Definition 1 (The PDG Structure [3]). Let F be a forest of directed tree
structures over a set of discrete random variables W. A PDG structure G =
〈V,E〉 for W w.r.t. F is a set of rooted DAGs, such that:

1. Each node ν ∈ V is labelled with exactly one W ∈ W. By VW , we will
refer to the set of all nodes in a PDG structure labelled with the same
variable W . For every variable W , VW 6= ∅, and we will say that ν
represents W when ν ∈ VW .

2. For each node ν ∈ VW , each possible state w ∈ R(W) and each successor
Y ∈ chF (W) there exists exactly one edge labelled with w from ν to some
node ν′ representing Y . Let U ∈ chF (W), ν ∈ VW and w ∈ R(W). By
succ(ν, U, w) we will then refer to the unique node ν′ ∈ VU that is reached
from ν by an edge with label w.

An example of a PDG structure and its corresponding variable forest can be
found in Fig. 1(b) and (a) respectively. We will not usually depict the variable
forest explicitly as it is included in the PDG structure by the labelling of the
nodes, that is, each variable is represented by a specific set of nodes2. A PDG
structure (e.g. Fig. 1(b)) will then be viewed as a two-layer structure with
a variable layer and a node layer. On the variable layer, we have a directed
forest structure over the variables F and on the node layer we have a uniquely
rooted directed acyclic graph structure. When referring to children, parents,
descendants or ancestors of a variable in a PDG structure G, we silently refer
to the structure F . So, using Fig. 1(b) as an example, on the variable layer
we have: paG(W1) = {W0}, chG(W0) = {W1, W2}, deG(W0) = {W1, W2, W3}
and anG(W3) = {W1, W0}. On the node layer, we have: succ(ν0, W1, 0) = ν1,
succ(ν0, W2, 1) = ν3 and succ(ν1, W3, 0) = ν6.

1We realize that this abuses notation as now G and V are not a random variable and a
random vector, as in Sec. 2. However, the semantics that applies will be clear from context.

2Note that each variable can have more than one node representing it.

4

W0

W1 W2

W3

(a)

ν0W0

ν1 ν2W1 ν3 ν4W2

ν5 ν6 ν7W3

0

1 0

1

0
1

0
1

(b)

Figure 1: (a) A forest structure F (containing a single tree) over variables W =
{W0, W1, W2, W3}. (b) A PDG structure over W that is consistent with forest F .

A PDG structure is instantiated by assigning a real function fν to every node
ν in the structure. The function must have the signature fν : R(Wi) → R

+
0 ,

where ν ∈ VWi
.

An instantiated PDG structure G over the discrete variables W is called a
Real Function Graph (RFG). It defines the (global) real function fG with the
signature fG : R(W) → R

+
0 , by the following recursive definition:

Definition 2. Let G be an RFG over discrete variables W, and let ν ∈ VW .
We then define the local recursive functions:

fν
G(w) := fν(w[W])

∏

Y ∈chF (W)

f
succ(ν,Y,w[W])
G (w), (7)

for all w ∈ R(W). fG is then defined on R(W) as:

fG(w) :=
∏

ν:ν is a root

fν
G(w). (8)

The recursive function of Eq. (7) defines a factorisation that includes exactly
one factor fν for each W ∈ W. It will sometimes be convenient to be able to
directly refer to the factor that is associated with a given element w ∈ R(W).
The function reach defines exactly this association.

Definition 3 (Reach). A node ν representing variable Wi in G is reached by
w ∈ R(W) if

1. ν is a root in G, or

2. Wj = paF (Wi), node ν′ representing variable Wj is reached by w and
ν = succ(ν′, Wi,w[Wj]).

By reachG(Wi,w) we denote the unique node representing Wi reached by w in
PDG structure G.

5

As an example, consider again the PDG structure of Fig. 1(b) and let w =
W0 = 0, W1 = 1, W2 = 1, W3 = 1. Then reachG(W0,w) = ν0, reachG(W1,w) =
ν1, reachG(W2,w) = ν3 and reachG(W3,w) = ν5. It should be clear that each
node divides the space R(W) into two disjoint sets, the instances that reach the
node and those that do not. E.g. ν0 is reached by all instances in R(W) while
ν1 is reached by all instances w for which w[W0] = 0.

Using Def. 3, we can give an alternative definition of fG:

fG(w) :=
∏

Wi∈W

f reachG(Wi,w)(w[Wi]) . (9)

When all the local functions fν in an RFG G over W define probability
distributions, the function fG (Def. 2) defines a joint multinomial probability
distribution over W (see [3]). In fact, fν

G in Eq. (7) defines a multinomial
distribution over variables W ∪ de∗

F (W). We will refer to such RFGs as PDG
models.

Definition 4 (The PDG model [3]). A PDG model G is a pair G = 〈G, θ〉,
where G = 〈V,E〉 is a valid PDG structure (Def. 1) over some set W of discrete
random variables and θ = {fν : ν ∈ V} is a set of real functions, each of which
defines a discrete probability distribution.

Example 1. Consider the PDG structure in Fig. 1. It encodes a factorisation
of the joint distribution of W = {W0, W1, W2, W3}, with

fν0 = P (W0), fν4 = P (W2|W0 = 1),
fν1 = P (W1|W0 = 0), fν5 = P (W3|W0 = 0, W1 = 1),
fν2 = P (W1|W0 = 1), fν6 = P (W3|W1 = 0, {W0 = 0 ∨ W0 = 1}),
fν3 = P (W2|W0 = 0), fν7 = P (W3|W0 = 1, W1 = 1).

The PDG structure plus the set of conditional distributions given above con-
stitute a PDG model over the set of variables W = {W0, W1, W2, W3}. Assume
that we want to evaluate the PDG model for a given configuration of W, for
instance, (0, 1, 1, 1). According to Def. 2, the returned value is

fG(0, 1, 1, 1) = fν0(0)fν1(1)fν3(1)fν5(1)

= P (W0 = 0)P (W1 = 1|W0 = 0)P (W2 = 1|W0 = 0)

P (W3 = 1|W0 = 0, W1 = 1).

Note that the node reached for variable W3 is uniquely defined as ν6 for all
configurations where W1 = 0 (i.e. w[W1] = 0 ⇔ reachG(W3,w) = ν6), while for
W1 = 1 the node reached varies between ν5 and ν7 depending on the value of W0.
This indicates the existence of context specific independence. More precisely, the
conditional distribution of W3 given W0 and W1 is the same regardless of the
value of W0 whenever W1 equals 0 (i.e. P (W3|W0 = 1, W1 = 0) = P (W3|W0 =
0, W1 = 0)) so in the context of W1 = 0, W3 and W0 are independent.

6

4. Conditional Gaussian PDGs

In this section we introduce an extension of the multinomial PDG model
defined in the previous section. The extension incorporates continuous variables
in the model, and we will show afterwards that the factorisation now induces
a conditional Gaussian probability distribution. We first define the structural
extension.

Definition 5 (CG-PDG structure). Let F be a forest of directed tree struc-
tures over a mixed set of discrete and continuous random variables X = W∪Z,
where no continuous variable Z ∈ Z has a discrete variable W ∈ W as a child.
A CG-PDG-structure G = 〈V,E〉 for X w.r.t. F is then defined exactly as the
PDG structure of Def. 1 where:

1. each continuous variable is viewed as a single state variable, and

2. for each node ν representing a continuous variable Z and for each variable
Zc ∈ chF (Z), exactly one unique child ν′ ∈ VZc

exists, and ν′ has no other
parents than ν.

An example of a CG-PDG structure is displayed in Fig 2. Please note that in
a CG-PDG structure, for all ν’s representing some Z ∈ Z where Zi ∈ chF (Z),
the set succ(ν, Zi, z) is the same regardless of the value z. We can therefore
leave out the z argument and unambiguously write succ(ν, Zi). Moreover, we
have that reachG(Z,x) = reachG(Z,x[W]) for any X ∈ X, x ∈ R(X) and
Z ∈ Z. In fact, for each joint configuration w′ of the discrete predecessors
W′ of a continuous variable Z (that is W′ = anG(Z) ∩ W) one unique node
representing Z is reached.

Definition 6 (CG-PDG model). A Conditional Gaussian PDG (CG-PDG)
model G over random variables X = W ∪ Z is a pair G = 〈G, θ〉, where G =
〈V,E〉 is a CG-PDG structure as defined in Def. 5, and θ = {fν : ν ∈ V} is
a set of real functions, and depending on the variable that ν represents, fν is
defined by one of the following cases.

• If ν represents discrete variable W , fν defines a multinomial probability
distribution over X.

• If ν represents continuous variable Z for which anG(Z) ∩ Z = U and
anG(Z) ∩W = Y, then fν(z,u) = f(z|u,y) = N (z; αν + βT

ν u, σ2
ν) where

u ∈ R(U) and ν = reachG(Z,y). So fν defines a Gaussian density with
conditional mean µz|u = αν + βT

ν u and conditional variance σ2
z|u = σ2

ν ,

where βν is a vector of |U| real values and |U| denotes the cardinal of U.

In order to simplify the notation, when referring to a function stored in a node
ν corresponding to a continuous variable Z, we just write fν(z), even though
that function actually depends on the predecessors of Z in the structure.

Before going further, we will give an example of how a CG-PDG model nat-
urally captures the structure of a problem domain with discrete and continuous
variables.

7

ν0W0

ν1 ν2W1 ν3 ν4Z0

ν5 ν6 ν7W2 ν8 ν9Z1

0

1 0

1

1
0

1
0

Figure 2: Structure of a CG-PDG with three discrete and two continuous variables.

Example 2. A newspaper delivery van has two possible delivery routes, one
of them covering only city A and the other covering city B as well. A 70%
of the days, the selected route is the one including only city A. Let us denote
by W0 the delivery route (0 = A, 1 = AB). Cities A and B are connected
by a pay motorway, with a toll fee of 3 Euro. City B is known to be a busy
city traffic much more dense than A, so that the probability of suffering a traf-
fic jam (denoted as W1, with values 0=no and 1=yes) when the selected route
includes B is 0.05, and 0.01 otherwise. If the van suffers a traffic jam, the
probability of completing the delivery on time (W2, with values 0=no, 1=yes)
is only 0.5 regardless of the selected route. If there are no traffic jams, the
probability of completing the job on time is 0.95 for route A and 0.8 for route
AB. The cost of the delivery (Z1) depends on the selected route and on the
gas consumption (Z0). The gas consumption follows a Gaussian distribution
with mean equal to 5 liters and variance of 1 liter2 for route A, whilst the mean
is 10 and the variance 1.2 for the other route. The cost also follows a Gaus-
sian distribution, with mean equal to 1.1 times the consumed liters and variance
0.5 when the route is A, and if the route is AB, the mean is increased by the
toll fee. The structure in Fig. 2 represents the dependence structure described
in this example. A parametrisation of that structure, according to definition
6 and the information given above is as follows: fν0 = P (W0) = (0.7, 0.3),
fν1 = P (W1|W0 = 0) = (0.99, 0.01), fν2 = P (W1|W0 = 1) = (0.95, 0.05),
fν3 = f(z0|W0 = 0) = N (z0; 5, 12), fν4 = f(z0|W0 = 1) = N (z0; 10, 1.22),
fν5 = P (W2|W0 = 0, W1 = 0) = (0.05, 0.95), fν6 = P (W2|W1 = 1) =
(0.5, 0.5), fν7 = P (W2|W0 = 1, W1 = 0) = (0.2, 0.8), fν8 = f(z1|z0, W0 =
0) = N (z1; 1.1z0, 0.52), fν9 = f(z1|z0, W0 = 1) = N (z1; 3 + 1.1z0, 0.52).

It is clear from Def. 6 that when Z = ∅, a CG-PDG model reduces to the
multinomial PDG model of Def. 4.

We will extend the meaning of an RFG to include any graph with the struc-
tural syntax of Def. 6 and where the nodes contain any real-valued function
with the appropriate domain. The definition of the global function fG in Def. 2
is still valid for such general RFGs and in particular for CG-PDG models. The

8

only minor change would be to Eq. (7) where for a node ν representing a contin-
uous variable Z, the successor nodes are uniquely specified independently of the
value of Z (as explained above). That is, for node ν representing a continuous
variable Z ∈ X and x ∈ R(X), we would define fν

G(x) as:

fν
G(x) := fν(x)

∏

Y ∈chG(Z)

f
succ(ν,Y)
G (x). (10)

We can decompose fG of CG-PDG G over variables X as follows. Let X ∈ X
and let G\X be the CG-PDG structure obtained from G by removing all nodes
representing any X ′ ∈ anG(X) (the subtree rooted at any node representing
X). Then:

fG(x) := fG\X(x) · f
reachG(X,x)
G (x) , (11)

where x ∈ R(X).
The following proposition establishes that when G is a CG-PDG model, then

fG as defined in Def. 2 represents a CG distribution.

Proposition 1. Let G = 〈G, θ〉 be a CG-PDG model with structure G = 〈V,E〉
over variables X = (W,Z) w.r.t. variable forest F . Function fG defines a
Conditional Gaussian density over X.

Proof: In order to prove that fG is a Conditional Gaussian density, we have to
show that the joint distribution over the discrete variables is multinomial, and
also that for each configuration of the discrete variables, the joint distribution
over the continuous variables is multivariate Gaussian (see Sect. 2). That is, we
have to show that

i.
∫

R(Z) fG(x)dz defines a multinomial distribution.

ii. For each w ∈ R(W), fG(w, z) is a multivariate Gaussian over Z.

If we fix a configuration w ∈ R(W), then fG is just a product of functions
of the form fν , where ν is a node corresponding to a continuous variable, and
therefore, fG is a product of conditional Gaussians in each branch of the trees
in the forest of variables restricted to w, and therefore, for a fixed w ∈ R(W),
fG(w, z) is a multivariate Gaussian density over z ∈ R(Z).

Thus, since fG(w, z) is a probability density over R(Z), its integral over that
domain is equal to 1. Therefore, it holds that

∫

R(Z)

fG(w, z)dz = fGW
(w)

∏

ν′∈V

∫

R(Z)

fν′

G (z)dz = fGW
(w) ,

where V = {ν′ = reachG(Z,w)|Z ∈ Z∧ paF (Z) ∈ {{∅}∪W}} (that is V is the
set of nodes representing the continuous variables that are roots of a sequence
of continuous variable in the variable structure) and GW is the PDG obtained
from structure G by keeping only the variables in W. Finally, according to
proposition 3.3 in [15], we know that fGW

(w) defines a multinomial distribution,
and hence, so does

∫

R(Z) fG(w, z)dz. �

9

The efficiency of the PDG model over exclusively discrete domains stems
from their structure which is a special kind of decision graph only containing
chance nodes. The first PDG version presented in [2] extends Binary Decision
Diagrams (BDDs) and thereby inherits the efficiency of BDDs, which lies in
compact representation and efficient manipulation of boolean functions.

ν0X0

ν1 ν2X1

1 0

ν3 ν4X2

0
1

0
1

ν5 ν6X3

0
1

0
1

Figure 3: PDG-representation of the parity function.

In Fig. 3, a PDG over 4 binary variables is depicted. The structure encodes
the model where X3 is determined by the parity function over the remaining 3
variables that are marginally independent. Adding more variables to the parity
function only makes the model grow in size by a small linear factor. Modelling
the parity function using a BN model would yield a model that grows by an
exponential factor when adding more variables to the function.3

The efficiency of the discrete PDG, exemplified by the representation of the
parity function (Fig. 3) is inherited by the CG-PDG model. The addition of
continuous variables does not restrict the discrete part of the CG-PDG in any
way, and the properties of this part of the model stay intact.

5. Operations over CG-PDGs

One of the main advantages of the PDG model is that efficient algorithms for
exact inference that operate directly on the PDG structure are known. In this
section we will show how the original algorithm for exact inference in discrete
PDGs by [3] can be almost directly applied to CG-PDGs.

We will first consider the problem of computing the probability (or density
value) of some set of variables Y ⊂ X being in the joint state y ∈ R(Y)
when the joint distribution P (X) is represented by a CG-PDG model G with

3By including suitable artificial latent variables in the domain, there exists an efficient
transformation of any PDG into an equivalent BN model [3].

10

structure G. The computation that we wish to perform is what is usually called
marginalisation:

P{Y = y} =
∑

w′∈R(W′)

∫

R(Z′)

fG(w′, z′,y)dz′ , (12)

where W′ = W \ Y and Z′ = Z \ Y. Note that W′ ∪ Z′ ∪ Y = X. The next
definition is the first step towards efficient computation of Eq. (12).

Definition 7 (Restriction). Let G be a CG-PDG with structure G over vari-
ables X = (W,Z), let Y ⊆ X and let y ∈ R(Y). The restriction of G to Y = y,
denoted as GY=y is an RFG obtained from G such that

1. G and GY=y have the same structure.

2. For all ν representing some discrete variable X /∈ W \ Y, fν in GY=y is
copied from G.

3. For every discrete variable W ∈ Y ∩ W and each node ν ∈ VW , the
function fν(w) in GY=y is copied from G for w = y[W] and for any
w 6= y[Y] we set fν(w) = 0.

4. In all nodes ν representing a continuous variable Z ∈ Y ∩ Z, we replace
fν with the function value fν(y[Z]).

We call the resulting model a restricted CG-PDG.

Example 3. Consider the CG-PDG described in Ex. 2. Its restriction to (W2 =
0, Z0 = 3) results in the following changes: fν5(1) = fν6(1) = fν7(1) = 0
and fν3(z0) = 0.05399097. This last value results from evaluating at point 3 a
Gaussian density with mean 5 and standard deviation 1.

The restriction operation incorporates into the PDG the information con-
tained in a piece of evidence. Notice that the function value in item 4 of the
definition above is a real number only if there are not unobserved continuous
variables above Z in the PDG structure. Otherwise, the value of the density
would be an algebraic expression depending on the unobserved continuous vari-
ables above it. Therefore, we assume that CG-PDGs are restricted in such a
way that there are no observed nodes beneath unobserved ones. If the structure
is not compatible with the evidence, then it has to be rearranged by swap-
ping nodes, until that restriction is met. For instance, consider two consecutive
nodes ν1 and ν2 corresponding to variables Z1 and Z2, containing the param-
eters (µz1

, σ2
z1

) and (α, β, σ2
z2|z1

), that is, meaning that Z1 ∼ N (µz1
, σ2

z1
) and

Z2|Z1 ∼ N (α + βz1, σ
2
z2|z1

). According to the definition of the CG distribution,
parameters α and β are computed as

α = µz2
− βµz1

and
β =

σz1,z2

σ2
z1

, (13)

11

where σz1,z2
stands for the covariance of Z1 and Z2. By swapping the order

of Z1 and Z2, the new distributions would be parameterised as (α′, β′, σ2
z1|z2

)

and (µz2
, σ2

z2
), that is, meaning that Z2 ∼ N (µz2

, σ2
z2

) and Z1|Z2 ∼ N (α′ +
β′z2, σ

2
z1|z2

), where

α′ = µz1
− β′µz2

and

β′ =
σz1,z2

σ2
z2

= β
σ2

z1

σ2
z2

. (14)

The unknown values in the expressions above are µz2
, σ2

z2
and σ2

z1|z2
, but they

can be obtained right on:

µz2
= E[Z2] = E[E[Z2|Z1]] = E[α + βZ1] = α + βE[Z1] = α + βµz1

.

According to the law of total variance,

σ2
z2

= σ2
z2|z1

+ Var(E[Z2|Z1]) = σ2
z2|z1

+ β2σ2
z1

.

For the same reason,

σz1|z2
= σ2

z1
− Var(α′ + β′Z2) = σ2

z1
− β′2Var(Z2)

= σ2
z1

− β2 σ4
z1

σ4
z2

σ2
z2

= σ2
z1

− β2 σ4
z1

σ2
z2

.

In the general case, the computation of these unknown values is related with
the compilation operation. Actually, through that operation a restricted CG-
PDG can be further modified in order to obtain the mean and variance of all the
distributions stored in each node, given the observations. The formal definition
of this operation is as follows.

Definition 8 (Compilation). Let G be a CG-PDG with structure G over vari-
ables X = (W,Z), let Y ⊆ X and let y ∈ R(Y). Let GY=y be the restricted
CG-PDG corresponding to evidence Y = y. The compilation of GY=y, denoted
as Gc

Y=y is an RFG obtained from GY=y such that

1. GY=y and Gc
Y=y have the same structure and parameters for discrete vari-

ables.

