Show simple item record

dc.contributor.authorMena-Jurado, Juan Francisco
dc.contributor.authorNavarro Pascual, Juan Carlos
dc.date.accessioned2022-07-25T09:47:02Z
dc.date.available2022-07-25T09:47:02Z
dc.date.issued2022-06-29
dc.identifier.issn2227-7390
dc.identifier.urihttp://hdl.handle.net/10835/13910
dc.description.abstractWe characterize the extreme points of the closed unit ball of the dual of a Banach space which are preserved by the adjoint of any extreme operator. The result is related to the structure topology introduced by Alfsen and Effros on the set of all extreme points in the dual of any Banach space. As a consequence, we prove that c0(I) is the only Banach space such that the adjoint of every extreme operator taking values into it preserves extreme points.es_ES
dc.language.isoenes_ES
dc.publisherMDPIes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBanach spacees_ES
dc.subjectextreme operatoes_ES
dc.subjectstructure topologyes_ES
dc.titlePreservation of extreme pointses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.3390/math10132268


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional