Show simple item record

dc.contributor.authorArcoya, David
dc.contributor.authorCarmona Tapia, José
dc.date.accessioned2012-01-03T09:44:46Z
dc.date.available2012-01-03T09:44:46Z
dc.date.issued2003-03
dc.identifier.citationDavid Arcoya, José Carmona, Quasilinear elliptic problems interacting with its asymptotic spectrum, Nonlinear Analysis: Theory, Methods & Applications, Volume 52, Issue 6, March 2003, Pages 1591-1616, ISSN 0362-546X, 10.1016/S0362-546X(02)00274-2.es_ES
dc.identifier.issn0362-546X
dc.identifier.urihttp://hdl.handle.net/10835/580
dc.description.abstractUnder suitable assumptions on the coefficients of the matrix A(x,u) and on the nonlinear term f(x,u), we study the quasilinear problem in bounded domains Ω⊂RN−div(A(x,u)∇u)=f(x,u),x∈Ω,u=0,x∈∂Ω.We extend the semilinear results of Landesman–Lazer (J. Math. Mech. 19 (1970) 609) and of Ambrosetti–Prodi (in: A Primer on Nonlinear Analysis, Cambridge University Press, Cambridge, 1993) for resonant problems. The existence of positive solution is also considered extending to the quasilinear case the classical result by Ambrosetti–Rabinowitz (J. Funct. Anal. 14 (1973) 349). In this case, the result is obtained as a corollary of the previous multiplicity result in the Ambrosetti–Prodi framework. Keywords: Quasilinear elliptic equations; Bifurcation theory; Resonance; Jumping nonlinearitieses_ES
dc.language.isoenes_ES
dc.publisherElsevieres_ES
dc.subjectMathematicses_ES
dc.titleQuasilinear elliptic problems interacting with its asymptotic spectrumes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0362546X02002742es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Files in this item

This item appears in the following Collection(s)

Show simple item record