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Abstract

Probability trees are a powerful data structure for representing probabilistic
potentials. However, their complexity can become intractable if they repre-
sent a probability distribution over a large set of variables. In this paper, we
study the problem of decomposing a probability tree as a product of smaller
trees, with the aim of being able to handle bigger probabilistic potentials.
We propose exact and approximate approaches and evaluate their behaviour
through an extensive set of experiments.
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1. Introduction

Probability trees [1] constitute a flexible and compact data structure used
for representing probabilistic potentials (i.e. functions representing prob-
abilistic information). They are especially useful in contexts where large
probability distributions are handled, being Bayesian networks a remarkable
example [6, 7, 14].

In scenarios of high complexity, representing probabilistic potentials in
a factorised way can make difficult problems become tractable from a com-
putational point of view, since a factorised representation is typically more
compact than a joint one.

There are various ways of obtaining decompositions of probabilistic po-
tentials. Canonical models [8] constitute a group of schemes for obtaining
additive factorisations of conditional probability distributions. A more gen-
eral approach is based on tensor decompositions [15, 16], where probabilistic
potentials are approximated by a sum of potentials of the same arity, but
each one of them expressed as a product of univariate functions.

The problem of obtaining multiplicative factorisations has been previously
studied in the literature [12], being the most recent contribution the so-
called fast-factorisation [4]. Though fast factorisation has the advantage of
efficiency, as it can be computed quickly, it is only able to benefit of rather
restrictive scenarios, namely those in which a potential can be decomposed as
the product of two functions, one of them containing only one variable. In this
paper, we follow the original ideas in [12] and develop the concept of exact
and approximate factorisation of probability trees as a product of smaller
trees. Our proposal is more general than fast factorisation and provides
more accurate approximations than the method in [12].

The methods studied in this paper can be embedded in a more general
data structure for representing probabilistic potentials, called recursive prob-
ability trees [2]: a factorised representation of a probability tree is suitable
to be stored inside a recursive tree as a list node [3].

The rest of the paper is structured as follows: Section 2 is devoted to
introduce the use of probability trees to represent potentials; in Section 3,
exact procedures to decompose a potential as a product of two probability
trees are given; Sections 4 and 5 describe approximate factorisation proce-
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dures; an experimental evaluation of the different decomposition methods is
reported in Section 6; the paper ends with the conclusions in Section 7.

2. Probability trees

We will use the concept of potential to represent probabilistic information
(including ‘a priori’, conditional and ‘a posteriori’ distributions and interme-
diate results of operations between them). A potential φ for a set of variables
X is a mapping φ : ΩX → R

+
0 , where R

+
0 is the set of non-negative real

numbers and ΩX is the set of possible cases of the set of variables X. From
now onwards, we will consider only discrete variables with a finite number of
cases, and the size of a potential will be the highest number of values neces-
sary to completely specify it; i.e. if φ is defined on ΩX, its size is |ΩX|. In this
paper we are concerned with the representation of probabilistic potentials by
means of probability trees.

A probability tree [1, 5, 14] is a directed labeled tree, where each internal
node represents a variable and each leaf node represents a probability value.
Each internal node has one outgoing arc for each state of the variable asso-
ciated with that node. Each leaf contains a non-negative real number. The
size of a tree T , denoted as size(T ), is defined as its number of leaves.

A probability tree T on variables XI = {Xi|i ∈ I, I ⊂ N} represents a
potential φ : ΩXI

→ R
+
0 if for each xI ∈ ΩXI

the value φ(xI) is the num-
ber stored in the leaf node that is reached by starting from the root node
and selecting the child corresponding to coordinate xi for each internal node
labeled with Xi.

Figure 1 shows a potential φ and its representation using a probability
table and a probability tree. The tree contains the same information as the
table, but using five values instead of eight. Furthermore, trees allow to
obtain even more compact representations in exchange of losing accuracy.
This is achieved by pruning some leaves and replacing them by their average
value -see [6] for details- as it is shown in the rightmost tree.

2.1. Operations over probability trees

Typical operations over probabilistic potentials required for probability
calculus are combination (product) and marginalisation (projection). Both
can be defined over probability trees.

The combination of two trees is done recursively. In each recursion step
one of the trees is selected, and each child of its root node is combined with
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the other tree, and so on. This operation is illustrated in Figure 2 where the
symbol ⊗ denotes the combination operator. The details of the algorithm
can be found in [6].

Marginalisation is an operation to remove a variable by summing up over
all its possible values. A variable is marginalised out from a probability tree
by replacing it by the addition of its subtrees (corresponding to each of the
branches starting from the variable). The addition of two probability trees
is similar to the combination operation, and is also detailed in [6]. The
marginalisation of a variable by summing probability trees is described in
Figure 3 where symbol ⊕ represents the addition operator.

A third operation, called restriction, is also necessary to specify the tec-
niques in the following sections.

Definition 1 (Restriction). Let T be a probability tree, XJ a set of vari-
ables, and xJ a configuration of values of the variables in XJ . We define the
restriction of T to the values xJ , T

R(XJ=xJ), as the tree obtained by substi-
tuting in T every node corresponding to variable Xk ∈ XJ by the subtree Tk

which is given by the value of Xk=xk.

Note that if XJ contains all of the variables between the root node and
a leaf, T R(XJ=xJ) represents the probability value in the leaf. On the other
hand, if the configuration of variables is empty, T R(∅) equals T . This opera-
tion is illustrated in Figure 4.

3. Factorisation of probability trees

We will distinguish between exact and approximate factorisation, depend-
ing on whether or not a probability tree can be decomposed, without loss of
accuracy, into a product of smaller trees.

3.1. Exact factorisation of probability trees

The issue of decomposing probability trees can be characterised by the
following definitions.

Definition 2 (Proportional tree below a variable). Let T be a proba-
bility tree. Let (XC = xC) be a configuration of variables leading from the
root node in T to a variable X. We say that T is proportional below X
within context (XC = xC) if for every xi, xj ∈ ΩX , ∃πji > 0 such that

T R(XC=xC ,X=xj) = πji · T
R(XC=xC ,X=xi) . (1)
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The value πji is called proportionality factor of the subtree T
R(XC=xC ,X=xj)

with respect to the subtree T R(XC=xC ,X=xi). All the proportionality factors can
be collected in a matrix π =

(

πji

)

which will be called proportionality matrix.
Obviously, πii = 1 for each i, and πij = 1/πji for each i, j.

The tree shown in Figure 5 is proportional belowX within contextW = 0,
because all the subtrees under X are proportional among them, and the
proportionality matrix π is equal to:





1 2 4
1
2

1 2
1
4

1
2

1





Definition 3 (Exact factorisation). Let T be a probability tree propor-
tional below X within context (XC = xC), with proportionality factors given
by π =

(

πji

)

. Given xi ∈ ΩX , we define a factor subtree as any subtree

Ti = T R(XC=xC ,X=xi). The exact factorisation of T respect to the factor
subtree Ti is defined as the product

T (XC = xC ,π, Ti)⊗ T (XC = xC , Ti) (2)

where:

• T (XC = xC ,π, Ti), called core term of T in the factorisation, is the
tree obtained from T by replacing each subtree T R(XC=xC ,X=xj) by its
proportionality factor πji respect to the factor subtree Ti.

• T (XC = xC , Ti), called free term of T in the factorisation, is the tree
obtained from T by replacing subtree T R(XC=xC) by Ti, and any other
subtree T R(XD=xD) by a constant 1, for any context (XD = xD) incom-
patible with (XC = xC).

Proposition 1. Let T be a probability tree proportional below X within con-
text (XC = xC), with proportionality factors given by π =

(

πji

)

. Consider
xi ∈ ΩX , T (XC = xC ,π, Ti) and T (XC = xC , Ti) as in Definition 3. Then

T = T (XC = xC ,π, Ti)⊗ T (XC = xC , Ti). (3)

Proof: The proof is straightforward following the combination operation
over probability trees described in Section 2.1. �
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Figure 6 shows the resulting trees after applying exact factorisation to
the probability tree in Figure 5 (proportional below X for context W = 0)
with respect to the factor subtree T R(W=0,X=0).

Observe that the values in the i-th row of π are the leaves below vari-
able X in the core term when decomposing respect to the factor subtree
T R(XC=xC ,X=xi). The core term has been obtained by replacing in T the
subtrees T R(W=0,X=0) by π11 = 1, T R(W=0,X=1) by π12 = 2, and T R(W=0,X=2)

by π13 = 4. The rest of T remains unchanged. On the other hand, the free
term is constructed from T replacing T R(W=0) by the factor subtree, and a
constant value 1 for the other contexts.

Notice that the core and free terms are both probability trees with size
smaller than T . Because of that, the nearer to the leaves of the tree the easier
it is to detect proportionality inside a tree, since the factor trees will have
smaller size. However, the closer we are to the root, the core term become
smaller and, as this is usually the largest factor, the factorisation will be
more effective, in the sense that it will produce small factors in relation to
the original tree.

3.2. Exact factorisation with average free term

The exact factorisation described in 3.1 may introduce high values in the
potential represented by the core term (see Figure 6 for instance in which a
value of 4 is introduced). These values can be problematic in operations like
tree pruning [6], in which a node in the tree is replaced by the average of its
leaves if the potential represented by the new approximate tree minimises the
distance to the original potential (Figure 1). As a result of using factorisation,
the information measures obtained during these operations can be distorted
by values highly distant in magnitude to the others. With the aim of avoiding
this problem, in this section we propose a new factorisation strategy: instead
of factorising with respect to an arbitrary subtree, factorise with respect to
the average of the proportional subtrees.

Definition 4 (Average factor subtree). Let T be a probability tree pro-
portional below X for context (XC = xC). We define the average factor
subtree, denoted by T̄ R(XC=xC), as the subtree obtained averaging over all the
subtrees proportional below context (XC = xC), that is,

T̄ R(XC=xC) =
1

|ΩX |

∑

xj∈ΩX

T R(XC=xC ,X=xj). (4)
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Definition 5 (Exact factorisation with average free term). Let T be
a probability tree proportional below X for context (XC = xC). We define
the exact factorisation of T with average free term as the product

T (XC = xC ,π, T̄ )⊗ T (XC = xC , T̄ ),

where:

• The free term, T (XC = xC , T̄ ), is computed as the tree obtained from
T by replacing T R(XC=xC) by T̄ R(XC=xC) and replacing T R(XD=xD) by
a 1 for every context (XD = xD) incompatible with (XC = xC).

• The core term, T (XC = xC ,π, T̄ ), is the tree obtained from T by
replacing each subtree T R(XC=xC ,X=xj) by a constant πj given by:

πj =
1

π̄·j
=

|ΩX |
∑

k:xk∈ΩX
πkj

. (5)

Figure 7 shows the exact factorisation with average free term of the tree
in Figure 5 (proportional below X for context W = 0). In this case, the
average factor subtree T̄ R(W=0) is:

Y

0.3

0

0.6

1

0.6

2

1.5

3

Theorem 1. Let T be a probability tree proportional below X for context
(XC = xC) such that

T R(XC=xC ,X=xj) = πji · T
R(XC=xC ,X=xi) xi, xj ∈ ΩX . (6)

The average factor subtree T̄ R(XC=xC) is proportional to all the subtrees
T R(XC=xC ,X=xi), and it holds that

T = T (XC = xC ,π, T̄ )⊗ T (XC = xC , T̄ ) (7)

where T (XC = xC ,π, T̄ ) and T (XC = xC , T̄ ) are the core term and the free
term given in Definition 5.
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Proof: For each i : xi ∈ ΩX , we have that

T̄ R(XC=xC) =
1

|ΩX |

∑

xk∈ΩX

T R(XC=xC ,X=xk) =
1

|ΩX |

∑

xk∈ΩX

πkiT
R(XC=xC ,X=xi)

=

(
∑

xk∈ΩX
πki

)

|ΩX |
T R(XC=xC ,X=xi) = π̄·iT

R(XC=xC ,X=xi). (8)

Therefore, T̄ R(XC=xC) is proportional to each one of the subtrees T R(XC=xC ,X=xi).
Furthermore, for each i : xi ∈ ΩX , it follows from Eq. (8) that

T R(XC=xC ,X=xi) =
1

π̄·i
T̄ R(XC=xC).

Hence, there is a constant πi such that

T R(XC=xC ,X=xi) = πi · T̄
R(XC=xC),

and it follows that

T = T (XC = xC , X = x̄,π)⊗ T (XC = xC , T̄ ).

�

Corollary 1. Let T be a probability tree proportional under a given context.
Under the conditions in Theorem 1, it holds that the core term resulting from
an exact factorisation with average free term of T can be obtained from the
core term of an exact factorisation of T -defined in Definition 3- by dividing
by the average of its leaves.

Proof: For each xj ∈ ΩX , denote Tj = T R(XC=xC ,X=xj). Let α1, α2, . . . , αn,
with n = |ΩX |, be the leaves of the core term of the exact factorisation with
respect to the factor subtree Ti. That is, for each j : xj ∈ ΩX , αj = πji, since
Tj = αjTi. Furthermore, for each k, j = 1, . . . , n it holds that

αkTi = Tk = πkjTj = πkjαjTi

and therefore
αk = πkiαj . (9)
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Hence, the leaves of the core term of the exact average factorisation,
π1, π2, . . . , πn can be computed, according to Eq. (9) as

πi =
1

π̄·i
=

αi

αiπ̄·i
=

αi

1

n

∑n
k=1 πkiαi

=
αi

1

n

∑n
k=1 αk

=
αi

ᾱ
i = 1, . . . , n.

�

Corollary 2. The sum of the values stored in the leaves of the core term of
the factorisation of T with average free term is equal to its number of leaves
or equivalently, to the number of proportional subtrees before the factorisation
in the given context.

Proof: Let n = |ΩX |, Tj = T R(XC=xC ,X=xj) and T̄ = T̄ R(XC=xC). Let SC(T̄ )
be the sum of the values stored in the leaves of the core term of the exact
factorisation with average free term. Then,

SC(T̄ ) =

n
∑

j=1

πj =

n
∑

j=1

1

π̄·j
. (10)

We know that Tj = πjiTi for each i, j = 1, . . . , n, and therefore

πj T̄ = Tj = πjiTi = πjiπiT̄ (11)

which implies that
πj = πjiπi i, j = 1, . . . , n (12)

and, particularly,
πj = πj1π1 j = 1, . . . , n. (13)

Using Eq. (13) in Eq. (10), we obtain

SC(T̄ ) =
n

∑

j=1

πj =
n

∑

j=1

πj1π1 =
1

π̄·1

n
∑

j=1

πj1 =
n

∑n
j=1 πj1

n
∑

j=1

πj1 = n .

�
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4. Approximate factorisation of probability trees

There are situations in which the ways of decomposing trees described so
far may be of interest, even if the conditions of proportionality are not met.
For instance, assume that we have three variables X, Y and Z for which X
is independent of Y given Z and therefore a potential representing the joint
probability of X, Y , and Z can be decomposed as product of a potential
depending on X,Z and other one depending on Y, Z. But assume that due
to the fact that the actual distribution of X, Y and Z has been estimated
from a sample, the learnt distribution is not exactly the same, but very close
to the true one. The exact factorisation would not be discovered in the
estimated potential. Another scenario in which one could be interested in
decomposing a tree is when space limitations do not allow to represent fully
expanded probability trees, and then it is necessary to tradeoff accuracy for
space requirements. This happens, for instance, when probability trees are
used for carrying out inference in Bayesian networks [4].

The problem of approximate factorisation can be stated as follows. Let
T1 and T2 be two subtrees which are siblings for a given context (i.e. both
subtrees are children of the same node), such that both have the same size
and structure and their leaves contain only positive numbers. The goal of
the approximate factorisation is to find a tree T ∗

2 with the same structure
as T2, such that T ∗

2 and T1 become proportional, under the restriction that
the potential represented by T ∗

2 must be as close as possible to the one
represented by T2. Then, T2 can be replaced by T ∗

2 and the resulting tree,
containing T1 and T ∗

2 , can be decomposed as it would become proportional
for the given context.

In order to obtain the approximate tree T ∗
2 , two main questions arise:

the determination of the proportionality factors and the assessment of the
accuracy of the approximation. Both questions are connected, since it seems
sensible to select the proportionality factors in such a way that the chosen
divergence measure is minimised. Approximate factorisation is formalised in
the next definition.

Definition 6 (δ-factorisable tree). We say that a probability tree T is δ-
factorisable below X within context (XC = xC), with proportionality factors
π, and with respect to a divergence measure D, if for each xj , xi ∈ ΩX

∃πji > 0 it holds that

D(T R(XC=xC ,X=xj), πji · T
R(XC=xC ,X=xi)) ≤ δ.
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Parameter δ > 0 is called the tolerance of the approximation.

Note that proportional trees below X are δ-factorisable, with δ = 0.

The basic approximate factorisation was introduced in [12], where the
formulae for computing the proportionality factors π were given according
to several methods generally based on minimising divergence measures. From
these formulae an approximate tree is obtained and factorised in the same way
as the exact factorisation method introduced in Proposition 3. Algorithm 1
implements this factorisation.

Algorithm 1 Basic Approximate factorisation

1: procedure BasicApproxFactorisation(T ,X ,(XC = xC),δ,D)

2: Let Tj = T R(XC=xC ,X=xj), j : xj ∈ ΩX , be the subtrees of T δ-
factorisable below X for context (XC = xC), respect to divergence D.

3: Select Ti = T R(XC=xC ,X=xi), i : xi ∈ ΩX , as the factor subtree.

4: Obtain π, the matrix of proportionality factors, from the individual
coefficients between the leaves in trees Tj respect to the factor subtree,
using the formulae in [12].

5: Compute the approximate subtrees T ∗
j = T ∗R(XC=xC ,X=xj) propor-

tional amongst them, with proportionality factors π.

6: Apply the exact factorisation in Proposition 3, using subtrees T ∗
j .

Proportionality factors in step 4 are calculated under the restriction of
minimising different measures of divergence, in such a way that if T1 and T2

are subtrees of T below a variable X , with leaves P = {pi : i = 1, . . . , n; pi 6=
0} and Q = {qi : i = 1, . . . , n} respectively, and the divergence measure
considered is, for instance, the χ2 divergence, the distance between T2 and
its approximate tree T ∗

2 can be defined as

Dχ(T2, T
∗
2 ) =

n
∑

i=1

(qi − αpi)
2

qi
, (14)

and is minimised for α equal to
∑n

i=1
pi∑n

i=1
pi/φi

, where φi = qi/pi, i = 1, . . . , n.
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Other divergence measures, as the mean squared error (MSE), Kullback-
Leibler or Hellinger divergence, and their corresponding proportionality fac-
tors, are considered in [12]. In general, different divergence measures yield
different proportionality factors. Notice that using the MSE as divergence
measure is equivalent to selecting the proportionality factors that minimise
the Euclidean distance between the exact and approximate trees, and it can
be solved using the Singular Value Decomposition (SVD) technique employed
in Principal Component Analysis (see, for instance [10, pages 534-536]).

However, the Euclidean distance is not necessarily the most appropri-
ate divergence measure from a statistical point of view. For instance, the
Kullback-Leibler divergence has a probabilistic interpretation as an expected
value, and is related to commonly used statistical procedures as the maxi-
mum likelihood estimation method.

5. Approximate factorisation with average free term

Another approach for carrying out approximate factorisation is to obtain
an approximate tree, which may become factorisable, using an average factor
subtree during the computation. Given a tree T δ-factorisable below X for
context (XC = xC), with respect to a divergence measure D, we propose two
methods for factorising it in an approximate way with respect to an average
free term:

1. The approximate proportional subtrees below X are computed and
then, the exact factorisation with average free term is applied. We
shall refer to this strategy as approximate-first factorisation with
average free term.

2. The average factor subtree is computed from the original subtrees below
X , and the proportionality factors π are obtained by any approxima-
tion method, with respect to the average factor subtree, i.e. firstly, the
subtrees are averaged and secondly, the best proportionality factors for
approximating each of the subtrees are computed. We shall refer to this
approach as average-first factorisation with average free term.

5.1. Approximate-first factorisation with average free term

Let T be a tree δ-factorisable below X for context (XC = xC), with pro-
portionality factors π with respect to a divergence measure D. Algorithm 2
implements the Approximate-first factorisation with average free term.

12



Algorithm 2 Approximate-First factorisation with average free term

1: procedure ApproxFirstAFT(T ,X ,(XC = xC),δ,D)

2: Let Tj = T R(XC=xC ,X=xj), j : xj ∈ ΩX , be the subtrees of T δ-
factorisable below X for context (XC = xC), respect to divergence D.

3: Select Ti = T R(XC=xC ,X=xj), i : xi ∈ ΩX , as the factor subtree

4: Obtain π, the matrix of proportionality factors, from the individual
coefficients between the leaves in subtrees Tj respect to Ti.

5: Compute the approximate subtrees T ∗
j = T ∗R(XC=xC ,X=xj) propor-

tional amongst them, with proportionality factors π.

6: Apply the exact factorisation with average free term using subtrees
T ∗
j .

This method computes the approximate proportional subtrees T ∗ in the
same way as in [12]. The difference between them is the last step in Algo-
rithms 1 and 2. In both cases the factorisation is exact, but the first one
carries out exact factorisation respect to a factor subtree, and the second
performs the factorisation respect to the average factor subtree. Due to the
fact that in both cases the factorisation is exact, they give rise to the same
distance from the combination of the factors to the original tree.

Example 1. Figure 8 shows a probability tree δ-factorisable below X for
context W = 0.

Figures 9 and 10 show the subtrees of X for context W = 0 approximately
proportional according to the invariant potential method1, and the approxi-
mate factorisation resulting by applying approximate-first factorisation to the
tree in Figure 8.

5.2. Average-first factorisation with average free term

Let T be a tree δ-factorisable below X for context (XC = xC) with
respect to a divergence measure D. Algorithm 3 implements the average-
first factorisation with average free term. In this case, the average factor

1Introduced in [12]. With this method the weights of the original and the approximate

tree coincide: sum(T ∗

2
) =

∑n

i=1
αpi =

∑n

i=1
qi = sum(T2) , and α =

∑
n

i=1
qi∑

n

i=1
pi

.
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subtree T̄ is computed before, and it is used as a factor subtree in the step
3 within the basic approximate factorisation in Algorithm 1. Therefore, the
leaves of the core term are calculated using the individual proportionality
coefficients between the leaves of each subtree Ti and T̄ .

Algorithm 3 Average-first factorisation with average free term

1: procedure Average-FirstAFT(T , X , (XC = xC), δ, D)

2: Let Tj = T R(XC=xC ,X=xj), j : xj ∈ ΩX be the subtrees of T δ-
factorisable below X for context (XC = xC), respect to divergence D.

3: Compute the average factor subtree T̄ as the average of subtrees Tj .

4: Apply basic approximate factorisation in Algorithm 1 to subtrees Tj

with respect to T̄ , that is, in step 3 select T̄ instead of Ti.

Example 2. Consider the tree in Figure 8, δ-factorisable below X for con-
text W = 0. The average factor subtree for the δ-proportional subtrees below
X is displayed in Figure 11.

Figure 12 shows the average-first factorisation with average free term of
the tree in Figure 8 using the method of minimum χ2 divergence.

6. Experimental evaluation

6.1. Experiments with simulated trees

In this section we describe a set of experiments carried out to illustrate
and evaluate the impact of using approximate factorisation in terms of the
error of the corresponding approximation.

• The first experiment was run over the tree in Figure 8. Table 1 shows
the leaves of the core and free terms of the different decompositions re-
sulting from applying seven different approximation methods combined
with Basic Approximate factorisation (BF), shown in Algorithm 1,
Approximate-First factorisation with average free term (AF), and Average-
First factorisation with average free term (VF). The methods used for
obtaining the approximate factorisations were (see [12] for details): The
invariant potential, the minimum χ2-divergence (Dχ), the minimum
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mean squared error (MSE), the minimum weighted mean squared error
(WMSE), the null Kullback-Leibler divergence (NKL), the minimum
weighted average method (WA), in which the proportionality factor is
computed as a weighted average of the ratios between the leaves of T1

and T2, and the minimum Hellinger distance (Hell).

Next, Table 2 displays the distances between the tree in Figure 8 and
the different factorisations obtained. The considered distances have
been: the extended Kullback-Leibler divergence (KL), the maximum
absolute difference (MAXD) and the mean absolute difference (MAD)
between the leaves of T2 and T ∗

2 , the χ
2-divergence (Dχ), the normalised

χ2 divergence (NDχ), the mean squared error (MSE), the weighted
mean squared error (WMSE), and the Hellinger distance (Hell). Note
that, obviously, the distances are the same for the approximate factori-
sation and the approximate-first factorisation with average free term.
However, the application of the average-first factorisation with aver-
age free term shows remarkable reductions in the errors in most of the
cases.

• As a second experiment, we have considered the case of a tree clearly
far away from proportionality. More precisely, we have used the tree
in Figure 13. The results of the different factorisations are displayed
in Table 3. Again, it can be seen that the method of average-first
factorisation clearly outperforms the approximate-first factorisation.

• Finally, in a third experiment, we have run a simulation over randomly
generated trees with various features, and in each case, we have an-
notated which factorisation strategy (approximate-first factorisation or
average-first factorisation) provides the best results. More precisely, we
have considered three scenarios in this third experiment:

1. 10000 runs, each one with a set of m subtrees (m generated at
random between 2 and 102) with n leaves (n generated at random
between 2 and 52), each leaf with a random real number between 0
and 10. Table 4 shows the proportion of runs in which the error of
the average-first factorisation is lower, for the different divergence
measures considered.

2. The same settings as in the preceding scenario, but the leaves
in each tree, instead of containing random numbers, contain real
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numbers in increasing order. The results for this scenario can be
seen in Table 5.

3. The same settings as in the previous scenarios, but in this case
the leaves are generated in such a way that the resulting trees
are δ-factorisable with δ = 0.01. In this case, in all the runs the
average-firstmethod was more accurate than the approximate-first
one.

The experiments described above show how the Average-First factorisation
with average free term method is in general superior to Approximate-First
factorisation with average free term. The extreme case is when the subtrees
are δ-proportional, when all the runs showed a better accuracy of the VF
method.

6.2. Experiments with real world problems

In order to test the behaviour of the factorisation techniques proposed in
this paper when applied to distributions coming from real world domains, we
have considered the task of computing the posterior distribution of the vari-
ables in two Bayesian networks that describe actual scenarios, that we will
denote as Munin1 [13] and Link [11]. We have represented the distributions
in both networks as probability trees, and carried out the calculations using
the so-called Lazy-penniless architecture [7], modified in such a way that the
probability trees are factorised using both methods of approximate factorisa-
tion with average free term, AF and VF. In addition, the Basic Approximate
factorisation (BF) in [12] has been also used with the aim of comparing the
three methods (AF, VF and BF).

Two values for δ, the tolerance of the approximation, have been consid-
ered, and five different sets of observed variables (called evidence) are used
with each. In all of them the same divergence measure (normalised Dχ) for
obtaining the proportionality factors is used. The distance between each tree
and its approximation is measured by the mean squared error.

The following tables show the error values obtained in the experiments.
The error is computed by comparing the results of the propagation for the
exact and the approximate computations for the marginals of all the variables
in the network conditional on the observations. The tables represent the
resulting values of mean squared error (MSE), max absolute error, Kullback-
Leibler error, and G defined in [9] as:
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G(Xl) =

√

√

√

√

1

|ΩXl
|

∑

al∈ΩXl

(p′(al|e)− p(al|e))2

p(al|e)(1− p(al|e))
(15)

where Xl is a variable, e is the evidence, p(al|e) is the true (a posteriori)
probability and p′(al|e) is the estimated value. Given a set of variables
{X1, . . . , Xn}, the error is computed as:

G({X1, . . . , Xn}) =

√

√

√

√

n
∑

i=1

G(Xi)
2 (16)

The results for the Munin1 network are shown in Tables 6, 7 and 8. As in
the simulated trees in the former sections, the Average First method obtains
better approximations than the other two.

The results for the Link network are displayed in Tables 9, 10 and 11.
Again, we can see that the best measures are obtained with the Average First
Factorisation method.

6.3. Decompositions representing a data sample

The goal of this experiment is to explore the relationship between the
tolerance of an approximate factorisation and the likelihood of a sample
associated to a probability tree. In this way, we can interpret the meaning of
parameter δ when the initial tree is obtained from a data sample by counting
the frequencies corresponding to each leaf. We considered an initial tree
T and a data sample S corresponding to it. The experiment consisted of
factorising T for a series of values δ and measuring the likelihood of data
sample S for each one of the factorisations.

We considered four scenarios for this experiment:

1. An initial tree that admits a close-to-exact factorisation, using the KL
divergence as divergence measure and also as method for computing
the α coefficients in the factorisation. The results of this setting are
displayed in Figure 14.

2. An initial tree that admits a close-to-exact factorisation, using the nor-
malised χ2 divergence as divergence measure and the weight preserving
technique as method for computing the α coefficients in the factorisa-
tion. The results of this setting are displayed in Figure 15.
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3. An initial tree with values generated at random, and therefore not likely
to be factorisable, using the KL divergence as divergence measure and
also as method for computing the α coefficients in the factorisation.
The results of this setting are displayed in Figure 16.

4. An initial tree with values generated at random, using the normalised
χ2 divergence as divergence measure and the weight preserving tech-
nique as method for computing the α coefficients in the factorisation.
The results of this setting are displayed in Figure 17.

In the four settings, the results obtained suggest that parameter δ can be
used as a means of controlling the model accuracy, in terms of likelihood of
the sample used.

7. Conclusions

In this paper we have proposed a new procedure to obtain approximate
factorisations of probability trees. The old method was based on taking one
of the subtrees as basis and then, approximate the other ones to this. The
new methods takes the average of the subtrees as basis and approximate
each subtree with respect to the average. We have carried out an extensive
experimentation in which it is shown that the new procedure consistently
produces better approximations.

As a line of future research, we plan to study the integration of the fac-
torisation method proposed in this paper into algorithms for approximate
inference in Bayesian networks, as a way of finding a tradeoff between accu-
racy of the final results and time invested in computing them.
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Table 1: Resulting trees after factorising the tree in Figure 8 in the first experiment.
Method Factor Core Term Free Term

BF 1.00000000 2.00000000 5.99910000 0.10000000 0.20000000 0.20000000 0.50000000
Inv Pot AF 0.33336667 0.66673334 1.99989999 0.29997000 0.59994000 0.59994000 1.49985000

VF 0.33336667 0.66673334 1.99989999 0.30000000 0.59800000 0.60006667 1.50163333
BF 1.00000000 1.99999984 5.99906166 0.10000000 0.20000000 0.20000000 0.50000000

Dχ AF 0.33336810 0.66673614 1.99989576 0.29996872 0.59993743 0.59993743 1.49984358
VF 0.33336573 0.66673136 1.99989853 0.30000000 0.59800000 0.60006667 1.50163333
BF 1.00000000 1.99994118 6.00385294 0.10000000 0.20000000 0.20000000 0.50000000

MSE AF 0.33319287 0.66636614 2.00044099 0.30012647 0.60025294 0.60025294 1.50063235
VF 0.33319220 0.66636477 2.00044303 0.30000000 0.59800000 0.60006667 1.50163333
BF 1.00000000 1.99987328 6.00713438 0.10000000 0.20000000 0.20000000 0.50000000

WMSE AF 0.33307399 0.66610578 2.00082023 0.30023359 0.60046718 0.60046718 1.50116794
VF 0.33307418 0.66610616 2.00082136 0.30000000 0.59800000 0.60006667 1.50163333
BF 1.00000000 2.00000008 5.99911913 0.10000000 0.20000000 0.20000000 0.50000000

NKL AF 0.33336596 0.66673194 1.99990210 0.29997064 0.59994128 0.59994128 1.49985320
VF 0.33336714 0.66673433 1.99990072 0.30000000 0.59800000 0.60006667 1.50163333
BF 1.00000000 2.00000016 5.99913822 0.10000000 0.20000000 0.20000000 0.50000000

WA AF 0.33336525 0.66673055 1.99990420 0.29997128 0.59994256 0.59994256 1.49985640
VF 0.33336761 0.66673533 1.99990144 0.30000000 0.59800000 0.60006667 1.50163333
BF 1.00000000 1.99999996 5.99909043 0.10000000 0.20000000 0.20000000 0.50000000

Hell AF 0.33336703 0.66673404 1.99989894 0.29996968 0.59993936 0.59993936 1.49984840
VF 0.33336644 0.66673284 1.99989963 0.30000000 0.59800000 0.60006667 1.50163333
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Table 2: Distances from the tree in Figure 8 to the decomposition, for the factorisations
in the first experiment.

Distance
Method Factor KL MAXD MAD Dχ NDχ MSE WMSE Hellinger
Inv Pot BF/AF 0.0000192 0.0058200 0.0010033 0.0062049 0.0017912 0.0023040 0.0010963 0.0031000

VF 0.0000066 0.0019402 0.0006782 0.0036227 0.0010458 0.0009777 0.0004057 0.0018118
Dχ BF/AF 0.0000192 0.0058123 0.0010052 0.0062048 0.0017912 0.0023063 0.0010985 0.0031000

VF 0.0000066 0.0019393 0.0006780 0.0036227 0.0010458 0.0009776 0.0004058 0.0018118
MSE BF/AF 0.0000211 0.0067706 0.0009407 0.0065060 0.0018781 0.0021607 0.0008815 0.0032489

VF 0.0000072 0.0022649 0.0006291 0.0038005 0.0010971 0.0009155 0.0003251 0.0019010
WMSE BF/AF 0.0000246 0.0074269 0.0009395 0.0070265 0.0020284 0.0022302 0.0008318 0.0035081

VF 0.0000085 0.0024912 0.0006273 0.0041139 0.0011876 0.0009462 0.0003062 0.0020580
NKL BF/AF 0.0000192 0.0058238 0.0010024 0.0062049 0.0017912 0.0023029 0.0010952 0.0031000