2. For every continuous variable Z with anF (Z)∩Z = U and every ν ∈ VZ

the following steps are performed in a top-down manner:

(a) A real vector uν is constructed, indexed by the variables U and with
values uν [U] = y[U] if U ∈ Y and uν [U] = ανU

if U /∈ Y (where νU

is the unique predecessor node of ν representing U). Then a posterior
mean µν is computed as

µν = αν + βT

ν uν . (15)

12

(b) A matrix sν is constructed, indexed by the variables S = anG(Z)∩Z
and with values:

sν [S1, S2] =











0 if S1 ∈ Y or S2 ∈ Y

s2
νS1

if S1 = S2 and S1 /∈ Y

σs1,s2
if S1 /∈ Y and S2 /∈ Y

, (16)

where νS is the unique predecessor node of ν representing S. Then a
posterior variance s2

ν is computed as

s2
ν = σ2

ν + βT

ν sνβ . (17)

We call the resulting model a compiled CG-PDG.

Please note that as we are computing step 2 above in a top down sequence,
the s2

νS1
in the second case of Eq. (16) will always be available from a previous

computation. Also note that the covariances required in Eq.(17), can be com-
puted from the β coefficients using Eq. (4) given the recursive nature of step 2.
in Def. 8.

Example 4. Consider the scenario in Ex. 2. Assume we want to compile the
CG-PDG described there, in order to incorporate evidence (W2 = 0). The re-
striction of the model to (W2 = 0) results in the following changes: fν5(1) =
fν6(1) = fν7(1) = 0, and the compilation of the restricted models requires the
updating of the following parameters: µν8

= 5.5, s2
ν8

= 1.46, µν9
= 8.5 and

s2
ν9

= 1.9924.

From a compiled CG-PDG GY=y we can compute the probability of the
evidence P{Y = y} as:

P{Y = y} =
∑

w∈R(W)

∫

R(Z)

fGY=y
(w, z)dz . (18)

In the following we will show how (18) is computed by local computations in
the nodes.

We define the outflow as the accumulated function value of the real function
fν

G defined recursively at ν by Eq. (7) over its full domain.

Definition 9. Let G be a (possibly compiled) CG-PDG with structure G over
variables X w.r.t. forest F . The outflow of ν representing random variable Xi

is defined as:

ofl(ν) :=
∑

w∈R(W∩de∗

F
(Xi))

∫

R(Z∩de∗

F
(Xi))

fν
G(w, z)dz. (19)

Notice that in an uncompiled CG-PDG the outflow of all nodes is 1. Also
notice that Eq. (18) is equal to the product of outflows of all root nodes in the
structure.

The next proposition is central in the efficient computation of outflow :

13

Proposition 2. Let G be a (possibly compiled) CG-PDG with structure G w.r.t.
forest F over variables X. The outflow is recursively computed as follows:

1. If ν is a node representing a discrete variable W :

ofl(ν) =
∑

w∈R(W)

fν(w)
∏

Y ∈chF (W)

ofl(succ(ν, Y, w)) . (20)

2. If ν is a node representing a continuous variable Z:

ofl(ν) =

∫

R(Z)

fν(z)
∏

Y ∈chF (Z)

ofl(succ(ν, Y))dz . (21)

Proof: Item 1 is shown in [3, Lemma 4.3]. To prove item 2 we just have to
remember that, in a RFG containing continuous variables, all the variables below
any continuous variable are continuous as well. Therefore, we have to instantiate
Eq. (19) to the case in which there are no discrete variables involved and hence
the summation disappears and we are left with only the integration of function
fν

G. Expanding fν
G using Eq. (7) we get Eq. (21). �

Extending previous results of [3, Theorem 4.4], Proposition 2 and the fact
that Eq. (18) equals the product of outflows of root nodes, yields an efficient
computation of P{Y = y}.

We will now turn to the computation of posterior probability distribution
P (W |Y = y) and posterior densities f(z|Y = y). We will need to be able to
talk about parts of a domain R(U), U ⊆ X, that reach a specific node, so we
define a Path-relation as follows:

Definition 10 (Path). Let G be a (possibly compiled) CG-PDG model with
structure G w.r.t. forest F over variables X and let ν represent X ∈ X,
anF (X) ⊆ Y ⊆ X and W′ = Y ∩ W. Then

PathG(ν,Y) := {w′ ∈ R(W′) such that

∃x ∈ R(X) : (reachG(x, X) = ν and x[W′] = w′)} . (22)

If we consider the structure of Fig. 2 we have that e.g. PathG(ν6, {W1, W0}) =
{{0, 1}, {1, 1}}.

The inflow of a node ν is the accumulation of values of fG over the part of
the domain that reaches ν, and we define it formally as follows.

Definition 11. Let G be a CG-PDG model with structure G over variables X =
(W,Z) and forest F . Let ν ∈ VXi

, G \ Xi be the structure obtained from G by
removing every node labelled with Xi and their descendants, W′ = W\de∗F (Xi)
and Z′ = Z \ de∗F (Xi). The inflow of ν is defined as:

ifl(ν) :=
∑

w∈PathG(ν,W′)

∫

R(Z′)

fG\Xi
(w, z)dz . (23)

When {W′ ∪ Z′} = ∅ (that is, when Xi is a root), we define ifl(ν) = 1.

14

For a node ν in a CG-PDG with structure G over X, the set PathG(ν,X)
is the part of the domain in which the local function fν is included as a factor
in the global function fG. The inflow and outflow of a node ν factorises the
accumulated function value of fG over PathG(ν,X) in two independent factors.

Lemma 1. Let G be a (possibly compiled) CG-PDG with structure G over vari-
ables X. For any node ν in G, it holds that

ifl(ν)ofl(ν) =
∑

w∈PathG(ν,W)

∫

RZ

fG(w, z)dz. (24)

Proof: We wish to compute the product ifl(ν)ofl (ν) for an arbitrary node ν
in a CG-PDG. Let node ν represent variable Xi, then PathG(ν,W) can be
decomposed as PathG(ν,W) = PathG(ν,W \de∗

F (Xi))×R(W∩de∗
F (Xi)), and

obviously R(Z) can be decomposed as R(Z) = R(Z\de∗
F (Xi))×R(Z∩de∗

F (Xi)).
Then:

ifl(ν)ofl (ν) =
∑

w∈
PathG(ν,W)

∫

R(Z)

fG\Xi
(w′, z′)fν

G(w′′, z′′)dz ,

where w′ (and z′) are projections of w (and z) onto X \ de∗
F (Xi), while w′′

(and z′′) are projections onto de∗
F (Xi). Finally, from Def. 2 we have that the

product fG\Xi
(w′, z′)fν

G(w′′, z′′) equals fG(w, z). �

The next theorem establishes the basis for probabilistic inference in CG-
PDGs. It indicates how the posterior distribution of every discrete or continuous
variables can be obtained by local computations. Furthermore, it also shows
how the expectation and variance of each continuous variable can be computed
using local computations. The computation of the expected value and variance
of any discrete variable is straightforward from Eq. (25), and therefore it is not
included in the theorem.

Theorem 1. Let GY=y be a CG-PDG model restricted to evidence Y = y. Let
Gc
Y=y be its compiled version. When ifl and ofl values have been computed for

all nodes in Gc
Y=y, the following holds. For any discrete variable W ∈ W where

W 6∈ Y,

P{W = w|Y = y} = γ
∑

ν∈VW

fν(w)ifl (ν)
∏

U∈chF (W)

ofl(succ(ν, U, w)) . (25)

For any continuous variable Z ∈ Z, Z 6∈ Y, it holds that

f(z|Y = y) = γ
∑

ν∈VZ

fν(z)ifl(ν)
∏

U∈chF (Z)

ofl(succ(ν, U)) . (26)

Furthermore,

E[Z|Y = y] = γ
∑

ν∈VZ

µν ifl(ν)
∏

U∈chF (Z)

ofl(succ(ν, U)) , (27)

15

and
Var(Z|Y = y) = γ

∑

ν∈VZ

s2
ν ifl(ν)2

∏

U∈chF (Z)

ofl(succ(ν, U))2 . (28)

In all equations γ is the normalising factor 1
P{Y=y} . In Eq. (27) and Eq. (28),

µν and s2
ν , respectively, are computed during compilation (see Def. 8).

Proof: Equations (25) and (26) are a direct consequence of Lemma 1. Now we
have to show that the values µν and s2

ν , calculated according to Eq. (15) and
(17) correspond to the posterior mean and variance of the distribution stored
in node ν. But that is a direct consequence of Equations (3), (4), (5) and (6).

Note that if the CG-PDG is compiled for Y = y, then for each variable
U ∈ U = anF (Z) ∩ Z, its expectation is E[U] = ανU

if U ∈ Y (where νU is
the unique predecessor node of ν representing U) and E[U] = y[U] if U /∈ Y.
Therefore, for any ν ∈ VZ , the value µν computed as in Eq. (15) is actually
E[Z|Y = y] for the distribution stored in ν.

Note that if the CG-PDG is compiled for Y = y, then for each variable
U ∈ U, its variance becomes 0 if U ∈ Y, as well as the covariance with any
other variable. Therefore, for any ν ∈ VZ , the value s2

ν computed as in Eq. (17)
is actually Var(Z|Y = y) for the distribution stored in ν.

Also, note that f(z|Y = y) in equation (26) is a mixture of Gaussian densi-
ties, and therefore the expectation of Z is trivially the one in equation (27) and
its variance is the one in equation (28). �

The next proposition is central in the efficient computation of inflow.

Proposition 3. Let G be a (possibly compiled) CG-PDG with structure G w.r.t.
forest F over variables X. The inflow is recursively computed as follows:

1. If ν is a root,

ifl(ν) =
∏

ν′ 6=ν,ν′ is root

ofl(ν′) . (29)

2. If ν is not a root, and Xp = paF (Xi), and Xp is discrete:

ifl(ν) =
∑

x∈R(Xp)

∑

ν′:
ν=succ(ν′,Xi,x)

[ifl(ν′)fν′

(x)
∏

Y ∈chF (Xp)\Xi

ofl(succ(ν′, Y, x))] . (30)

3. If ν is representing continuous variable Xi, ν is not a root, Xp = paF (Xi),
Xp is continuous and ν′ is the parent of ν:

ifl(ν) = ifl(ν′)
∏

Y ∈chF (Xp)\Xi

ofl(succ(ν′, Y)) . (31)

Proof: Items 1 and 2 are shown in [3, Lemma 4.3]. Item 3 follows by realizing
that nodes representing continuous variables only have one outgoing arc, at
most, towards each child variable. �

16

Proposition 4. Computing inflow and outflow for all nodes in a (possibly re-
stricted) CG-PDG can be done in time linear in the number of edges of the
model.

Proof: The proof is a simple extension of the proof of the result [3, Theorem
4.4]. �

Theorem 1 and Proposition 4 demonstrate that typical probabilistic queries
can be answered in time linear in the size of the CG-PDG. The main concern in
achieving efficient inference can therefore be directly focused on constructing a
small model, which of course may be difficult or even impossible. The size may
be exponential in the number of discrete variables in the domain. However, it is
considered an advantage to be able to determine complexity of inference directly
in the model, as opposed to BN models where inference complexity depends on
the size of a secondary Junction Tree model obtained from the BN.

Notice, however, that belief updating is carried out over compiled CG-PDGs.
The complexity of the compilation operation is quadratic in the number of
continuous variables in the longest brach of the tree of variables of the CG-
PDG. This complexity is determined by the need of handling the covariance
matrix, which is of quadratic size in the number of variables involved.

Example 5 (CG-PDG belief updating). Consider Ex. 2. Assume we have
evidence that the route was not finished in time (W2 = 0), and we then want
to update our beliefs of the remaining unknown variables. The first step is to
compile the CG-PDG in order to incorporate the evidence. This step is de-
tailed in Ex. 4. After compiling the model, we can compute the outflows us-
ing the recursive formulas in Prop. 2. Here we list values consecutively as
{ofl(ν0), ofl(ν1) . . . ofl(ν9)}: {0.10265, 0.0545, 0.215, 1, 1, 0.05, 0.5, 0.2, 1,
1}. Once outflows are computed, inflows can be computed according to Prop. 3,
obtaining: {1, 0.7, 0.3, 0.03815, 0.0645, 0.693, 0.022, 0.285, 0.03815, 0.0645}.

First, as mentioned earlier, the probability of evidence is just the product of
outflows of root nodes which in this example means just ofl(ν0) = P{W2 = 0} =
0.10265. Next, computing the posterior expectations of the continuous variables
is done top down from the root to the leaves using Eq. (27) with γ = 1

P{W2=0} ,

and we get E[Z0|W2 = 0] = 8.14 and E[Z1|W2 = 0] = 7.39.
Posterior variances are computed as a weighted average of the variances

stored in nodes representing the given variable using Eq. (28), which yields:
Var[Z0|W2 = 0] = 0.897 and Var[Z1|W2 = 0] = 0.1014.

Finally, computing the marginal distributions for the two unobserved discrete
variables W0 and W1 we use Eq. (25) and get: P{W0|W2 = 0} = {0.37, 0.63}
and P{W1|W2 = 0} = {0.89, 0.11}.

6. Modelling CG Bayesian networks using CG-PDGs

In this section we show how a CG Bayesian network [13] can be modelled
using a CG-PDG. More precisely, we will concentrate on the context of belief

17

updating. The usual approach to exact belief updating in BN models is by
first compiling the model into a Junction Tree (JT) and then performing the
computations in this secondary structure. Belief updating in JTs has linear
complexity in the size of the model, where in this case we take the number of
free parameters of a model to be its size. The size of a clique of a JT composed
just by discrete variables is the product of the number of possible values of the
variables in the clique, whilst if the clique only contains continuous variables,
the size is the number of elements in the covariance matrix (except symmetries)
plus the elements in the vector of means.

Theorem 2. Let J be a junction tree over mixed domain X = W ∪ Z with
CG clique potentials and at least one strong root (see [16]). Then there exists a
CG-PDG G such that:

• G encodes the same joint density as J , and

• structure G of G has size linear in the size of J .

Proof: We examine the following three cases separately, Z = ∅, W = ∅ and
Z 6= ∅ ∧ W 6= ∅:

Z = ∅: In this case the theorem reduces to [3, Theorem 5.1].

W = ∅: Without loss of generality, we assume that J contains one connected
component. If J contains more than one connected component, the fol-
lowing steps are performed for each one of them. We then choose a root
clique Cr from J at random, and form a directed tree over the cliques by
directing all edges away from Cr. Following [3], we denote by new(Ci) the
set of variables Ci \ Cj , where Cj = paJ(Ci). A variable tree T is then
constructed top down by substituting for each clique Cj a linear sequence
the variables new(Cj), and branching whenever J branches. Following
the definition of the structure of the CG-PDG (see Def. 5) it is clear that
each variable will be represented in the CG-PDG G constructed wrt. T by
a single node. The local function of node ν, representing variable Zi which
was substituted for clique Cj and where anT (Zi) ∩ Cj = U, is initialised
to the conditional density fν(zi|U) which can be extracted from the po-
tential assigned to clique Cj using the formulae given in Section 2. When
anT (Zi) \ Cj 6= ∅, the remaining dependents are cancelled by assigning
those a zero as β value in the local function fν . From the chain-rule one
can now show that the graph function fG represents the original multi-
variate Gaussian from J .

Concerning the number of parameters, we first assume that J represents
a clique Ci in J by a covariance matrix and a mean vector. This means
that in total J uses:

size(J) =
∑

Ci∈J

|Ci|
2 + |Ci| , (32)

18

parameters. In the CG-PDG we represent in each node ν the conditional
density of the variable Z represented by ν given its predecessors anT (Z),
which means that we neeed to represent parameters α, σ and the β vector
of length |anT (Z)|. Hence, an upper bound on the number of parameters
in G is:

size(G) ≤
n

∑

i=2

i =
n2 + n − 2

2
, (33)

where n is the number of variables. Eq. (33) corresponds to arranging all
variables in a sequence without any branching. In general we can express
the number of parameters in the CG-PDG as:

size(G) =
∑

Ci∈J

∑

Z∈new(Ci)

2 + |anT (Z)| .

Some of the entries in the β-vector will be zero, and if we count only the
(possibly) non-zero entries for a variable Z that was part of the substitu-
tion for clique Ci we then get:

2 + |anT (Z) ∩ Ci| .

The total number of non-zero parameters that a clique Ci in J will result
in, is then:

|new(Ci)|
∑

a=0

2 + |Ci \ new(Ci)| =

|new(Ci)|(4 + 2|Ci \ new(Ci)| + |new(Ci)| − 1)

2
. (34)

In Eq. (34) we have used the general formula for computing finite sums
of the arithmetic progressions. Summing (34) over all cliques then yields
the total number of (possibly) non-zero parameters in G:

sizenon−zero(G) =
∑

Ci∈J

|new(Ci)|(4 + 2|Ci \ new(Ci)| + |new(Ci)| − 1)

2

≤
∑

Ci∈J

3|new(Ci)| +
5

4
|Ci|

2 (35)

It is clear that (35) is linear in (32).

Z 6= ∅ ∧ W 6= ∅: In this case we choose a strong root of J when directing the
structure. We then proceed from the root down substituting linear se-
quences of variables for cliques. As we have chosen a strong root, we will
get a variable forest structure where no discrete variable is located below
a continuous variable. To induce the CG-PDG structure wrt. the variable

19

W0

Z0 Z2

Z1

Z4

Z3

C0 = {W0, Z0, Z2}

C1 = {W0, Z1, Z2, Z3}

C2 = {Z1, Z2, Z3, Z4}

Figure 4: A mixed BN and its Junction Tree

forest constructed in this way, we first arrange the discrete part follow-
ing [3]. Then, for each discrete variable with a continuous variable Z as
child, we can apply the approach outlined above for exclusively continuous
variables, once for each relevant discrete joint configuration. That is, if
Z was part of the substitution for clique Ci, then we will have a unique
node for each joint configuration of the discrete variables of Ci, which is
one for each member of R(Ci ∩ W). The theorem then follows from the
correctness of the theorem in the above two cases.

�

Example 6. Consider the BN and JT of Figure 4, taken from [16, Example 2].
The only discrete variable is W0 and the rest are continuous with conditional
Gaussian distribution. There are two possible strong roots of the JT, namely
C0 or C1. We choose one (say C1) and construct the variable forest for the
CG-PDG as described in the proof of Theorem 5.1 in [3]. The method proposed
by [3] was devised for discrete domains, but for the construction of the variable
forest of our mixed domain, it can be readily applied with one additional con-
straint: that discrete variables are always added to the forest above continuous
variables. That is, when substituting a clique C by a linear sequence of variables,
all discrete variables in C are added before any continuous variables in C. We
obtain the variable forest in Fig 5(a). Now, adding the structure and parameters
to the model is done first for the discrete nodes according to the method of [3].
This effectively gives us a PDG over only the discrete variables that encodes
the joint distribution over the discrete variables found in the junction tree. In
our example, this simply means adding a single node ν0 representing W0 and
with parameter fν0

= P (W0). Then, for the continuous variables with discrete
parent we add one node for each state and node of the parent. For the rest of the
continuous variables the structure will then be given from the structural syntax
of the CG-PDG (see structure of 5(b)). The CG densities for the continuous
variables are then computed from the covariance matrix and mean vector from

20

the clique potential. Then, for the nodes representing Z2 the CG densities are:

fν1(z2) = N (z2; µz2
, σ2

z2
)

fν2(z2) = N (z2; µz2
, σ2

z2
)

which can be read directly from the potential of C1, using the matrix and vector
for W0 = w0 in fν1 and the ones for W0 = w1 in fν2 . For Z1 the density is:

fν3(z1) = N (z1; αν3
+ βν3

z2, σ
2
ν3

) ,

where

αν3
= µz1

−
σz1,z2

σ2
z2

µz2
,

βν3
=

σz1,z2

σ2
z2

,

σ2
ν3

= σ2
z1

−
σ2

z1,z2

σ2
z2

= σ2
z1

− βν3
σz1,z2

.

In the above formula the covariance matrix and means vector from C1 for W0 =
w0 is used, and for ν4 we would then use the matrices for W0 = w0. Moving on
to Z3, we get:

fν5(z3) = N (z3; αν5
+ β′

ν5
z2 + β′′

ν5
z3, σ

2
ν5

) ,

where

αν5
= µz3

−
σz3,z1

σ2
z1

µz1
−

σz3,z2

σ2
z2

µz2
,

β′
ν5

=
σz3,z1

σ2
z1

,

β′′
ν5

=
σz3,z2

σ2
z2

,

σ2
ν5

= σ2
z3

−
σ2

z3,z1

σ2
z1

−
σ2

z3,z2

σ2
z2

= σ2
z3

− β′
ν5

σz3,z1
− β′′

ν5
σz3,z2

.

The covariance matrix and means vector in the above formula are from C1 for
W0 = w0. We now move to Z0, which has been substituted for clique C0. Hence,
in the following formula, we use the potential from C0, and get:

fν7(z0) = N (z0; αν7
+ β′

ν7
z2 + β′′

ν7
z0 + β′′′

ν7
z3, σ

2
ν7

) ,

21

where

αν7
= µz0

−
σz0,z2

σ2
z2

µz2
,

β′
ν7

=
σz0,z2

σ2
z2

,

β′′
ν7

= 0 ,

β′′′
ν7

= 0 ,

σ2
ν5

= σ2
z2

−
σ2

z2,z1

σ2
z1

= σ2
z2

− β′
ν7

σz2,z1
.

The zero β’s in the above formula are due to the fact that we do not find neither
Z3 nor Z1 in C0, and the computation of σ and α simplifies accordingly.

In general, for a node ν representing continuous variable X with continuous
predecessors Z in the variable forest, let C be the clique from which X was taken
and let Y = Z ∩ C. Then we compute αν , βν ’s and σν as:

αν = µx −
n

∑

Z∈Y

σx,z

σ2
z

µz ,

and for all Z ∈ Y

βν [Z] =
σx,z

σ2
z

,

σ2
ν = σ2

x −
∑

Z∈Y

∑

Z′∈Y

βν [Z]βν [Z ′]σz,z′ .

In the above formula the covariance and mean is taken from the clique potential
for which the variable X was substituted and the relevant configuration of any
discrete variables is used.

7. An experiment comparing JTs and CG-PDGs

In this section we describe an experiment aimed at illustrating the transfor-
mation of a JT into a CG-PDG model described in the previous section.

We wish to compare the CG-PDG model to the Junction Tree model em-
pirically, and we therefore repeat one of the experimental settings presented in
[17]. In short, the experiment consists of transforming a Junction Tree into an
equivalent CG-PDG model and subsequently simplifying the obtained CG-PDG
model by merging nodes in the structure. We will review the structural opera-
tion of merging nodes used in [17] which is defined only for nodes representing
discrete random variables.

Definition 12. Two nodes ν1 and ν2 are mergeable iff:

1. ν1 and ν2 represent the same variable W , and

22

W0

Z2

Z1

Z3

Z0 Z4

(a)

ν0W0

ν1 ν2Z2

0 1

ν3 ν4Z1

ν5 ν6Z3

ν7 ν8Z0 ν9 ν10Z4

(b)

Figure 5: (a) Variable forest, and (b) CG-PDG structure.

2. for each Wi ∈ ch (F)W and every w ∈ R(W) it holds that succ(ν1, Y, w)
and succ(ν2, Y, w) are the same node.

So, two mergeable nodes represent the same variable and have the same
children. E.g., in Fig. 2 nodes ν5 and ν6 are mergeable, but ν1 and ν2 are not
as they disagree on the child for value W1 = 0. The structural operation of
merging of two mergeable nodes is defined as follows.

Definition 13. Let two nodes ν1 and ν2 in CG-PDG structure G be mergeable
and representing variable W where paG(W) = Wp. By merging ν1 and ν2 we
understand the removal of ν1 and ν2 from G and the introduction of a new node
ν′ representing W that has the same successors as ν1 and ν2 and has the union
of parents of ν1 and ν2 as parents.

As an example, in Fig. 6(a) and (b) we depict the structure from Fig. 2
after two merge operations. First we merge ν5 and ν7 (Fig. 6(a)) and then we
merge ν1 and ν2. Notice how in the original model (Fig. 2) ν1 and ν2 were not
mergeable, but only becomes mergeable by first merging ν5 and ν7.

We want to also be able to simplify the continuous part of the structure, and
obviously the merging of nodes representing discrete random variables does not
translate directly to nodes representing continuous random variables.

According to the structural syntax of CG-PDGs, a node representing a con-
tinuous random variable can only have a single child. Instead of merging nodes,
we will collapse entire branches of nodes representing the same sequence of
continuous random variables. Structurally, the collapsing of two continuous

23

ν0W0

ν1 ν2W1 ν3 ν4Z0

ν5 ν6W2 ν8 ν9Z1

0

1 0

1

1
0 1

0

(a)

ν0W0

ν1W1 ν3 ν4Z0

ν5 ν6W2 ν8 ν9Z1

0

1

1
0

(b)

ν0W0

ν1W1 ν3Z0

ν5 ν6W2 ν8Z1

1
0

(c)

Figure 6: An example of merge and collapse operations performed on the structure of Fig. 2.
In (a), original nodes ν5 and ν7 have been merged and a new ν5 node has been introduced.
In (c), nodes ν1 and ν2 are merged to form a new ν1. Finally, in (c) the two branches rooted
at ν3 and ν4 are collapsed forming a single branch rooted at the new ν3.

branches rooted at nodes νi and νj means to remove one of the branches, say
the one rooted at νi, and redirecting the edges pointing into νi to point into νj .

In Fig. 6(c) we depict the result of merging the two branches rooted at ν3

and ν4 into a single branch.
In order to guide the merging/collapsing of nodes/branches, we use the

Kullback-Leibler divergence between the two joint densities. When choosing
between two possible merge/collapse operations we select the one that yields
the smallest Kullback-Leibler divergence between the local joint densities.

In our experiment we used the well-known Waste-Incinerator network de-
scribed in [12]. We loaded the network in the HuginTMtool4, extracted the JT
and constructed the equivalent CG-PDG model from it. We then performed
merge and collapse operations, every time selecting the operation yielding mini-
mal Kullback-Leibler divergence. After each merge/collapse we collect statistics
on the resulting structure and also measure the log-likelihood of the model given
a database that was sampled from the original network. In Table 1 we list these
values.

The original Junction Tree model had 111 parameters, and our first obser-
vation is then that the equivalent CG-PDG model has considerably more pa-
rameters, in this case 142. This is not at all unexpected as redundant branches
are easily created in order for the CG-PDG structure to encode the correct in-
dependence structure. We also notice that we are only able to collapse a few
branches without significantly harming the accuracy of the resulting model as
measured by the log-likelihood of the data. The third collapse operation yields

4http://www.hugin.com

24

KL #dis #con #nodes size ll
- 7 48 55 142 4.70

100.62 7 42 49 126 3.92
109.81 7 36 43 110 0.73

12264.65 7 30 37 94 −1189.96
0.00 6 30 36 92 −1189.96

12546.24 6 24 30 76 −8241.87
0.00 5 24 29 74 −8241.87

60345.84 5 18 23 58 −13310.96
67839.30 5 12 17 42 −43267.70

Table 1: Results of merging/collapsing the CG-PDG representation of the Waste-Incinerator
Bayesian Network. The columns are: Kullback-Leibler divergence between previous model
and current one (KL), number of nodes representing discrete variables (#dis), number of
nodes representing continuous variables (#con), total number of nodes (#nodes), number of
parameters (size) and average log-likelihood of single data cases (ll).

a decrease from 0.73 to -1189.96. As we continue collapsing the accuracy dete-
riorates further. A positive observation is that by only two collapse operations
we have arrived at a CG-PDG structure with size 110 and without drastically
worsening the accuracy, log-likelihood is 0.73 compared to 4.70 of the original
Junction Tree.

In this experiment we have used a toy-example to show how a JT model
can be translated into a CG-PDG model and then simplified the obtained CG-
PDG model by removing redundancies by merging and collapsing operators. As
previously stated, CG-PDGs are especially fitted to efficiently encoding con-
text specific independencies. However, in this toy example, no context specific
independencies are present, and thus, the advantages of using CG-PDGs some-
what vanish. But even when no such independencies exist, the preprocessing
step of merging nodes and collapsing branches that are “almost” redundant
will produce a simpler structure that is an approximation of the original. It
can therefore be seen as a rather simple approach to approximate inference in
CP-PDG models, but again its efficiency depends on the amount of redundancy
that can be identified in the model. When redundancy is low, a more general
approach to approximate inference should be explored, e.g. by simulation of
non-evidence variables.

Another inference task of interest in probabilistic reasoning is abductive
inference [18], which seeks for the identification of the configuration of maxi-
mal probability given some observed evidence. When the target is the subset
containing all the unobserved variables we talk about total abduction or Most
Probable Explanation (MPE), and when the target includes only a subset of
the unobserved variables, then we talk about partial abduction or Maximum A-
posteriori Probability (MAP). MPE has the same complexity as computing the
a-posteriori marginal for each variable, and is solved by replacing summation by
maximum as marginalization operator in the propagation algorithm. MAP is
a more complex problem, because it can be exponential even in cases in which

25

MPE and marginal computation are easy to solve (polynomial). This is because,
solving MAP requires to use both types of marginalisation operators, summa-
tion and maximisation, and they do not commute. As a consequence, larger
join trees are required to solve MAP. In the case of PDGs, neither MPE nor
MAP computation have been approached in the literature. In the discrete case,
solving MPE should reduce to modify the marginalisation operator from sum-
mation to maximisation in the algorithm developed for computing a-posteriori
marginals [3]. The case of MAP is not easy, and it will require a specific PDG
structure in which maximum and summation can be done in the required order,
that is, similar to the transformation method proposed in this paper in order
to assure that discrete variables are placed first in the tree. Regarding the hy-
brid case, to our knowledge, the problem of computing MPE or MAP has not
been studied in CG Bayesian networks, therefore, we set as future research the
development of algorithms for computing MPE/MAP in PDGs and CG-PDGs.

8. Concluding remarks

In this paper we have introduced the CG-PDG model, an extension of PDGs
able to represent hybrid probabilistic models with joint conditional Gaussian
distribution. The new model keeps the expression power and representational
efficiency of its predecessor in what concerns the discrete part, and the contin-
uous part is also compactly represented with a number of parameters linear on
the number of continuous variables once the discrete part is fixed.

We have shown how probabilistic inference can be carried out efficiently by
using the concepts of inflow and outflow of nodes, and taking advantage of the
recursive computations of both quantities.

We have also proved that it is always possible to obtain a CG-PDG with
a number of parameters linear on the size of an equivalent JT representing a
Bayesian network with CG distribution. Through an illustrative example, we
have pointed out that the obtained CG-PDGs can be simplified through the
merge/collapse operations, in order to speed up the belief updating task.

In the near future we plan to extend the PDGs to another hybrid model,
namely the MTE (mixture of truncated exponentials) model [8], in which no
structural restrictions, regarding arrangement of discrete and continuous vari-
ables, are imposed. We will also study the problem of inducing CG-PDGs from
data, that so fas has been successfully addressed for discrete PDGs [17, 19].

References

[1] J. Nielsen, A. Salmerón, Conditional Gaussian probabilistic decision
graphs, in: Proceedings of the FLAIRS-23 Conference, 2010, pp. 549–554.

[2] M. Bozga, O. Maler, On the Representation of Probabilities over Struc-
tured Domains, in: Proceedings of the 11th International Conference on
Computer Aided Verification, Springer, 1999, pp. 261–273.

26

[3] M. Jaeger, Probabilistic Decision Graphs - Combining verification and AI
techniques for probabilistic inference, International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 12 (2004) 19–42.

[4] J. D. Nielsen, M. Jaeger, An empirical study of efficiency and accuracy
of probabilistic graphical models, in: Proceedings of theThirdEuropean
Workshop on Probabilistic Graphical Models, 2006, pp. 215–222.

[5] J. D. Nielsen, R. Rumı́, A. Salmerón, Supervised classification using prob-
abilistic decision graphs, Computational Statistics and Data Analysis 53
(2009) 1299–1311.

[6] M. J. Flores, J. A. Gámez, J. D. Nielsen, The PDG-mixture model for
clustering., in: Proceedings of the 11th International Conference on Data
Warehousing and Knowledge Discovery (DaWaK09), 2009, pp. 378–389.

[7] B. R. Cobb, P. P. Shenoy, Inference in hybrid Bayesian networks with
mixtures of truncated exponentials, International Journal of Approximate
Reasoning 41 (2006) 257–286.

[8] S. Moral, R. Rumı́, A. Salmerón, Mixtures of truncated exponentials in
hybrid Bayesian networks, in: ECSQARU’01. Lecture Notes in Artificial
Intelligence, Vol. 2143, 2001, pp. 135–143.

[9] H. Langseth, T. Nielsen, R. Rumı́, A. Salmerón, Parameter estimation
and model selection for mixtures of truncated exponentials, International
Journal of Approximate Reasoning 51 (2010) 485–498.

[10] V. Romero, R. Rumı́, A. Salmerón, Learning hybrid Bayesian networks
using mixtures of truncated exponentials, International Journal of Approx-
imate Reasoning 42 (2006) 54–68.

[11] P. Shenoy, J. West, Inference in hybrid Bayesian networks using mixtures
of polynomials, International Journal of Approximate Reasoning 52 (2011)
641–657.

[12] S. Lauritzen, Propagation of probabilities, means and variances in mixed
graphical association models, Journal of the American Statistical Associa-
tion 87 (1992) 1098–1108.

[13] S. Lauritzen, N. Wermuth, Graphical models for associations between vari-
ables, some of which are qualitative and some quantitative, The Annals of
Statistics 17 (1989) 31–57.

[14] D. Koller, N. Friedman, Probabilistic graphical models. Principles and tech-
niques, MIT Press, 2009.

[15] J. Nielsen, On unsupervised learning of probabilistic graphical models,
Ph.D. thesis, Aalborg University (2007).

27

[16] S. L. Lauritzen, F. Jensen, Stable local computation with conditional Gaus-
sian distributions, Statistics and Computing 11 (2001) 191–203.

[17] M. Jaeger, J. D. Nielsen, T. Silander, Learning probabilistic decision
graphs, International Journal of Approximate Reasoning 42 (1-2) (2006)
84–100.

[18] J. A. Gámez, Abductive inference in Bayesian networks: A review, in: J. A.
Gámez, S. Moral, A. Salmerón (Eds.), Advances in Bayesian Networks,
Springer Verlag, 2004, pp. 101–120.

[19] J. D. Nielsen, R. Rumı́, A. Salmerón, Structural-EM for learning PDG mod-
els from incomplete data, International Journal of Approximate Reasoning
51 (2010) 515–530.

28

