Show simple item record

dc.contributor.authorRamos López, Darío
dc.date.accessioned2018-02-15T09:31:52Z
dc.date.available2018-02-15T09:31:52Z
dc.date.issued2016
dc.identifier.issn1063-5203
dc.identifier.urihttp://hdl.handle.net/10835/5670
dc.description.abstractWe implement an efficient method of computation of two dimensional Fourier-type integrals based on approximation of the integrand by Gaussian radial basis functions, which constitute a standard tool in approximation theory. As a result, we obtain a rapidly converging series expansion for the integrals, allowing for their accurate calculation. We apply this idea to the evaluation of diffraction integrals, used for the computation of the through-focus characteristics of an optical system. We implement this method and compare it performance in terms of complexity, accuracy and execution time with several alternative approaches, especially with the extended Nijboer-Zernike theory, which is also outlined in the text for the reader’s convenience. The proposed method yields a reliable and fast scheme for simultaneous evaluation of such kind of integrals for several values of the defocus parameter, as required in the characterization of the through-focus optics. Keywords: 2D Fourier transform, Diffraction integrals, Radial Basis Functions, Extended Nijboer–Zernike theory, Through-focus characteristics of an optical system.es_ES
dc.language.isoenes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleComputation of 2D Fourier transforms and diffraction integrals using Gaussian radial basis functionses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doihttp://dx.doi.org/10.1016/j.acha.2016.01.007


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional