Mostrar el registro sencillo del ítem

dc.contributor.authorFernández, Antonio
dc.contributor.authorLangseth, Helge
dc.contributor.authorNielsen, Thomas D.
dc.contributor.authorSalmerón Cerdán, Antonio
dc.date.accessioned2012-05-28T08:38:09Z
dc.date.available2012-05-28T08:38:09Z
dc.date.issued2010
dc.identifier.citationProceedings of The Fifth European Workshop on Probabilistic Graphical Models (PGM 2010), pp. 137-144.es_ES
dc.identifier.urihttp://hdl.handle.net/10835/1546
dc.description.abstractBayesian networks with mixtures of truncated exponentials (MTEs) are gaining popularity as a flexible modelling framework for hybrid domains. MTEs support efficient and exact inference algorithms, but estimating an MTE from data has turned out to be a difficult task. Current methods suffer from a considerable computational burden as well as the inability to handle missing values in the training data. In this paper we describe an EM- based algorithm for learning the maximum likelihood parameters of an MTE network when confronted with incomplete data. In order to overcome the computational difficulties we make certain distributional assumptions about the domain being modeled, thus focusing on a subclass of the general class of MTE networks. Preliminary empirical results indicate that the proposed method offers results that are inline with intuition.es_ES
dc.language.isoenes_ES
dc.sourceFifth European Workshop on Probabilistic Graphical Models (PGM 2010)es_ES
dc.titleParameter learning in MTE networks using incomplete dataes_ES
dc.typeinfo:eu-repo/semantics/reportes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem