Please click on the day or session for more details.

If you are a participant and want to download the abstracts, please login here

Sunday 03/11 Monday 04/11 Tuesday 05/11 Wednesday 06/11 Thursday 07/11

09:00 Plenary Session: 100% Renewable Energy as a Solution to Climate Change El Parque 2
10:30 Coffee Break
11:00 SAC: Keynote El Parque 2
11:00 Keynote El Parque 1
11:30 SAC 1: Applications + Industry Session El Parque 2
11:30 Session 1-A: Theme 2.1 El Parque 1
11:30 Session 1-C: Theme 4.1 Araucarias 2
11:30 Workshop: The Role of Community Based Solar Energy Solutions for the Climate Change Challenge Araucarias 1
11:30 Session 1-D: Special Theme 11.1: ISREE El Coigue
11:30 Session 1-B: Theme 9.2 El Canelo
13:00 Lunch
14:00 SAC-2: Components & Systems + Poster Presentations El Parque 2
14:00 Industrial Forum - Research meets Business El Parque 1
14:00 Poster Session El Parque 3

P4.3 Renewable Energy Plus Storage for Energy Resiliency to Deal with the Effects of Climate Change, Case Study: Puerto Rico
Roberto Baldizon, Luszol LLC

P4.4 Seasonal Thermochemical Heat Storage: First Measurements on a Falling Film Tube Bundle Laboratory Setup
Andreas Haeberle, University of applied science Rapperswil HSR

P4.6 Impact of Battery Aging Model in an Energy Management System for an Isolated Solar Microgrid
Danny Alexander Espín Sarzosa, University of Chile

P4.7 Corrosion and Mechanical Assessment in LiNO3 Molten Salt as Thermal Energy Storage Material in CSP Plants
Abdiel Mallico Carpio, Centro de Desarrollo Energético Antofagasta (CDEA), Universidad de Antofagasta

P4.8 Proposal for the Development of Chilean LiNO3 as Thermal Energy Storage Material for CSP Plants
Mauro Henriquez, Universidad de Antofagasta

https://cms.swc2019.org/program
Jorge Alberto Lewis Esswein Junior, Federal University of Santa Catarina

P4.10 Techno-Economical Assessment of Molten Salts Thermal Energy Storage Options in a Central Receiver Solar Plant in Southern Spain
Carlos Nache Romo, University of Almeria

P4.11 Modeling of Discharging Process of Heat Storage Tank Filled with PCM, to Cover Heat Demand of the Building
Artur Nemš, Wroclaw University of Science and Technology

P4.12 PCMSOL: Thermal Energy Storage with Phase Change Materials for Solar Cooling and Heating
Antonio M. Puertas, Universidad de Almeria

P4.13 Solar Thermochemical Conversion of Carbonaceous Feedstocks: First Approaches to Develop a Novel Gasification Reactor
Nicolás Alberto Andrés Ripoll Kameid, Departamento de Ingeniería Mecánica / Universidad Técnica Federico Santa María

P4.14 Paraffin as Passive Solar Energy Accumulator in Glazing
Andrejs Snegirjovs, Institute of Physical Energetics

P4.15 Exergy Analysis of a Two-Step Ceria Particle Redox Cycle for Hydrogen Production Using Concentrated Solar Power (CSP)
Mouliswara Reddy Somula, Mahindra Ecole Centrale

P4.16 Analysis of the Heat Transfer in a Packed Bed Composed of Alumina and Coal Exposed to a High Thermal Radiation Flux
Mario Toledo, Universidad Técnica Federico Santa María

P4.17 giga_TES: Giga-Scale Thermal Energy Storage for Renewable Districts
Wim van Helden, AEE INTEC

P4.18 Enhancement Effect Analysis of Metal-PCM on Heat Transfer Performance of A PCM Heat Storage
Gang Wang, TECHNICAL UNIVERSITY OF DENMARK

P4.19 Control Strategy Design for a Packed-Bed Thermochemical Heat Storage Reactor
Michael Wild, ETH Zürich

P4.20 Assessing Stratification Efficiency During Charging and Discharging Processes of Thermal Storage Tank Using Modified Inlet Diffusers
Ian Wolde, Universidad de Chile

P4.22 Solar Fuel Production: Opportunities for Nanostructures
Zhigang Zou, Nanjing University

P4.23 Recent Research Progress in CO2 Hydrate Based Cold Thermal Energy Storage
Wojciech Lipinski, The Australian National University

P4.24 Laboratory Experiments and Performance Analysis of A SAT Heat Storage
Gang Wang, TECHNICAL UNIVERSITY OF DENMARK

P10.5 Solar Detoxification of Kraft Pulp and Paper Mill Effluent by Photovoltaic and Photocatalytic by Copper-Doped Titanium Dioxide Plates: Acute Toxicity and Teratogenicity of Xenopus Levies (Daudin) Embryos
Orori Benard Ondeng'i, University of Eldoret

Sambwa Adoko, Asalambda Technology Ltd.

P11.2 Wind Energy Education for Electronic Engineering Students
Jorge Salamanca, Universidad Distrital Francisco José de Caldas

P11.3 A Low Cost Miniature Parabolic Trough Concentrator and Monitoring System for Teaching and Research
Omar Behar, Universidad de Concepcion

P13.1 Analysis of Heat Gain Decrease Achived by Ventilation Heat Recovery in Solar Cooling Building: Case Study

https://cms.swc2019.org/program
Bartosz Gil, Wrocław University of Science and Technology

P13.2 An Investigation on a Ground Coupled Photovoltaic Thermal (PV/T) Desiccant Cooling and Heating System
Jose Bilbao, UNSW SYDNEY

P13.3 Optimization Measures for the Utilization of Solar Chimneys in Regions with Temperate Climate
Lukas Schwan, University of Applied Sciences Munich

P13.4 Research on Direct-Expansion Solar Assisted Heat Pump and Enhanced Vapor Injection System
Yao Zhao, Shanghai Jiao Tong University

P5.1 Australia’s Rapid Renewable Energy Transition
Andrew Blakers, Australian National University

P5.2 Assessment of the Economic Impact and Management Techniques on Fault Modes present in Photovoltaic Systems
Carlos Rodrigo Cárdenas Bravo, Universidad Técnica Federico Santa María

P5.3 Potential Map for the Installation of CSP Plants in Chile
Catalina Hernández, Fraunhofer Chile Research

P5.6 Techno-Economic Analysis of a PV (Photovoltaic) Plant for High Radiation Conditions from the Altiplanic of Bolivia
Abdiel Mallco Carpio, Universidad de Antofagasta

P9.1 Satellite-Based Interannual Variability of Global Horizontal and Direct Normal Solar Irradiation in Uruguay
Gonzalo Abal, Laboratorio de Energía Solar - UDELAR

P9.2 Relevance Analysis of Atmospheric Variables in the Production of an Experimental PV Power Plant Considering Dust Deposition in the Mediterranean Coast
Joaquín Alonso-Montesinos, Universidad de Almería

P9.3 Evaluation of Rotating Shadowband Radiometer Measurements in Desert Conditions
Daniel Perez Astudillo, QEERI, HBKU, Qatar Foundation

P9.4 The Use of Solar Radiation Models to Derive Atmospheric Turbidity from Measured Irradiance: An Inter-Comparison Study
Omar Behar, Solar Energy Research Center (SERC-Chile)

P9.5 Solar Cadaster in Urban Area Including Verticality
Karine Bouty, University Savoie Mont-Blanc

P9.7 Physical and Statistical Analysis Procedure of Solar Irradiance Measurements Based on Sky Cover Conditions
Marcus Vinicius Contes Calca, School of Agricultural Sciences (São Paulo State University - UNESP)

P9.8 Generation of 441 Typical Meteorological Year from Inmet Stations - Brazil
Rubinei Dorneles, Federal University of Santa Catarina

P9.9 Classification of SKY Cover by the Clearness Index (KT) in Maputo - Mozambique
Marcus Vinicius Contes Calca, School of Agricultural Sciences (São Paulo State University - UNESP)

P9.10 Estimation of Solar Resource by Means of Spatial Interpolation
Samira Fontes Domingos, Universidade Federal de Minas Gerais

P9.11 Evaluation of Two Procedures for Selecting the CIE Standard Sky Type Using High Dynamic Range Images
Ignacio García, Public University of Navarre

P9.12 Instant Power Estimation of a Photovoltaic System from Irradiance and Temperature Hourly Data
Igor Torres, Universidade Federal de Alagoas

P9.13 Relationship Between UV-B and Global Solar Irradiation Values in Radiometric Stations of Santiago, Chile (33.5°S).
Lisdelys González Rodríguez, Universidad de Concepción/Facultad de Ingeniería

Manojit Sengupta, National Renewable Energy Laboratory

P9.16 Uncertainty Analysis of Solar Monitoring Station: A Case Study
Marília Braga, Universidade Federal de Santa Catarina - UFSC

P9.17 Assessment of Cloud Enhancement Effects in Brazil
Marília Braga, Universidade Federal de Santa Catarina - UFSC

P9.20 Seasonal Variability of the Surface Solar Irradiation in Northeastern Region of Brazil
Fernando Martins, Brazilian Federal University of São Paulo

P9.21 Implementing k-Nearest Neighborhood as a Forecast Method for Intra Hour Resolution with No Exogenous Outputs
Marília Braga, Fotovoltaica-UFSC

P9.22 Life Cycle Assessment of Two Experimental Recycling Processes for c-Si Solar Modules
Marina Monteiro Lunardi, UNSW

P9.23 Analysis of the Diffuse Fraction from Solar Radiation Values Measured in Argentina and Brazil Sites
Manoel Henrique Oliveira Pedrosa Filho, IFPE

P9.24 Cloud Enhancement Occurrences Analysis in Afogados Da Ingazeira City in Brazilian Northeast
Manoel Henrique Oliveira Pedrosa Filho, IFPE

P9.25 Analysis of Measured Irradiance from Experiment of Diffuse Irradiance Shadowing
Hyeong-Dong Park, Seoul National University

P9.26 Importance of Time Averaging Conventions
Daniel Perez Astudillo, QEERI, HBKU, Qatar Foundation

P9.27 Quality Control of Solar Measurements Based on Absolute Checks and Quadratic Discriminant Analysis
Matheus Rodrigues Raniero, School of Agricultural Science, São Paulo State University - UNESP

P9.28 Wind Speed Evaluation of MERRA-2, ERA-Interim and ERA-5 Reanalysis Data at a Wind Farm Located in Brazil
Jhoseny Santos, Federal University of Santa Catarina (UFSC)

P9.29 Development of Daylight Availability Maps in Italy: Methodology and Validation
Francesco Spinelli, ENEA

Renan A. Starke, Federal Institute of Santa Catarina

Vivian Teixeira Alves Branco, ITR Centro Sur, Universidad Tecnológica del Uruguay

P12.1 Design of Solar Thermal Systems for Mining Industry
Omar Behar, Solar Energy Research Center (SERC-Chile)

P12.2 Analysis of Failure and Degradation Modes of Small-Scale Photovoltaic Power Plants in Rural Communities of the Atacama Desert
Pía Vásquez, Universidad de Chile

P12.3 The Copper Cathode Production Facilities to Take Advantage of and Soften the Duck-Curve Produced by PV Energy
Eduardo P. Wiechmann, Universidad de Concepción

P12.4 Solar Photocorrosion of Copper Sulfide Minerals: An Opportunity Toward a Solar Mining
Jorge Yáñez, University of Concepción

15:30 Coffee Break
16:00 Keynote El Parque 1
16:00 Keynote Araucarias 2
16:30 SAC-3: Simulation El Parque 2
<table>
<thead>
<tr>
<th>Time</th>
<th>Session/Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:30</td>
<td>Session 2-A: Theme 1.2</td>
<td>El Parque 1</td>
</tr>
<tr>
<td>16:30</td>
<td>Session 2-B: Theme 5.1</td>
<td>Araucarias 2</td>
</tr>
<tr>
<td>16:30</td>
<td>Workshop on Benchmarking of Short-to-long Term Data</td>
<td>Araucarias 1</td>
</tr>
<tr>
<td>16:30</td>
<td>Adaptation Techniques</td>
<td></td>
</tr>
<tr>
<td>16:30</td>
<td>Session 2-C: Theme 3.2</td>
<td>El Coigue</td>
</tr>
<tr>
<td>16:30</td>
<td>Special Session: Science and Social Activism – Taking the next Step?</td>
<td>El Canelo</td>
</tr>
<tr>
<td>18:30</td>
<td>Farrington Daniels Award Winner Lecture</td>
<td>El Parque 2</td>
</tr>
<tr>
<td>19:30</td>
<td>ISES AGM</td>
<td>El Parque 2</td>
</tr>
</tbody>
</table>

© 2018 ISES. All rights reserved
Techno-Economical Assessment of Molten Salts Thermal Energy Storage Options in a Central Receiver Solar Plant in Southern Spain

Carlos Nache¹, Margarita Rodríguez-García², Manuel Pérez¹, José Luis Torres¹
¹ CIESOL, University of Almería, Almería (Spain)
² Plataforma Solar de Almería, Almería (Spain)

Abstract
Thermal Energy Storage is a key issue in concentrating solar power plants due to the need to tackle the conflict between dispatchability requirements of the utilities and the intermittent and unpredictable nature of solar radiation. In this context, molten salt tanks are the more widespread solution because of their effective trade-off between cost and functionality. This work presents a techno-economical assessment regarding the use of different salt mixtures as storage medium in a central receiver solar plant as well as the eventual improvement of its performance due to increasing the specific heat of the salts by the addition of nanoparticles. As case-study, an actual plant in southern Spain has been selected and System Advisor Model was adopted as performance estimation tool. After model validation, a sensitivity analysis involving plant indicators (E_{gen}, CF, V_{TES}, $LCOE$) and different storage scenarios was carried out. The results show no significant differences between commercial mixtures and an economical advantage of using nanoparticles.

Keywords: molten salts, central receiver solar plant.

1. Introduction
Thermal energy storage (TES) allows concentrating solar power plants (CSP) to continuously produce electricity despite the intermittent and unpredictable nature of the solar radiation. This advantage in regard to other renewable sources determines an intrinsic relation between the present rising of the global markets for CSP and the existence of certain TES solutions (Fernández et al., 2019) According to Libby (2009), three basic methods for storing energy at CSP facilities can be identified: sensible heat storage, latent heat storage and thermochemical storage. Another possible classification distinguishes among active and passive storage, taking into account the eventual circulation through the plant systems of the storage medium (Kuravi et al., 2013).

The sensible heat storage is the more immediate and accepted option because the consolidated experience and reliability in other types of power plants and industrial facilities. It performs by charging/discharging of energy in liquid or solid materials after the raising/falling of their temperature, without a phase change. Liquid storage media systems can be combined with the collector field directly or indirectly, and relay normally either in a two-tank or a single-tank system. The most used liquids in solar thermal sensible energy storage systems are sodium, synthetic organic oils and molten nitrate salts. Two-tank active storage systems combined indirectly with the solar field are used typically in parabolic trough plants with thermal oil as heat transfer fluid (Ortega et al., 2008; Kelly and Kerney, 2004). In central receiver plants, molten salts are directly connected to the solar field (Figure 1). When molten solar salt is used as storage medium, the cold and hot tanks can operate at temperatures up to 290 °C and 565 °C, respectively. Control strategies of this kind of plants are determined mainly by the behavior of heat exchangers and tanks.
Some of these commercial CSP plants are located in the southern part of Spain and many actual specifications and performance data are available. This work presents the techno-economical assessment and the eventual performance improvement of a central receiver solar plant. In the study, the specific heat of the heat transfer fluid (HTF) is increased by the addition of nanoparticles. As reference-case, an actual plant located in Sevilla (Spain) has been considered. This plant is used in order to have a better representation of the basic facilities specifications and as model validation. The widely accepted tool System Advisor Model (SAM) has been used as plant performance estimation tool.

2. Material and Methods

This section presents the plant specifications and the properties of the different fluids used for the study. Details of the set of selected parameters describing the main characteristics of the plants can be found below. These parameters were selected in order to establish the most interesting plant configuration from the technological and economical points of view.

2.1. Plant specifications

In order to obtain realistic estimations, it has been used a model of plant based on an actual central receiver solar plant located Southern Spain (http://torresolenergy.com/en/gemasolar/), which will be used as reference. Plant systems have been selected and sized according to their similitude with the published specifications of the reference case. Table 1 contains used specifications.

2.2. Storage media

Different heat transfer fluids (HTF) have been evaluated as storage media: Solar Salt (60% NaNO₃, 40% KNO₃), Hitec salt (7% NaNO₃, 40% NaNO₂, 53% KNO₃), Hitec XL salt (48% Ca(NO₃)₂, 7% NaNO₃, 45% KNO₃) (Flamant, Benoit, 2014), and Sodium (Na). Table 2 shows their main characteristics.

Once the different HTF have been established, the next step is to study which of them leads to the best technical and economic results, making use of the different indicators studied in the following section.

The storage is based on the sensible energy variation experienced by the HTF during the charging or discharging processes:

\[Q = m c_p \Delta T, \]

(eq. 1)

where:

- \(m \) is the mass of the storage material [kg],
- \(c_p \) is the specific heat in the operation temperature range [kJ kg\(^{-1}\) K\(^{-1}\)],
- \(\Delta T \) is the temperature variation suffered by the HTF [K].

According to this formula, it is interesting to evaluate the impact on the results of increasing the specific heat of
the considered fluid. This increment can be achieved by adding nanometer-sized particles to the HTF with better performance, obtaining a colloidal suspension called nanofluid. By improving the specific heat of the salt, the storage capacity will be higher and hence, the storage volume could be reduced, not only in storage fluid, but also in tank size.

According to Mondragon et al., (2014) the use of nanoparticles of SiO$_2$ and Al$_2$O$_3$ with the solar salt can increase the specific heat up to a 50%. There are however other studies on the improvements of the c_p by using other materials as nanoparticles: Lasfargues et al. (2017) presented a study using CuO nanoparticles, in which a considerable increase of the specific heat when working at high temperature was achieved; and Muñoz-Sánchez et al. (2016) achieved an increase in c_p of up to 18% using nanoparticles called Bohemite.

How to achieve this improvement in thermal properties is still a topic of study today, although most of the accepted proposals are related to the formation of semi-solid layers around the nanoparticles.

<table>
<thead>
<tr>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude</td>
</tr>
<tr>
<td>Longitude</td>
</tr>
<tr>
<td>Altitude</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Climate</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNI</td>
</tr>
<tr>
<td>Diffuse radiation</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Wind velocity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heliostats field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Facets X axis</td>
</tr>
<tr>
<td>Facet Y axis</td>
</tr>
<tr>
<td>Reflectance area proportion</td>
</tr>
<tr>
<td>Reflector</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tower and Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Receiver</td>
</tr>
<tr>
<td>Dimensions</td>
</tr>
<tr>
<td>Panels</td>
</tr>
<tr>
<td>Inlet temperature</td>
</tr>
<tr>
<td>Outlet temperature</td>
</tr>
<tr>
<td>Thermal power</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tab. 1: Model central receiver plant</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Properties</th>
<th>Solar Salt</th>
<th>Hitec Salt</th>
<th>Hitec XL Salt</th>
<th>Sodium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal conductivity [W/mK]</td>
<td>0.52</td>
<td>0.34</td>
<td>0.51</td>
<td>66.60</td>
</tr>
<tr>
<td>Heat capacity [kJ/kg K]</td>
<td>1.5</td>
<td>1.56</td>
<td>1.41</td>
<td>1.23</td>
</tr>
<tr>
<td>Fusion temperature [°C]</td>
<td>220-238</td>
<td>142</td>
<td>133</td>
<td>98</td>
</tr>
<tr>
<td>Degradation temperature [°C]</td>
<td>600</td>
<td>538</td>
<td>500</td>
<td>-</td>
</tr>
<tr>
<td>Storage cost [$/kWh]</td>
<td>5.8</td>
<td>10.7</td>
<td>15.2</td>
<td>21</td>
</tr>
</tbody>
</table>
2.3. Benchmarks

The following indexes have been selected for the performance estimations. These benchmarks can be used to establish a series of parameters that describe the main characteristics of the proposed configurations. Three of them are technical indicators: Annual energy generation (E_{gen}), Capacity factor (CF), and Required HTF volume (V_{TES}); and the other three are economic indicators: Levelized cost of energy (LCOE), Net present value (NPV) and Internal rate of return (IRR):

Annual energy generation (E_{gen}): it is the sum of the energy generated per hour during a year. This indicator allows studying the production capacity in kWh for each plant configuration.

$$E_{gen} = \sum_{i=0}^{J} E_i$$ \hspace{1cm} (eq. 2)

where:

- E_i is the energy generated in the hour i,
- J is the number of hours in a year.

Capacity factor (CF): defined as the energy generated by the facility during a period of time (one year) divided by the energy that would have been generated if the installation had worked at full load during that period of time.

$$CF = \frac{E_{gen}}{P_n \times 24 \times 365}$$ \hspace{1cm} (eq. 3)

where:

- E_{gen} is the energy generated during one year, in kWh,
- P_n is the nominal power in kW,

Required HTF volume (V_{TES}): refers to the amount of working fluid required for the production of 15h of storage.

LCOE: this indicator allows obtaining an economic valuation of the total cost of the project, including all the costs throughout its useful life: initial investment, operation and maintenance costs, costs for obtaining the capital, ... The LCOE is calculated as:

$$LCOE = \frac{I_0 + \sum_{i=0}^{N} C_i}{\sum_{i=0}^{N} \left[\frac{E_i (1+r)^i}{(1+r)^N} \right]}$$ \hspace{1cm} (eq. 4)

where:

- I_0 is the project initial investment cost,
- C_i is the cost generated in year i. It includes the variable and fixed costs associated to year i.
- E_i is the energy generated in year i.
- r is the real discount rate,
- N is the project life, in years.

NPV (Net Present Value): it is used to calculate the present value of a number of future cash flow generated by an investment. The NPV is calculated as:

$$NPV = \frac{\sum_{i=0}^{N} V_i}{(1+r)^N}$$ \hspace{1cm} (eq. 5)

where:

- V_i represents the cash flow for each period i.

IRR: the internal rate of interest or economic return offered by an investment. In other words, it is the percentage of economic profit or loss that an investment will have. The IRR is calculated from the NPV as:
\[
NPV = \left(\frac{V_i}{(1+r)^i}\right)_1^N = \frac{V_1}{(1+IRR)^1} + \frac{V_2}{(1+IRR)^2} + \cdots + \frac{V_i}{(1+IRR)^N} = 0,
\]

(eq. 6)

where:

- \(IRR \) is the internal rate of return.

The previous techno-economical indicators list should be completed with the operation indicators, such as temperature or corrosion aspects, but these indicators are out of the scope of this work since there are not enough data for all studied materials.

3. Results and conclusions

System Advisor Model\(^1\), SAM has been used as calculation tool. SAM package has been developed by the National Renewable Energy Laboratory and allows a detailed estimation of the hourly operation data and techno-economic benchmarks of the projects for renewable energy plants. For CSP plants, SAM allows to simulate the solar field, TES unit, and power block on an hourly basis as well as the corresponding integration to assess the plant annual performance. In this work, as overall operational data of the reference case (http://torresolenergy.com/en/gemasolar/) are published, the estimations regarding yearly yield and other plant operational data for model case has been validated. The simulated reference system is hence a 19.9 MW central receiver power plant, using solar salt as heat transfer fluid and with 15 equivalent hours of thermal storage. The operating temperature range of molten salt is 290- 565 °C, and the direct normal irradiance (DNI) is 950 W/m\(^2\) with a solar multiple of 2.5.

Table 3 shows the results obtained with the different selected fluids for the modelled plant, and figure 2 summarizes graphically the results. The maximum difference obtained is a 13 % of the annual energy generation, being the differences of the rest of the benchmarks lower than 4%.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>HTF</th>
<th>Value</th>
<th>Deviation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation</td>
<td>Solar salt</td>
<td>90.58 GWh</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Hitec salt</td>
<td>90.09 GWh</td>
<td>- 0.54</td>
</tr>
<tr>
<td></td>
<td>Hitec XL</td>
<td>90.32 GWh</td>
<td>- 0.28</td>
</tr>
<tr>
<td></td>
<td>Sodium</td>
<td>89.5 GWh</td>
<td>- 1.19</td>
</tr>
<tr>
<td>Capacity factor</td>
<td>Solar salt</td>
<td>56.5 GWh</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Hitec salt</td>
<td>56.2 %</td>
<td>- 0.53</td>
</tr>
<tr>
<td></td>
<td>Hitec XL</td>
<td>56.3 %</td>
<td>- 0.35</td>
</tr>
<tr>
<td></td>
<td>Sodium</td>
<td>55.8 %</td>
<td>- 1.24</td>
</tr>
<tr>
<td>TES Volume</td>
<td>Solar salt</td>
<td>3581 m(^3)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Hitec salt</td>
<td>3544 m(^3)</td>
<td>- 1.03</td>
</tr>
<tr>
<td></td>
<td>Hitec XL</td>
<td>3885 m(^3)</td>
<td>+ 8.49</td>
</tr>
<tr>
<td></td>
<td>Sodium</td>
<td>9458 m(^3)</td>
<td>+ 164.12</td>
</tr>
<tr>
<td>LCOE</td>
<td>Solar salt</td>
<td>0.18 €/kWh</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Hitec salt</td>
<td>0.19 €/kWh</td>
<td>+ 5.55</td>
</tr>
<tr>
<td></td>
<td>Hitec XL</td>
<td>0.19 €/kWh</td>
<td>+ 5.55</td>
</tr>
<tr>
<td></td>
<td>Sodium</td>
<td>0.20 €/kWh</td>
<td>+ 11.11</td>
</tr>
</tbody>
</table>

\(^1\)https://sam.nrel.gov/
Based on the obtained results it can be concluded that, of the alternatives tested, the Solar Salt is the one that presents the best conditions for its use as HTF. However, the main factor for its use is the economic one, since the differences in most of the indicators are below 1%, due to the fact that the molten salts studied present very similar properties.

As far as storage is concerned, it has been demonstrated that using Hitec Salt can reduce the volume of salts required by 1%, offering conditions very similar to Solar Salt in the rest of the terms, although due to a higher cost, this volume reduction does not present an economic advantage, being more profitable to use Solar Salt.

Regarding the increment of c_p by addition of nanoparticles, solar salt has been considered as base case. Some sample scenarios have been considered according to the nanoparticles potential shown at laboratory level in the literature (Fernández et al., 2019). The Table 4 summarizes these results.

<table>
<thead>
<tr>
<th>Δc_p (%)</th>
<th>E_{gen} (GWh)</th>
<th>ΔE_{gen} (%)</th>
<th>V_{TES} (m3)</th>
<th>ΔV_{TES} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>90.97</td>
<td>0.47</td>
<td>2984</td>
<td>16.67</td>
</tr>
<tr>
<td>50</td>
<td>91.20</td>
<td>0.75</td>
<td>2487</td>
<td>30.55</td>
</tr>
<tr>
<td>75</td>
<td>91.35</td>
<td>0.94</td>
<td>2132</td>
<td>40.46</td>
</tr>
</tbody>
</table>

Although some c_p values have been simulated that still have not been achieved by adding nanoparticles, it has been demonstrated, however, that with the current progress ($\Delta c_p = 50\%$ achieved with SiO$_2$ y Al$_2$O$_3$), it is already possible to achieve great improvements in the storage, reducing the volume of salts by up to 30.55%.

4. Acknowledgments

This work has been carried out in the framework of the project “Control and optimal management of heterogeneous resources in productive agro-industrial districts integrating renewable energies (CHROMAE)” funded by the National R+D+i Plan of the Spanish Ministry of Economy, Industry and Competitiveness as well as by ERDF funds, grant DPI2017-85007-R.

5. References

