• español
  • English
  • Login
      • español
      • English
    • English 
      • español
      • English
    • Login
    View Item 
    •   riUAL Home
    • Repositorio de la Producción Científica de la Universidad de Almería
    • Departamento de Matemáticas
    • Congresos Dpto. Matemáticas
    • View Item
    •   riUAL Home
    • Repositorio de la Producción Científica de la Universidad de Almería
    • Departamento de Matemáticas
    • Congresos Dpto. Matemáticas
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Unsupervised naive Bayes for data clustering with mixtures of truncated exponentials

    Files
    pgm06_mte-clustering.pdf (112.0Kb)
    Identifiers
    URI: http://hdl.handle.net/10835/1555
    Services
    RISMendeley
    Share
    Stadistics
    View Usage Statistics
    Metadata
    Show full item record
    Author/s
    Gámez Martín, José Antonio; Rumí, Rafael; Salmerón Cerdán, Antonio
    Date
    2006
    Abstract
    In this paper we propose a naive Bayes model for unsupervised data clustering, where the class variable is hidden. The feature variables can be discrete or continuous, as the conditional distributions are represented as mixtures of truncated exponentials (MTEs). The number of classes is determined using the data augmentation algorithm. The proposed model is compared with the conditional Gaussian model for some real world and synthetic databases.
    Collections
    • Congresos Dpto. Matemáticas [25]

    Browse

    All of riUALCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Of interest

    About the RepositoryCopyright FAQsSelf-archiving instructions

    Autoarchivo policies of publishers

    Indexed in

    Contact Us
    Contact Us