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Abstract: Wind tunnels are a key experimental tool for the analysis of airflow parameters
in many fields of application. Despite their great potential impact on agricultural research,
few contributions have dealt with the development of automatic control systems for wind
tunnels in the field of greenhouse technology. The objective of this paper is to present
an automatic control system that provides precision and speed of measurement, as well as
efficient data processing in low-speed wind tunnel experiments for greenhouse engineering
applications. The system is based on an algorithm that identifies the system model and
calculates the optimum PI controller. The validation of the system was performed on
a cellulose evaporative cooling pad and on insect-proof screens to assess its response to
perturbations. The control system provided an accuracy of <0.06 m-s~! for airflow speed
and <0.50 Pa for pressure drop, thus permitting the reproducibility and standardization of
the tests. The proposed control system also incorporates a fully-integrated software unit that

manages the tests in terms of airflow speed and pressure drop set points.
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1. Introduction

The surface area of greenhouses worldwide is constantly growing and now exceeds 700,000 ha.
In the Mediterranean Basin, greenhouse agriculture exceeds 200,000 ha of cropping surface and bears
considerable socioeconomic importance in the region. Greenhouses have also been the real driving force
behind the socio-economic and demographic development in the province of Almeria (Spain), where
the highest concentration of greenhouses in the world is located, with more than 30,000 ha of protected
cropping surface [1].

The incorporation of technology has become a constant process aimed at increasing productivity and
reducing costs in greenhouse agriculture. A central element in this progress has been the design of
efficient greenhouse structures and climate control systems, a process in which the analysis of airflow
patterns has become essential [1].

Various field and laboratory techniques have been traditionally used in greenhouse engineering to
analyze airflow patterns [2—6], including tracer gas techniques [7], air pressure drop measurements [8],
sonic anemometry [9] and simulation models, such as computational fluid dynamics (CFD) [5]. Among
them, laboratory techniques and simulation models have become increasingly relevant in recent years
due to the cost savings they provide in comparison to field trials.

In this context, wind tunnels have emerged as a useful and cost-effective laboratory technique for
the improvement of greenhouse structures [10—12], the study of climate control systems [13—16] and the
estimation of the aerodynamic parameters of the experimental models. A number of applications of wind
tunnels have been described in the literature on greenhouse engineering, including the determination
of drag coefficients for horticultural crops [17], the study of aerodynamic parameters of insect-proof
screens [2,18-22] and of greenhouse cooling systems [13,23,24], the assessment of wind erosion on
agricultural soils [25,26] and the analysis of insect flight mechanisms [27,28]. However, a recent review
of the literature [29] concluded that only 35 out of 75 greenhouse studies performed a verification
process using wind tunnel tests or field examinations. In a similar application field, wind tunnels have
been successfully employed for the study of artificial substrates in active living walls in Mediterranean
buildings [30] and for the analysis of refrigeration systems in buildings [31].

Several control objectives of wind tunnels have been reported in the literature, such as the generation
of a turbulent profile, the adjustment of the power spectral density, the reduction of low-frequency
pulsations and the suppression of the vibration of the cantilever beam structures that support wind
tunnel models. In particular, previous research has simulated a required wind structure by using a wind
tunnel with multiple fans controlled independently [32]. In a similar vein, Pan et al. [33] proposed a
multiple-fan, active-control system to adjust the power spectral density and the integral length in a variety
of harmonic wind turbulences. In addition, the results by Nishi et al. [34] confirmed a good agreement
between target and measured turbulence parameter profiles by using the time-lag modification method.
In a more recent study, Wang et al. [35] addressed the control of the low-frequency pulsations that
affect both the aerodynamics and the acoustic measurements in an open-circuit wind tunnel by adjusting
the angles of the collector flaps and drilling an opening in the test section chamber above the nozzle.
In another contribution, Li et al. [36] proposed a hybrid fuzzy-PID control system for the cantilever beam
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structure that supports the scale models in order to avoid the drawbacks caused by the low-frequency
resonant vibration resulting from the natural frequency induced by the flow.

In this regard, it is important to note that the specific characteristics of the wind tunnel determine the
focus of the control methods to be chosen [37]. In this way, previous studies that simulate the boundary
layer using low-speed tunnels have focused on the control of turbulence. Similarly, previous research in
aeronautics using transonic and supersonic tunnels has focused on the control of airflow speed, since in
these tunnels, the airflow is induced at the outlet of a tank of compressed air, which limits the test time
and, thus, requires a rapid and precise establishment of the desired airflow speed set point.

In this context, an automatic control system of airflow speed has become a requisite for standardizing
the experiments performed in wind tunnels due to the precision and speed of measurement and efficient
data collection that it provides.

Since the 1950s, a substantial body of research has been developed on automatic control schemes
in supersonic and transonic wind tunnels. As an example of an automatic control scheme,
proportional-integral-derivative (PID) control has expanded rapidly due to its effectiveness and simple
implementation. In conjunction with neural networks [38], genetic algorithms [39], fuzzy control [40]
and predictive control [41], PID control has been used mainly in supersonic [42] and transonic tunnels
for controlling pressure and Mach number, as well as for the rapid establishment of airflow speed set
points due to the fact that the operation of such wind tunnels is based on compressed air. In a subsonic
wind tunnel using a direct current motor, Dinca and Corcau [43] used a three-phase rectifier and a
PI control algorithm developed in LabVIEW. Likewise, Xuan et al. [44] implemented a proportional
feedback control system added to a neuronal network in conjunction with a diffuse controller, resulting
in an increase of the robustness of the network.

A major research challenge stems from the fact that control models are characteristically nonlinear,
unstable and hard to establish due to the inherent complexity of the wind speed control system. For
this reason, there is great interest in applying modeling and control techniques that can be adapted
to the diverse experimental models to be tested in the wind tunnel [44]. Moreover, the modeling
of the wind tunnel is a requisite for the design process of its controller, since estimation of the
control parameters for one operation point does not guarantee stability over the whole spectrum of
operation [39]. Hence, a model identification algorithm is still required despite the wide variety of
controllers that can be satisfactorily implemented in wind tunnels. Wang et al. [37] proposed a decoupled
multi-model control scheme for a multi-variable process to be implemented in a wind tunnel. Recently,
Zhang et al. [45] developed a decoupled multi-variable PID controller that was fitted using a dimensional
algorithm for a wind tunnel.

In this context, the Arduino ecosystem, a hardware and software set for the implementation of
automatic control and monitoring, has become a powerful tool widely used in an ample range of
applications in the fields of education, science, industry and manufacturing due to its cost efficiency and
open architecture. The system is based on the Arduino board, which includes an ATmega microcontroller
and I/O pins, and the platform has an integrated development environment. These features make the
Arduino platform suitable as a substitute for other automatic systems.

The use of automatic systems based on Arduino boards has been tested in the field of agriculture for
monitoring the temperature and humidity inside greenhouses [46] and also in subaquatic environments
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for implementing a control mechanism for an actuator in subaquatic environments in conjunction with
the MATLAB environment [47].

Despite the expansion of wind tunnel technology from aeronautics and civil engineering into
agricultural research, it is remarkable that few studies have focused on low-velocity wind tunnels in
greenhouse agriculture. This paper describes an automatic system to control the airflow speed and
pressure drop of a low-speed wind tunnel for greenhouse engineering applications and an integrated
software unit to manage the tests. To successfully fulfill its purpose, the proposed solution must meet
certain requirements. Notably, the control system must allow the determination of the aerodynamic
properties of complex objects, such as corrugated cellulose evaporative cooling pads, insect-proof
screens and plants. In other cases, the system must additionally allow the calculation of the mass and
energy balances as in the case of corrugated cellulose pads. To control airflow speed or pressure drop in
the test section of the wind tunnel, the control algorithm must be able to identify the process model of
the wind tunnel and subsequently design a controller by auto-tuning.

Based on these requirements, we begin in Section 2 by describing the proposed hardware and software
algorithm to manage and control the low-speed wind tunnel. We then proceed to validate in Section 3 the
management and control system on various insect-proof screens and corrugated cellulose pads. Finally,
we formulate our conclusions in Section 4.

2. Materials and Methods

2.1. Wind Tunnel

The auto-tuning PI control system developed in this study was implemented and validated in a
low-speed wind tunnel (Figure 1) designed and developed at the University of Almeria [2,17,30,48]. The
airflow speed in the wind tunnel could be regulated from 0.10 to 10.00 m/s, corresponding to Reynolds
numbers of 2500.00 and 2.50 x 10°, respectively, therefore fully within the transient and turbulent
regime. The upper airflow speed value corresponds to the threshold above which greenhouse windows
are closed in order to avoid damage to the greenhouse structure. The contraction ratio of the wind tunnel
was 1:5.32, with a coefficient between the entrance diameter and the length of the contraction section
of 0.92 [48]. The equipment allowed insect-proof screens [48], cellulose evaporative cooling pads [13],
crops [17] and even the substrates used in active living walls [30] to be tested.

The pressure drop was recorded by two Pitot tubes of 4.00 mm in diameter (Airflow Developments
Ltd, Buckinghamshire, UK) connected to a differential pressure transducer SI1727 (Special Instruments,
Norlingen, Germany) with an operational range of 0 to 200.00 Pa, a precision of £0.25 % FS and an
output signal of 0 to 10.00 V. Airflow speed was measured by a hot-wire anemometer EE70-VT32C5
(Elektronik, Engerwitzdort, Austria), with a measurement range of 0 to 10.00 m/s, a precision of
£0.20 m/s, a response time of <1.50s at 10.00 m/s and a signal of 0 to 10.00 V. The flow in the wind
tunnel was induced by an axial fan, Model HCT-45-2T-3/AL (Sodeca S.A., Sant Quirze of Besora,
Spain), controlled by an alternating-current frequency changer, Micromaster 420 (Siemens Energy &
Automation Inc., Alpharetta, GA, USA), with linear control '/ f over the range of input signals from
0 to 10.00 V and of output signals from 0 to 50.00 Hz. For the tests of the cellulose evaporative pads,
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a submersible centrifugal pump was used, Model Amazon-LVM105 (Wind & Son Ltd., Herefordshire,

UK) featuring 12.00V, 4.30 A and a maximum flow of 18.00 L-min~!. The flow of water was measured

1

using a rotameter with a measurement range of 3.00 to 22.00 L-min~" and a measurement error of

+4.00 %.

Figure 1. Low-velocity wind tunnel composed of: (a) flow conditioner, which uses a

grille to control turbulence; (b) contraction; (c) test section; (d) diffuser; (f) elastic joint
clamp; (g) fan; (h) hot-film anemometer and temperature probe; (i) Pitot tubes; (j) frequency
inverter; (k) pressure transducer; (1) electronic interface; (m) computer.

2.2. Control Circuit and Data Management

The previously-used hardware of the control system was designed to work with a software unit [14]
that did not allow an automatic control of the airflow speed and pressure drop in the wind tunnel. The
system was designed to work at a fixed measuring speed of 0.33 Hz, thus resulting in a limited test
performance. The previous version of the hardware and software unit was based on obsolete electronic
components, which hampered the implementation of new control techniques. The maximum test process
speed was constrained to the limited process speed of 5 MIPS (million instructions per second) of the
PIC16F876 microprocessor. In addition, the tests with this system were performed with voltage set
points, which did not allow for reproducibility. For all of these reasons, it was decided to replace the
electronic circuit as a means to improve the test management software, to implement an automatic control
system and to keep the system open for future improvements.

To this end, an electronic circuit was designed to acquire data from the sensors as previously described
(Section 2.1), as well as a control system for the frequency inverter through which the fan speed is
controlled. Arduino Uno R3 (Arduino SRL, Turin, Italy) was used for this purpose. The microcontroller
on the Arduino board is based on the ATmega328 with a processing speed of 20 MIPS. The board
features fourteen digital input/output pins (of which, six can be used as pulse-width modulation (PWM)

outputs), six analog inputs, a 16 MHz ceramic resonator, a USB connection and is powered through an
AC-to-DC adapter.
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With a digital signal from the Arduino to the transistors BC546 connected to two relays (Figure 2)
supplied with 12.00 V, the motor can be switched on and off and its rotation direction changed by using
the frequency inverter.
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Figure 2. Electronic interface. (a) Signal conditioner of the anemometer; (b) Pitot tubes and

differential pressure transducer; (¢) frequency inverter; (d) pump; (e) thermometers.

The Arduino board generates an output signal in the range of 0 to 5.00 V. Through its 10-bit A/D
converter, a resolution of 4.90mV can be obtained, and the output signal is then delivered to the
frequency inverter. Arduino’s Timer1 Library was used to generate an analog output signal, assisted by
a low pass filter and an operational amplifier LM358N supplied at 12.00 V. By this means, we obtained
an analog signal of 0 to 10.00 V in the frequency inverter.

The signal of the sensors (0 to 10.00 V) was adjusted by implementing a voltage splitter, so that the
Arduino board could take readings of the sensors in the range 0 to 5.00 V.
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To allow for future modifications of the circuit, a proportional control of the centrifugal pump for the
tests of the cellulose evaporative cooling pads was implemented by using a MOSFET BUZI1 transistor
supplying the motor at 12.00 V. The pump was controlled using pulse-width modulation (PWM) signal
from the Arduino board. Finally, a network of 1-Wire DS1820 temperature sensors was also added to
the system.

2.3. Development of the Software

The developed software algorithm for the management and control of the wind tunnel consisted of
two parts (Figure 3). Firstly, the Arduino information manager (AIM), the algorithm for the management
of information on the Arduino board, developed in C/C++. Secondly, the computer software (CS)
developed with MATLAB object-oriented programming for the control, management and storage of data.
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Figure 3. Representation of the developed software algorithm.

On the one hand, the Arduino information manager (AIM) consisted of a switch-case block for
reading to or writing data from the pins if requested from the computer and also identifies the Arduino
board via the USB port to the computer. This software section manages the information coming from
the Arduino software (AS) located on the Arduino board.

On the other hand, the CS comprised the following objects: (1) The Arduino communication library
(ACL) developed for the communication of the software with the Arduino board; (2) The wind tunnel
driver (WTD), a specific driver for the wind tunnel that keeps the methods for requesting the identifier
of the Arduino and the readings from the sensors, sends output to the frequency changer and controls the
pump; (3) the software model (SM), an object that contains the methods for the system identification,
auto-tuning PI algorithm, the implementation of the controller and the algorithm for tests management;
(4) the software controller (SC), developed to manage the orders from the GUI, update the variables
and run the SM methods; (5) the software view (SV), an object that updates the GUI according to the
state of the SM variables, and finally; (6) The graphic user interface (GUI) that contains the user’s
control objects.

The previously-described objects on the CS run four main processes (Figure 4): (1) the system
identification (SI) function for identifying the system wind tunnel; (2) the controller identification
(CI) function for identifying the controller; (3) the controller implementation (CIM) function for
implementing the controland; (4) the test management (TM) that calculates the sequence of set points
and manages and stores the test data.
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Figure 4. Software model.

2.3.1. System Identification

For the design of the controller, the algorithm was designed to generate a reaction curve for the
system by measuring airflow speed and pressure drop samples at a frequency of 1/ST, where ST is
the sampling time determined by the user, with a step signal U in volts for the frequency inverter
(Figure 4). Seventy samples were determined empirically. The first 10 samples were intended to
pre-define the system’s initial conditions in absence of air movement; the next 50 samples were aimed
at recording the step response; and the last 10 samples were intended to record the maximum mean
amplitude A,,,,. The maximum amplitude of this signal was limited to 5.00 V and was determined by
the user or by a tracking algorithm; moreover, A,,,, was determined by the measurement values of the
sensors (transducer and anemometer).

A reaction curve for pressure drop and airflow speed (Data) using airflow speed samples (SM) and ST
was generated by the system. Changes in the experimental model (i.e., insect-proof screens, cellulose
evaporative cooling pads, crops, efc.) resulted in variations of the energy required to generate the speed
and pressure drop conditions. The reaction curve in the time domain 7D was then used in the model
implementation (MI) to calculate a Single-input single-output system (SISO) model with a single pole

for both airflow speed and pressure drop.
2.3.2. Controller Identification

The controller identification process CI used the controller tuning (CT) function based on the pidtune
algorithm by MATLAB, which auto-designs a parallel PI controller for both of the previously-identified
models, i.e., the airflow speed model and pressure drop model. The algorithm optimized the closed-loop
stability, with adequate performance and robustness. By default, the algorithms choosed, a crossover
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frequency (loop bandwidth) based on the plant dynamics, and designed, the controller for a target phase
margin of 60.00° [49], were used. Since each controller was designed for a system in continuous time,
the controller was approximated in discrete time for subsequent digital implementation, to obtain the

discrete proportional (P) and integral (/) values. The permissible error (¢) was defined by the user.
2.3.3. Controller Implementation

Once airflow speed and drop pressure models and controllers were calculated, the variable (i.e.,
airflow speed or pressure drop) to control was selected by the user. This variable was then used by the
CIM process for its control scheme and in the following test management process. The implementation
of the controller CIM (Figure 4) consisted of an algorithm loop, which consecutively executed the
following stages: (1) reading of the set point indicated by the user (airflow speed or pressure drop);
(2) reading of the process variable (airflow speed or pressure drop); (3) error calculation; (4) computation
of the temporary output using the current proportional value and the earlier integral value; (5) simulation
of the actuator saturation to avoid overshoots in case of an excessive control signal; (6) output setup
and; (7) update of the integral variable using numerical integration by the backward Euler method. This
process was executed until the error fell below the permissible error (¢), at which point test samples
were taken.

The error (¢) was calculated for each set point (r) and sensor reading (Figure 5) and was multiplied
by the proportional factor of the controller and integrated to generate the control signal (x). This control
signal was then sent to the frequency inverter. In turn, the velocity of the fan motor was regulated
together with the control V/ f, thus producing the output value (y). The process was then repeated with
a new reading of the sensors.

u(v) y(v or AP)
Controller a| Frequency >
r(v or AP) _’@_' PI "l Inverter Motor-Fan "

T Sensor:

v or AP

\ 4

Figure 5. Software model.

2.3.4. Test Management

The GUI was used to manage the tests that generated the curves for pressure drop as a function of
airflow speed. The developed software unit allowed these curves to be produced based on predefined
speed values and then recorded the associated pressure drop, and vice versa, by predefining the pressure
drop and then measuring the associated velocities.

The curve for pressure drop vs. airflow speed (PDAS) could be generated over a range [a;, ai] with a
series of set points Sy, (either airflow speed or pressure drop) heterogeneously distributed (Equation (1))

by h. This series of set points is described by:

Se= (a1 +h)+ (ag+h)+ -+ (a_1 +h) + ai (1)
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h = (ax, — ay) /3, where (3 is the number of set points in the series and 5 € N.
To generate a PDAS curve with heterogeneously-distributed set points, the values of the series Sy
were manually assigned:

Sk = (a1 + h1) + (ag + ha) + -+ -+ (ag—1 + hg—1) + ax ()

where a set point a € [e, A,,4.] in both types of tests and A, is the mean amplitude of the last ten of
the 70 stored samples in the reaction curve for the calculation of the controller. The maximum amplitude
was reached in the last ten samples; the algorithm then calculated the mean of the last ten samples to
obtain a representative value of the maximum amplitude reached for the step response process. Seventy
samples were considered empirically as a safe number of recorded observations of the system response
to a fan volt step signal. € was defined as the minimum permissible error for airflow speed or pressure
according to the type of test being executed.

In addition, the algorithm included options for the execution sequences of the set points:
increasing (Equation (3)), decreasing (Equation (4)), increasing-to-decreasing with coincident set points
(Equation (5)) and increasing-to-decreasing with non-coincident set points (Equation (6)).

kn=n k, <k, né€l[l,N] (3)
kn=N+1-n ky,>k,1 nell,N]| 4
b = n kn < kni1 né€[l,N] )
N+1l-n ky>kpy ne[lN]
( N=2i+1 ieN
2n — 1 kn <knyi mell,(N+1)/2]
Ll NI ks ke me[L(N-1)/2) ©
" N =2i ieN
m —1 kn < kps1  m€[1,N/2]
| N+2-20 ky>kon nellN/2

The later set of tests (Equation (6)) was designed mainly to avoid hysteresis errors in the pressure
transducer. Moreover, it was possible to assign the number of samples to be stored per set point.
In addition, all of the test parameters can be stored in a MATLAB file; similarly, the samples can be
stored in a Microsoft Excel file. The mean of the samples per set point was shown graphically in real
time (airflow speed vs. pressure drop) and in a table. To develop a heterogeneously-distributed set points
test; set points could be indicated directly on a table by the user. The number of samples per each set
point to be recorded was entered by the user, and airflow speed, pressure and temperature samples were
stored in a table directly accessible by the user. The management of the controller and the test is designed
to require the least-possible intervention by the user and a fast and precise development of the
aerodynamic analysis.
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2.4. Validation of the Control System

The automatic control system and management of tests were validated by testing two experimental
models: a corrugated cellulose evaporative cooling pad and six insect-proof meshes. To validate the
controller of airflow speed and pressure drop, a 100.00 mm-thick corrugated cellulose pad set at 45.00°
to 45.00° was used. A detailed description of the panel tested is given in Franco et al. [13]. For the
geometric characterization of the insect-proof meshes (Table 1), a methodology previously developed by
the University of Almeria was employed [16,50,51].

Table 1. Geometric characteristics of the insect-proof screens studied. D,., thread density
(threads-cm™2); o, porosity (%).

Screen D, ©

A 13.10 x 30.50  0.39 £0.01
B 9.90 x 19.70  0.34 £0.01
C,D 9.20 x 20.70  0.38 £0.01
E 10.10 x 20.00 0.38 £0.01
F 9.60 x 20.30  0.36 £0.01

For the first experimental model, four evaluations were performed to validate the system with the
corrugated cellulose pad. In Evaluation 1 (Table 2), thirty samples per set point were taken for twelve
homogeneously-distributed set points, over an airflow speed range of 0.30 to 3.00 m/s according to the
sequences expressed in Equations (3)—(6). The majority of studies [2,17,23,52,53] focus on this airflow
speed interval (0.30 to 3.00 m/s), since the negative effect on ventilation, e.g., insect-proof screens,
basically occurs at low wind speeds.

Table 2. Summary of tests.

Set Point

Evaluation — — - —— Samples/Set Sequence (Equation)
No. Minimum (m-s™') Maximum (m-s™")

Pad 1 12 0.30 3.00 30 3,4,5and 6
45°-45° 2 12 0.30 3.00 30 3,4,5and 6
100 mm 3 12 0.30 3.00 30 6

4 12 0.30 3.00 30 6
Screen A 1 12 0.30 3.00 30 6
Screen B 1 12 0.30 3.00 30 6
Screen C 1 12 0.30 3.00 30 6
Screen D 1 12 0.30 3.00 30 6
Screen E 1 12 0.30 3.00 30 6
Screen F 1 12 0.30 3.00 30 6

Evaluation 2 was designed to assess the control system when it was subjected to a perturbation
during a test. Based on the fact that a water film in the corrugated cellulose pad causes a pressure drop
change [24], Evaluation 2 was performed in the same way as Evaluation 1, but also causing a perturbation
to the system during the control process by applying a flow of water of 7.50 L/min to the corrugated
evaporative cellulose pad.
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To observe the effect of a continuous application of 7.50 L/min of water to the corrugated cellulose
pad during a test, Evaluation 3 was performed by applying this continuous flow and taking thirty samples
per set point for twelve homogeneously-distributed set points over the airflow speed range of 0.30 to
3.00 m/s for the sequence expressed by Equation (6).

Evaluation 4 was performed to assess the controller designed as a function of the pressure drop and
was executed by taking thirty samples per set point for twelve homogeneously-distributed set points over
the pressure range of 5.00 to 50.00 Pa for the sequence expressed in Equation (6).

The second experimental model used to validate the system consisted of a variety of insect-proof
screens. The geometric characteristics of each insect-proof screen generated a different reaction in the
wind tunnel system. The porous medium of the screens obstructed the passage of airflow, thus requiring
more energy to be applied to the fan to produce a given airflow speed or drop pressure. Experiments
were performed on six insect-proof screens in homogeneous tests for twelve homogeneous set points
and thirty samples per set point; and in increasing-to-decreasing sequence for non-coincident set points
over the range 0.30 to 2.90 m/s. A controller was calculated for each mesh, and the PDAS curve was
determined using the sequence expressed in Equation (6).

As a result, the four evaluations with the evaporative cooling pad and the evaluation with the six
insect-proof screens (each screen with three samples) allowed the performance of the new control system
to be determined. All tests were performed at a frequency of 1.00 Hz, which is a safety frequency

considering the maximum measured airflow speed and the anemometer time response.

3. Results and Discussion

The aforementioned methodology permitted an in-depth study of a novel auto-tuning PI automatic

control system for an open-circuit low-speed wind tunnel with application in greenhouse technology.

3.1. Graphical User Interface

The design of the GUI was divided into three sections (see Figure 6): (1) identification of the
controller; (2) management of the tests in the sequence; and (3) management of manual tests and
real-time monitoring. The maximum amplitude of the reaction curve to adjust the controller could be
managed manually in the section assigned to the identification of the controller; similarly, the maximum
amplitude could be determined by means of a tracking process. In addition, the parameters PI and
permissible error € of the control could be manually readjusted. The section dedicated to the management
of the tests used homogeneously- or heterogeneously-distributed set points in a range. In addition, this
section provided the indication of the type of sequence for executing the set points and the number of
samples per set point. The central part of the GUI displayed the mean readings in real time (i.e., airflow
speed and pressure drop) for each set point of the sensors over the duration of the test. Finally, the
monitoring section in real time displayed a set of three graphs indicating airflow speed, air temperature
in the anemometer and pressure drop measured by a differential pressure transducer, as well as a table
with the real-time numerical data.
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Figure 6. Graphical user interface. Identification of the controller (upper left), management
of the tests (left and center) and monitoring in real time (right).

3.2. Automatic Ildentified Models and Auto-Tuned Controllers

An algorithm was developed to obtain the system model and controller for both variables: airflow
speed and pressure drop. To obtain the reaction curve, the first step was to determine the amplitude (in
volts) of a step signal to the fan. This amplitude was determined manually by indicating the desired
maximum voltage that the system was to be assessed for, or by using a maximum-amplitude search
algorithm conditioned by an upper measurement limit of 10.00 m/s and 200.00 Pa for the anemometer
and pressure transducer, respectively. Once the maximum amplitude was determined, the initial
condition was established as a static flow; after this, the reaction curve was generated by recording
the time series of the airflow speed and the pressure drop. The parameters of the models were estimated
using an algorithm based on regularized estimates with a time constant (pole).

By calculating the model using the pidtune algorithm by MATLAB, the controller was auto-tuned to
optimize the stability of the closed-loop system, the response time and the margin of stability. The
parameters of the proportional and integral controller and the permissible error could be manually
modified afterwards, hence providing a reference to the user.

To validate the operation of the auto-tuning algorithm of the model and controller, we obtained eight
models and controllers as a result of the two tests performed with the corrugated cellulose pad and the

six tests performed for the insect-proof screens.
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3.2.1. Cellulose Evaporative Cooling Pad

The experimental corrugated cellulose pad was subjected to low speeds of 0 to 3.00 m/s. To generate
a reaction curve for airflow speed and pressure drop (Figure 7), an amplitude of 2.00 V was used in the
step signal.

It is noteworthy that the maximum amplitude of each of these curves varied substantially: 3.90 m/s
and 54.10 Pa, for the airflow speed and pressure drop, respectively. After the reaction curves were stored,
the model was calculated for each curve (Figure 8) by the MI algorithm. The resulting transfer function
are expressed in Equations (7) and (8) for airflow speed and pressure drop, respectively. The resulting fit
was 82.90 % for the airflow speed and 84.00 % for the pressure drop. Each model was calculated with
one pole, thus sacrificing the flexibility in order to increase model precision.

1.95

Gls) =7 1 3.07-5 )
26.17

G) = 13375 ®)

The designed airflow speed controller delivered a proportional factor of 0.24 and an integral one
of 0.27, while these values were 0.02 and 0.02, respectively, for the pressure drop controller. The
closed-loop system of the wind tunnel was simulated with a step signal (Figure 9) to assess the design
of the control system. The rise time was shorter for airflow speed control (3.99 s) than for the pressure
drop control (4.38 s). Overshot was 11.20 % for both control processes. The speed controller reached a
settling time of 2.00 % in 13.30 s, while it took 14.60 s for the pressure drop controller. The controllers
were designed for a phase margin of 60.00°. The airflow speed controller for the corrugated cellulose pad
was adjusted to a crossover frequency of 0.37 rad/s and 0.33 rad/s for the airflow speed and pressure
drop controllers, respectively.
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Figure 7. Airflow speed and drop pressure step response in the cellulose evaporative cooling
pad. Reaction curve for airflow speed (top), reaction curve for pressure drop (center) and
fan voltage step signal (bottom).
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Figure 9. Closed loop system step response of corrugated cellulose evaporative pad.

(-) Airflow speed and (- -) drop pressure controller step response. (a) Rise time, (b) peak

response; (¢) settling time; and (d) steady state.

3.2.2. Insect-Proof Screens

For the insect-proof screens, the SI and CI algorithms follow the same process as described in

Section 3.2.1. The control system was assessed by means of six insect-proof screens to determine the

precision of the control system under a variety of conditions. The models and controllers for each

insect-proof screen can be extracted from Table 3. The identification algorithm obtained a fit exceeding

86.00 % for all of the insect-proof screens. The models showed slight variations among them, which

therefore resulted in variations in the controllers.
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Table 3. Models and controllers for each anti-insect mesh. The gain Km and the first time

constant Tm of the model, proportional gain Kp and integral gain Ki of the controller.

Transfer function Model Fit Controller

Screen Repetition Km Tm % Kp Ki
A 1 1.57 5.84 87.24 0.30 0.17
2 1.60 6.03 87.50 0.30 0.17
3 1.61 6.07 87.50 0.29 0.16
B 1 1.50 6.08 87.97 031 0.18
2 1.45 6.32 88.05 0.33 0.18
3 1.47 6.03 88.05 0.32 0.18
C 1 1.69 5.51 86.54 0.28 0.17
2 1.69 5.77 88.84 0.28 0.16
3 1.56 6.37 88.84 0.30 0.16
D 1 1.60 6.13 88.25 0.30 0.16
2 1.65 5.78 86.63 0.29 0.17
3 1.64 5.53 86.63 0.29 0.18
E 1 1.65 5.49 86.38 0.29 0.18
2 1.61 5.63 87.34 029 0.18
3 1.65 5.71 87.34 029 0.17
F 1 1.69 533 85.52 0.28 0.18
2 1.72 545 87.28 0.28 0.17
3 1.66 5.70 87.28 0.29 0.17

3.3. Controller Behavior for the Corrugated Cellulose Evaporative Cooling Pad

Airflow speed and drop pressure controllers for the corrugated cellulose evaporative pad were
evaluated firstly with just one airflow speed set point, then as described in Table 2.

3.3.1. Airflow Speed Controller Evaluation
Test with one set point

The airflow speed controller test with one set point (3.00 m/s) revealed a settling time of 67.00s
(Figure 10) and a mean deviation of the set point of 0.06 m/s. The test showed the high degree of
accuracy when settling the set point despite that the system is subjected to noise due to turbulence.

Evaluation 1

To assess the performance of the airflow speed controller for the corrugated cellulose pad, airflow
speed set points for all of the sequences described in Section 2.3.4 were tested and airflow samples
and the control voltage were accordingly recorded. Representative tests are shown in Figure 11.
The test time for the corrugated cellulose pad was longer for the increasing-to-decreasing sequence
(Equation (5)) since the test sets twice the set point series were compared to the increasing (Equation (3))
and decreasing (Equation (4)) sequences. Nevertheless, the test required a longer testing period, even
when the test with the increasing-to-decreasing sequence with non-coincident set points (Equation (6))

had the same number of set points as the increasing (Equation (3)) and decreasing (Equation (4))
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sequences. The amplitude between the set points affected the test time, since the amplitude in the
increasing-to-decreasing sequence with non-coincident set points (Equation (6)) was twice that of the

other sequences.
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Figure 10. Single velocity set point using the manual control for the corrugated cellulose

pad. (- -) Airflow set point, (—) measured airflow speed and (- - -) voltage signal to the fan.

Evaluation 2

To control the airflow speed when the aerodynamic parameters of the experimental model changed
during a test, it was necessary that the automatic control system responded to these perturbations to
maintain the stability of the system. Using the same sequences as in Evaluation 1, the robustness of
the control system was analyzed in Evaluation 2 as the injection of water flow (7.50 L/min) onto the
corrugated cellulose evaporative cooling pad was eased (Figure 12). The execution time of the test
subjected to perturbations was approximately 5.00 min longer than that of the tests from Evaluation 1
in absence of perturbations. Despite maintaining the set point in the permissible error range, there was

significant noise during the control.
Evaluation 3

Evaluation 3 was performed to determine the behavior of the system subjected to a constant
perturbation, for which a flow of 7.50 m/s was applied. The flow decreased the corrugated evaporative
cooling pad porosity, thus causing a greater pressure drop and changes in the conditions of the system to
be controlled (Figure 13). The controller was capable of executing the whole increasing-to-decreasing
sequence with non-coincident set points (Equation 6) similarly to when the panel was not subjected to
any perturbation (evaluation 2). The test was performed in 1368.51 s.

Using the previous system and the same corrugated evaporative cooling pad of a 100.00 mm thickness
set at 45.00° to 45.00°, the test evaluated by Franco et al. [13] was then performed. To this end, a test of
seven set points (in terms of frequency) in an increasing-to-decreasing sequence with non-coincident set
points (Equation 6) and 100 samples per set point at a frequency of 0.33 Hz was performed in 4729.00s.

The results of similar tests with both the current and previous systems are shown in Table 4.
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Table 4. Similar tests with the current and previous system.

Current System Previous System

Set points/test 12 7
Samples/set point 30 100
Sampling frequency 1.00Hz 3.00Hz
Time/test 1368.51s 4729.00 s
Sampling time/test 360.00s 2100.00s
Settling time/test 1008.51s 2629.00s
Settling time/set point 84.04s 375.57s
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Figure 11. Control curves for Test 1 with the corrugated cellulose evaporative
pad. Airflow speed set point series are homogeneously distributed (Equation (1))
in (a) increasing-to-decreasing sequence with coincident set points (Equation (5)) and
(b) increasing-to-decreasing sequence with non-coincident set points (Equation (6)).
(—) Airflow speed set points (m-s™1), (—) airflow speed measure (m-s~1), (—) control signal

to fan (V), (—) signal to pump (V).
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Figure 12. Control curves for Test 2 with the corrugated cellulose evaporative
pad. Airflow speed set points series are homogeneously distributed (Equation (1))
in (a) increasing-to-decreasing sequence with coincident set points (Equation (5)) and
(b) increasing-to-decreasing sequence with non-coincident set points (Equation (6)).
(—) Airflow speed set points (m-s~1), (—) airflow speed measure (m-s~1), (—) control signal
to fan (V), (—) signal to pump (perturbation)(V).
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Figure 13. Control curve for Test 3 with the corrugated cellulose pad. (—) Airflow speed
set point (m-s~!), (—) measured airflow speed (m-s~!), (—) signal to fan (V), (—) signal to
pump (V).



Sensors 2015, 15 19742

3.3.2. Pressure Drop Controller Evaluation

Lastly, the pressure drop controller was evaluated using homogeneously-distributed airflow set points
following the sequence described in Equation (6) without any flow in the pump (0.00 L/min). Although
noise was observed in the pressure drop readings, the controller maintained the set points within the
error range of € = 0.50 Pa (Figure 14). The test was performed in 1646.00 s, compared to 1402.00 s in

Evaluation 1 for the same sequence, therefore requiring 244.00 s longer for the pressure drop controller.
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Figure 14. Control curve for Test 4 with the corrugated cellulose pad. (—) Pressure drop set
point (Pa), (—) measured pressure drop (Pa), (—) signal to fan (V), (—) signal to pump (V).

3.4. Resulting PDAS Curves

The comparison of the pressure drop curve for the panel subjected to a constant flow compared to
the same panel with no flow proved the validity of the system and the precision of the measurements.
Figure 15 shows the mean pressure drop values as a function of the mean airflow speed, with the airflow
set points displayed as vertical lines. Pressure drop is greater for each set point in the corrugated cellulose
pad at 7.50 L/min compared to 0 L/min. In addition, there is no notable difference in the airflow speed
controller precision between the system subjected to perturbation (7.50 L/min) and without it (0 L/min).

For all of the insect-proof screens, an adequate distribution of the measurement points could be
observed (Figure 16) in spite of the fact that the aerodynamic characteristics of a single insect-proof
screen were different for each of its repetitions, as observed clearly in mesh Ein Repetitions 1, 2 and 3,
after 2.00 m/s, as indicated by the separation between the pressure drop readings. In addition, the fact
that the algorithm designed a controller for each insect-proof screen improved the precision during the
sampling at one set point.
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3.5. Improvements to the Software Unit

The main improvement provided by the software unit was the implementation of the automatic PI
control theory for the control of airflow speed and pressure drop in the wind tunnel, which made it
possible for the software to manage the tests in terms of airflow speed and pressure drop set points,
while the set points of the previous system were managed in terms of frequency.

Additionally, there was a shift compared to the previous software unit in terms of how the electrical
signal information was obtained. Indeed, with the development of the driver WTD and the library ACL,
communication of the software with the hardware was facilitated, resulting in a reduced need for user
intervention, since it was not necessary to manage the operation of the communication port with the
electronic interface.

It was estimated that the circuit improvements reduced sampling time by 66.67 % with respect to
the previous software unit due to the higher sampling frequency. Likewise, the control scheme reduced
settling time per set point by 77.62 % (see Table 4).

An additional improvement was the resulting flexibility when designing the tests. In the previous
software unit, the algorithm to obtain the PDAS curve was developed over a set point range with the
distribution of set points in terms of frequency, while in the current software unit, the same type of
test was developed in terms of airflow speed or pressure drop. The newly-developed software unit
featured the option of developing the test with heterogeneously-distributed set points, thus allowing
a range of airflow speed values with a variety of set point densities. The increasing sequence (Up)
expressed in Equation (3) was implemented. The capacity to assign heterogeneously-distributed set
points was implemented in the algorithm, hence making it possible to generate tests with more complex
sequences of changes in airflow speed or pressure drop.

Lastly, an additional substantial improvement was the ability to monitor real-time information and the
mean values of the test as graphs and tables. In this way, airflow speed, pressure drop and temperature
could be monitored. Moreover, the data could be directly extracted from the tables, both as averages
and as recorded samples. Alternatively, the project could be saved as a MATLAB file with all of the
information about the test (e.g., models, controllers, parameters of the test and test samples), and the
data of the test could be directly exported to a Microsoft Excel spreadsheet. While the earlier software
unit was programmed using Visual Basic, this new software unit was developed using object-oriented
programming and was based on a model-view-controller architecture with the objective of facilitating
future improvements to the software.

4. Conclusions

This paper presents a novel auto-tuning PI automatic control system for open-circuit low-speed wind
tunnels for applications in greenhouse agriculture. Based on the material presented in this work, the

following conclusions can be drawn:

1. The precise adjustment of specific values of airflow speed (<0.06 m-s~') or pressure drop

(<0.50 Pa) permitted the reproducibility and standardization of the tests. Precise mean airflow
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speed profiles and pressure drop values were obtained by using the feedback control technique,
which resulted in only the target profiles being sent to the computer.

. The open hardware and software platform (Arduino) has proven to be a good and cost-effective

system for the developed control scheme proposed in this study. The improvements in the
circuit reduced the sampling time by 66.67 % compared to the previous system, while the

newly-developed control scheme reduced the settling time per set point by 77.62 %.

. The software unit for the management of the tests developed in this paper is a research tool that

facilitates the experimentation in more dynamic conditions without compromising the precision of
the measurements. This is especially useful for the analysis of insect-proof screens and corrugated
cellulose evaporative cooling pads. The methodology presented in this work has allowed us to
substantially improve the management of the test and its flexibility. Airflow speed and pressure
drop set points series could be set with a homogenous or heterogeneous distribution and be tested
in different sequences. In addition, real-time monitoring made it possible to try specific set points
before performing a test with the set point series.
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