VF 0.0000066 0.0019406 0.0006783 0.0036227 0.0010458 0.0009777 0.0004056 0.0018118
WA BF/AF 0.0000192 0.0058276 0.0010014 0.0062049 0.0017912 0.0023018 0.0010941 0.0031000

VF 0.0000066 0.0019411 0.0006784 0.0036227 0.0010458 0.0009777 0.0004055 0.0018118
Hell BF/AF 0.0000192 0.0058181 0.0010038 0.0062049 0.0017912 0.0023046 0.0010968 0.0031000

VF 0.0000066 0.0019400 0.0006782 0.0036227 0.0010458 0.0009777 0.0004057 0.0018118

Table 3: Errors when decomposing the tree in Figure 13.
Distance

Method Factor KL MAXD MAD Dχ NDχ MSE WMSE Hellinger
Inv Pot BF/AF 17.6271158 4.5937500 4.6656250 9.3514345 0.8369031 5.7766857 3.2057776 3.8633656

VF 4.4325765 2.0516854 2.7764045 6.7231720 0.7918182 3.1810756 2.1148633 2.6088844
Dχ BF/AF 26.8345212 3.9569651 2.9825582 4.6503537 0.7332061 4.1742393 2.9791542 3.8164150

VF 7.4003924 2.8321153 2.4575399 4.5620070 0.7299451 3.6972862 2.8458906 2.8697676
MSE BF/AF 24.9399634 3.9475232 3.0877709 4.6808889 0.7343144 4.1637427 2.9608635 3.7381687

VF 4.4418948 1.9868421 2.7785559 6.6156588 0.7894290 3.1782002 2.1209308 2.6027889
WMSE BF/AF 21.2652928 3.9173577 3.4226413 5.1149957 0.7491079 4.2532739 2.9380192 3.6140052

VF 6.4609504 2.1330226 3.5750888 12.3561437 0.8691626 3.9955638 1.6675103 3.4200239
NKL BF/AF 38.9280129 27.2894013 12.4101050 39.6253280 0.9530531 19.9734791 7.8843081 7.2223377

VF 5.3858799 1.6573232 3.2849139 10.2455820 0.8480632 3.5430334 1.7377670 3.0728248
WA BF/AF 81.2939064 61.0389706 23.7212745 80.9508613 0.9761731 39.7949666 15.2310088 10.5982992

VF 6.7421892 2.2175210 3.6513365 12.8202284 0.8730356 4.1151141 1.6719638 3.5025408
Hell BF/AF 19.9697399 3.9047909 3.6349700 5.6099425 0.7640448 4.4151416 2.9509875 3.5931614

VF 4.6662897 2.2685613 2.5794264 5.5987191 0.7637262 3.2356601 2.3250107 2.5493663

Table 4: Proportion of experiments where the average-first factorisation is more accurate
in Scenario 1.

Method KL MAXD MAD Dχ NDχ MSE WMSE Hellinger
Inv Pot 100 97.88 89.19 93.43 93.43 90 90.06 93.39
Dχ 100 97.97 89.16 93.28 93.28 90 90.12 93.47
MSE 100 97.85 89.22 93.33 93.33 89.99 90.12 93.38

WMSE 100 97.76 89.16 93.4 93.4 90 90.11 93.33
NKL 100 97.92 89.2 93.63 93.63 90.08 90.12 93.47
WA 100 97.82 89.34 93.85 93.85 90.27 90.22 93.59
Hell 100 97.88 89.13 93.38 93.38 89.97 90.06 93.39

24



Table 5: Proportion of experiments where the average-first factorisation is more accurate
in Scenario 2.

Method KL MAXD MAD Dχ NDχ MSE WMSE Hellinger
Inv Pot 100 99.98 99.98 99.56 99.56 99.96 99.96 99.95
Dχ 100 99.97 99.98 99.94 99.94 99.96 99.96 99.95
MSE 100 99.98 99.98 98.99 98.99 99.96 99.96 99.95

WMSE 100 99.99 99.97 97.17 97.17 99.96 99.96 99.95
NKL 100 99.99 99.97 99.95 99.95 99.96 99.96 99.95
WA 100 99.99 99.97 99.97 99.97 99.96 99.96 99.95
Hell 100 99.98 99.98 99.56 99.56 99.96 99.96 99.95

Table 6: Munin1 errors using Average First Factorisation (VF).

Evidence δ G MSE Max Abs Error KL error
1 0.001 8.99E-07 2.72E-17 9.40E-08 9.22E-15
2 0.001 0.04825902 7.56E-08 0.00189964 9.44E-06
3 0.001 1.35E-04 1.26E-14 1.41E-06 1.71E-10
4 0.001 0.030646 9.84E-07 0.00919359 1.54E-05
5 0.001 0.00712411 1.12E-11 5.70E-05 1.68E-07
1 0.01 2.13E-04 3.08E-16 4.10E-07 6.99E-09
2 0.01 2.29935664 5.50E-04 0.16250689 0.00292949
3 0.01 4.37E-04 1.37E-14 1.41E-06 6.48E-10
4 0.01 0.18722285 3.91E-05 0.0715271 1.37E-04
5 0.01 0.00714148 1.41E-11 5.70E-05 1.71E-07

Table 7: Munin1 errors using Approximate First Factorisation (AF).

Evidence δ G MSE Max Abs Error KL error
1 0.001 2.18E-04 7.56E-16 7.79E-07 7.43E-09
2 0.001 0.17134741 1.20E-05 0.09472202 4.93E-04
3 0.001 1.66E-04 3.29E-14 3.10E-06 4.17E-10
4 0.001 0.14061221 2.46E-05 0.0674813 2.83E-04
5 0.001 0.00324477 1.83E-10 1.70E-04 8.19E-08
1 0.01 2.18E-04 7.56E-16 7.79E-07 7.43E-09
2 0.01 0.17896897 1.21E-05 0.09472651 5.02E-04
3 0.01 1.66E-04 3.33E-14 3.09E-06 4.17E-10
4 0.01 0.15106329 2.83E-05 0.07161814 3.34E-04
5 0.01 0.02390923 1.26E-10 1.92E-04 8.94E-07
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Table 8: Munin1 errors using Basic Approximate Factorisation (BF).

Evidence δ G MSE Max Abs Error KL error
1 0.001 2.18E-04 7.56E-16 7.79E-07 7.43E-09
2 0.001 0.16507203 1.12E-05 0.09472202 4.86E-04
3 0.001 1.95E-04 1.14E-14 1.70E-06 4.02E-10
4 0.001 0.16799176 2.63E-05 0.0674813 3.26E-04
5 0.001 0.0032453 1.83E-10 1.70E-04 8.19E-08
1 0.01 2.18E-04 7.56E-16 7.79E-07 7.43E-09
2 0.01 0.32096843 8.62E-05 0.16207984 0.00115003
3 0.01 2.71E-04 1.40E-14 1.70E-06 1.26E-09
4 0.01 0.17347653 3.50E-05 0.07161814 5.37E-04
5 0.01 0.02402091 2.12E-09 6.66E-04 9.28E-07

Table 9: Link errors using Average First Factorisation (VF).

Evidence δ G MSE Max Abs Error KL error
1 0.001 0.39335135 7.22E-05 0.14109113 3.90E-04
2 0.001 0.6445906 1.58E-04 0.18260543 9.56E-04
3 0.001 0.78562278 2.49E-04 0.25 0.00137449
4 0.001 0.2838208 4.26E-05 0.09375 1.92E-04
5 0.001 0.41843547 9.35E-05 0.15579897 3.69E-04
1 0.01 0.39470625 7.25E-05 0.14109113 3.94E-04
2 0.01 0.68858348 1.78E-04 0.18260543 0.0010874
3 0.01 0.78562278 2.49E-04 0.25 0.00137449
4 0.01 0.2838208 4.26E-05 0.09375 1.92E-04
5 0.01 0.3627544 6.76E-05 0.15579897 2.92E-04
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Table 10: Link errors using Approximate First Factorisation (AF).

Evidence δ G MSE Max Abs Error KL error
1 0.001 0.6641237 2.10E-04 0.14247104 0.00111876
2 0.001 0.82480467 3.11E-04 0.20569782 0.00180448
3 0.001 0.52747113 1.10E-04 0.14967471 6.46E-04
4 0.001 0.46437581 1.17E-04 0.15625 5.05E-04
5 0.001 0.262509 3.32E-05 0.09071757 1.82E-04
1 0.01 0.66844586 2.12E-04 0.14247104 0.00113907
2 0.01 0.95288837 4.06E-04 0.20585263 0.00234069
3 0.01 0.52747113 1.10E-04 0.14967471 6.46E-04
4 0.01 0.46437581 1.17E-04 0.15625 5.05E-04
5 0.01 0.26840516 3.30E-05 0.09071757 1.94E-04

Table 11: Link errors using Basic Approximate Factorisation (BF).

Evidence δ G MSE Max Abs Error KL error
1 0.001 0.70855783 2.15E-04 0.14247104 0.0012569
2 0.001 0.76308514 2.65E-04 0.22615267 0.00154018
3 0.001 0.49794044 1.06E-04 0.13927838 6.11E-04
4 0.001 0.46359131 1.17E-04 0.15625 5.03E-04
5 0.001 0.45217569 8.96E-05 0.125 5.54E-04
1 0.01 0.71593735 2.18E-04 0.14247104 0.00129806
2 0.01 0.77002952 2.70E-04 0.22630277 0.00157727
3 0.01 0.49794044 1.06E-04 0.13927838 6.11E-04
4 0.01 0.49794044 1.06E-04 0.13927838 6.11E-04
5 0.01 0.41467981 7.38E-05 0.125 4.76E-04
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Figure 1: A potential φ, a probability tree representing it, and an approximation of it
after pruning the branches beneath configuration (Y = 1, Z = 1).
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Figure 2: Combination of two trees.
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Figure 3: Variable Y is marginalised out by summing its two subtrees.
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Figure 5: A probability tree T proportional below X for context (W = 0).

W

X

0

1

0

2

1

4

2

X

1

0.4

0

0.1

1

0.5

2

⊗ W

Y

0

0.1

0

0.2

1

0.2

2

0.5

3

1

1

Core Term Free Term

Figure 6: Exact factorisation of the tree in figure 5 with respect to variable X .
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Figure 8: A probability tree δ-factorisable below X for context W = 0.
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Figure 9: Approximation of the subtrees below X for context W = 0 by the invariant
potential method (see [12]). The proportionality factors are 1, 2 and 5.99910000.
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Figure 10: Approximate-First factorisation with average free term of the tree in Figure 8
according to the invariant potential method.
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Figure 12: Average-First factorisation with average free term of the tree in Figure 8 using
the method of minimum χ2 divergence.
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Figure 13: A tree far away from proportionality.
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Figure 14: Log-likelihood vs. δ for the experiment with an initial tree that admits a close-
to-exact factorisation, using the KL divergence as divergence measure and as method for
computing the α coefficients.
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Figure 15: Log-likelihood vs. δ for the experiment with an initial tree that admits a close-
to-exact factorisation, using the normalised χ2 divergence as divergence measure and the
weight preserving technique as method for computing the α coefficients.
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Figure 16: Log-likelihood vs. δ for the experiment with an initial tree generated at ran-
dom, using the KL divergence as divergence measure and as method for computing the α

coefficients.
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Figure 17: Log-likelihood vs. δ for the experiment with an initial tree generated at ran-
dom, using the normalised χ2 divergence as divergence measure and the weight preserving
technique as method for computing the α coefficients.
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