• español
  • English
  • Login
      • español
      • English
    • English 
      • español
      • English
    • Login
    View Item 
    •   riUAL Home
    • Repositorio de la Producción Científica de la Universidad de Almería
    • Departamento de Matemáticas
    • Artículos de revista Dpto. Matemáticas
    • View Item
    •   riUAL Home
    • Repositorio de la Producción Científica de la Universidad de Almería
    • Departamento de Matemáticas
    • Artículos de revista Dpto. Matemáticas
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Computation of the entropy of polynomials orthogonal on an interval.

    Files
    0310238v2.pdf (466.3Kb)
    Identifiers
    URI: http://hdl.handle.net/10835/1639
    ISSN: 0885-7474
    Services
    RISMendeley
    Share
    Stadistics
    View Usage Statistics
    Metadata
    Show full item record
    Author/s
    Buyarov, V.; Dehesa, J. S.; Martínez-Finkelshtein, Andrei; Sánchez-Lara, J. F.
    Date
    2004
    Abstract
    We give an effective method to compute the entropy for polynomials orthogonal on a segment of the real axis that uses as input data only the coefficients of the recurrence relation satisfied by these polynomials. This algorithm is based on a series expression for the mutual energy of two probability measures naturally connected with the polynomials. The particular case of Gegenbauer polynomials is analyzed in detail. These results are applied also to the computation of the entropy of spherical harmonics, important for the study of the entropic uncertainty relations as well as the spatial complexity of physical systems in central potentials.
    Palabra/s clave
    Polinomios ortogonales
    Polinomios de Gegenbauer
    Armónicos esféricos
    Collections
    • Artículos de revista Dpto. Matemáticas [119]

    Browse

    All of riUALCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Of interest

    About the RepositoryCopyright FAQsSelf-archiving instructions

    Autoarchivo policies of publishers

    Indexed in

    Contact Us
    Contact Us