• español
  • English
  • Login
      • español
      • English
    • English 
      • español
      • English
    • Login
    View Item 
    •   riUAL Home
    • Repositorio de la Producción Científica de la Universidad de Almería
    • Departamento de Matemáticas
    • Congresos Dpto. Matemáticas
    • View Item
    •   riUAL Home
    • Repositorio de la Producción Científica de la Universidad de Almería
    • Departamento de Matemáticas
    • Congresos Dpto. Matemáticas
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Structural-EM for Learning PDG Models from Incomplete Data

    Files
    pgm08_pdgs.pdf (136.0Kb)
    Identifiers
    URI: http://hdl.handle.net/10835/1551
    Services
    RISMendeley
    Share
    Stadistics
    View Usage Statistics
    Metadata
    Show full item record
    Author/s
    Nielsen, Jens D.; Rumí, Rafael; Salmerón Cerdán, Antonio
    Date
    2008
    Abstract
    Probabilistic Decision Graphs (PDGs) are a class of graphical models that can naturally encode some context specific independencies that cannot always be efficiently captured by other popular models, such as Bayesian Networks. Furthermore, inference can be carried out efficiently over a PDG, in time linear in the size of the model. The problem of learning PDGs from data has been studied in the literature, but only for the case of complete data. In this paper we propose an algorithm for learning PDGs in the presence of missing data. The proposed method is based on the EM algorithm for estimating the structure of the model as well as the parameters. We test our proposal on artificially generated data with different rates of missing cells, showing a reasonable performance.
    Collections
    • Congresos Dpto. Matemáticas [25]

    Browse

    All of riUALCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Of interest

    About the RepositoryCopyright FAQsSelf-archiving instructions

    Autoarchivo policies of publishers

    Indexed in

    Contact Us
    Contact Us